
-
Previous Article
Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads
- DCDS-S Home
- This Issue
-
Next Article
Adaptive time stepping in elastoplasticity
Rate-independent evolution of sets
1. | DIMI, University of Brescia, Via Branze, 38, 25133 Brescia, Italy |
2. | Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria |
3. | Istituto di Matematica Applicata e Tecnologie Informatiche E. Magenes - CNR, Via Ferrata, 1, 27100 Pavia, Italy |
4. | Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany |
The goal of this work is to analyze a model for the rate-independent evolution of sets with finite perimeter. The evolution of the admissible sets is driven by that of (the complement of) a given time-dependent set, which has to include the admissible sets and hence is to be understood as an external loading. The process is driven by the competition between perimeter minimization and minimization of volume changes.
In the mathematical modeling of this process, we distinguish the adhesive case, in which the constraint that the (complement of) the `external load' contains the evolving sets is penalized by a term contributing to the driving energy functional, from the brittle case, enforcing this constraint. The existence of Energetic solutions for the adhesive system is proved by passing to the limit in the associated time-incremental minimization scheme. In the brittle case, this time-discretization procedure gives rise to evolving sets satisfying the stability condition, but it remains an open problem to additionally deduce energy-dissipation balance in the time-continuous limit. This can be obtained under some suitable quantification of data. The properties of the brittle evolution law are illustrated by numerical examples in two space dimensions.
References:
[1] |
F. Almgren, J. E. Taylor and L. Wang,
Curvature-driven flows: A variational approach, SIAM J. Control Optim., 31 (1993), 387-438.
doi: 10.1137/0331020. |
[2] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.
![]() |
[3] |
L. Ambrosio, N. Gigli and G. Savar{é}, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.
doi: 10.1007/b137080. |
[4] |
L. Ambrosio,
Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191-246.
|
[5] |
D. Bucur, G. Buttazzo and A. Lux,
Quasistatic evolution in debonding problems via capacitary methods, Arch. Ration. Mech. Anal., 190 (2008), 281-306.
doi: 10.1007/s00205-008-0166-9. |
[6] |
S. Campanato,
Propriet{à} di h{ö}lderianit{à} di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 175-188.
|
[7] |
S. Campanato,
Propriet{à} di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 18 (1964), 137-160.
|
[8] |
G. Dal Maso and R. Toader,
A model for the quasi-static growth of brittle fractures: Existence and approximation results, Arch. Ration. Mech. Anal., 162 (2002), 101-135.
doi: 10.1007/s002050100187. |
[9] |
A. Ferriero and N. Fusco,
A note on the convex hull of sets of finite perimeter in the plane, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 102-108.
doi: 10.3934/dcdsb.2009.11.103. |
[10] |
I. Fonseca and G. A. Francfort,
Relaxation in BV versus quasiconvexification in ${W^{1, p}}$ ; A model for the interaction between fracture and damage, Calc. Var. Partial Differential Equations, 3 (1995), 407-446.
doi: 10.1007/BF01187895. |
[11] |
G. A. Francfort and J.-J. Marigo,
Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319-1342.
doi: 10.1016/S0022-5096(98)00034-9. |
[12] |
M. Fr{é}mond, Contact with adhesion, in Topics in Nonsmooth Mechanics, Birkh{ä}user, Basel, 1988,157–185. |
[13] |
M. Fr{é}mond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-04800-9. |
[14] |
B. Kawohl,
On starshaped rearrangement and applications, Trans. Amer. Math. Soc., 296 (1986), 377-386.
doi: 10.1090/S0002-9947-1986-0837818-4. |
[15] |
M. Ko{\v c}vara, A. Mielke and T. Roub{í}{\v c}ek,
A rate-independent approach to the delamination problem, Math. Mech. Solids, 11 (2006), 423-447.
doi: 10.1177/1081286505046482. |
[16] |
P. Krej{\v c}{\'\i} and M. Liero,
Rate independent {K}urzweil processes, Appl. Math., 54 (2009), 117-145.
doi: 10.1007/s10492-009-0009-5. |
[17] |
S. Luckhaus and T. Sturzenhecker,
Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations, 3 (1995), 253-271.
doi: 10.1007/BF01205007. |
[18] |
A. Mainik and A. Mielke,
Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.
doi: 10.1007/s00526-004-0267-8. |
[19] |
A. Mielke, T. Roub{í}{\v c}ek and U. Stefanelli,
{$\Gamma$}-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Partial Differential Equations, 31 (2008), 387-416.
doi: 10.1007/s00526-007-0119-4. |
[20] |
A. Mielke and T. Roub{\'\i}{\v c}ek, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7. |
[21] |
A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, Proceedings of the Workshop on ``Models of Continuum Mechanics in Analysis and Engineering'', Shaker-Verlag, 1999,117–129. Google Scholar |
[22] |
A. Mielke and F. Theil,
On rate–independent hysteresis models, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151-189.
doi: 10.1007/s00030-003-1052-7. |
[23] |
R. Rossi and M. Thomas,
From an adhesive to a brittle delamination model in thermo-visco-elasticity, ESAIM Control Optim. Calc. Var., 21 (2015), 1-59.
doi: 10.1051/cocv/2014015. |
[24] |
T. Roub{í}{\v c}ek, L. Scardia and C. Zanini,
Quasistatic delamination problem, Contin. Mech. Thermodyn., 21 (2009), 223-235.
doi: 10.1007/s00161-009-0106-4. |
[25] |
T. Roub{\'\i}{\v c}ek, M. Thomas and C. G. Panagiotopoulos,
Stress-driven local-solution approach to quasistatic brittle delamination, Nonlinear Anal. Real World Appl., 22 (2015), 645-663.
doi: 10.1016/j.nonrwa.2014.09.011. |
[26] |
M. Thomas,
Quasistatic damage evolution with spatial BV-regularization, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 235-255.
doi: 10.3934/dcdss.2013.6.235. |
[27] |
M. Thomas,
Uniform {P}oincaré-{S}obolev and isoperimetric inequalities for classes of domains, Discrete Contin. Dyn. Syst., 35 (2015), 2741-2761.
doi: 10.3934/dcds.2015.35.2741. |
[28] |
A. Visintin,
Motion by mean curvature and nucleation, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 55-60.
doi: 10.1016/S0764-4442(97)83933-X. |
[29] |
A. Visintin,
Nucleation and mean curvature flow, Comm. Partial Differential Equations, 23 (1998), 17-53.
doi: 10.1080/03605309808821337. |
show all references
References:
[1] |
F. Almgren, J. E. Taylor and L. Wang,
Curvature-driven flows: A variational approach, SIAM J. Control Optim., 31 (1993), 387-438.
doi: 10.1137/0331020. |
[2] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.
![]() |
[3] |
L. Ambrosio, N. Gigli and G. Savar{é}, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.
doi: 10.1007/b137080. |
[4] |
L. Ambrosio,
Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191-246.
|
[5] |
D. Bucur, G. Buttazzo and A. Lux,
Quasistatic evolution in debonding problems via capacitary methods, Arch. Ration. Mech. Anal., 190 (2008), 281-306.
doi: 10.1007/s00205-008-0166-9. |
[6] |
S. Campanato,
Propriet{à} di h{ö}lderianit{à} di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 175-188.
|
[7] |
S. Campanato,
Propriet{à} di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 18 (1964), 137-160.
|
[8] |
G. Dal Maso and R. Toader,
A model for the quasi-static growth of brittle fractures: Existence and approximation results, Arch. Ration. Mech. Anal., 162 (2002), 101-135.
doi: 10.1007/s002050100187. |
[9] |
A. Ferriero and N. Fusco,
A note on the convex hull of sets of finite perimeter in the plane, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 102-108.
doi: 10.3934/dcdsb.2009.11.103. |
[10] |
I. Fonseca and G. A. Francfort,
Relaxation in BV versus quasiconvexification in ${W^{1, p}}$ ; A model for the interaction between fracture and damage, Calc. Var. Partial Differential Equations, 3 (1995), 407-446.
doi: 10.1007/BF01187895. |
[11] |
G. A. Francfort and J.-J. Marigo,
Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319-1342.
doi: 10.1016/S0022-5096(98)00034-9. |
[12] |
M. Fr{é}mond, Contact with adhesion, in Topics in Nonsmooth Mechanics, Birkh{ä}user, Basel, 1988,157–185. |
[13] |
M. Fr{é}mond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-04800-9. |
[14] |
B. Kawohl,
On starshaped rearrangement and applications, Trans. Amer. Math. Soc., 296 (1986), 377-386.
doi: 10.1090/S0002-9947-1986-0837818-4. |
[15] |
M. Ko{\v c}vara, A. Mielke and T. Roub{í}{\v c}ek,
A rate-independent approach to the delamination problem, Math. Mech. Solids, 11 (2006), 423-447.
doi: 10.1177/1081286505046482. |
[16] |
P. Krej{\v c}{\'\i} and M. Liero,
Rate independent {K}urzweil processes, Appl. Math., 54 (2009), 117-145.
doi: 10.1007/s10492-009-0009-5. |
[17] |
S. Luckhaus and T. Sturzenhecker,
Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations, 3 (1995), 253-271.
doi: 10.1007/BF01205007. |
[18] |
A. Mainik and A. Mielke,
Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.
doi: 10.1007/s00526-004-0267-8. |
[19] |
A. Mielke, T. Roub{í}{\v c}ek and U. Stefanelli,
{$\Gamma$}-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Partial Differential Equations, 31 (2008), 387-416.
doi: 10.1007/s00526-007-0119-4. |
[20] |
A. Mielke and T. Roub{\'\i}{\v c}ek, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7. |
[21] |
A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, Proceedings of the Workshop on ``Models of Continuum Mechanics in Analysis and Engineering'', Shaker-Verlag, 1999,117–129. Google Scholar |
[22] |
A. Mielke and F. Theil,
On rate–independent hysteresis models, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151-189.
doi: 10.1007/s00030-003-1052-7. |
[23] |
R. Rossi and M. Thomas,
From an adhesive to a brittle delamination model in thermo-visco-elasticity, ESAIM Control Optim. Calc. Var., 21 (2015), 1-59.
doi: 10.1051/cocv/2014015. |
[24] |
T. Roub{í}{\v c}ek, L. Scardia and C. Zanini,
Quasistatic delamination problem, Contin. Mech. Thermodyn., 21 (2009), 223-235.
doi: 10.1007/s00161-009-0106-4. |
[25] |
T. Roub{\'\i}{\v c}ek, M. Thomas and C. G. Panagiotopoulos,
Stress-driven local-solution approach to quasistatic brittle delamination, Nonlinear Anal. Real World Appl., 22 (2015), 645-663.
doi: 10.1016/j.nonrwa.2014.09.011. |
[26] |
M. Thomas,
Quasistatic damage evolution with spatial BV-regularization, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 235-255.
doi: 10.3934/dcdss.2013.6.235. |
[27] |
M. Thomas,
Uniform {P}oincaré-{S}obolev and isoperimetric inequalities for classes of domains, Discrete Contin. Dyn. Syst., 35 (2015), 2741-2761.
doi: 10.3934/dcds.2015.35.2741. |
[28] |
A. Visintin,
Motion by mean curvature and nucleation, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 55-60.
doi: 10.1016/S0764-4442(97)83933-X. |
[29] |
A. Visintin,
Nucleation and mean curvature flow, Comm. Partial Differential Equations, 23 (1998), 17-53.
doi: 10.1080/03605309808821337. |








[1] |
Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161 |
[2] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[3] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[4] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[5] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[6] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[7] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[8] |
Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197 |
[9] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[10] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[11] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[12] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[13] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[14] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[15] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[16] |
Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329 |
[17] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[18] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
[19] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[20] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]