• Previous Article
    A fuzzy inventory model for Weibull deteriorating items under completely backlogged shortages
  • DCDS-S Home
  • This Issue
  • Next Article
    Lipschitz stability in determination of coefficients in a two-dimensional Boussinesq system by arbitrary boundary observation
doi: 10.3934/dcdss.2020304

Rate-independent evolution of sets

1. 

DIMI, University of Brescia, Via Branze, 38, 25133 Brescia, Italy

2. 

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

3. 

Istituto di Matematica Applicata e Tecnologie Informatiche E. Magenes - CNR, Via Ferrata, 1, 27100 Pavia, Italy

4. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany

* Corresponding author: Riccarda Rossi

Dedicated to Alexander Mielke on the occasion of his sixtieth birthday.

Received  March 2019 Revised  September 2019 Published  March 2020

The goal of this work is to analyze a model for the rate-independent evolution of sets with finite perimeter. The evolution of the admissible sets is driven by that of (the complement of) a given time-dependent set, which has to include the admissible sets and hence is to be understood as an external loading. The process is driven by the competition between perimeter minimization and minimization of volume changes.

In the mathematical modeling of this process, we distinguish the adhesive case, in which the constraint that the (complement of) the 'external load' contains the evolving sets is penalized by a term contributing to the driving energy functional, from the brittle case, enforcing this constraint. The existence of Energetic solutions for the adhesive system is proved by passing to the limit in the associated time-incremental minimization scheme. In the brittle case, this time-discretization procedure gives rise to evolving sets satisfying the stability condition, but it remains an open problem to additionally deduce energy-dissipation balance in the time-continuous limit. This can be obtained under some suitable quantification of data. The properties of the brittle evolution law are illustrated by numerical examples in two space dimensions.

Citation: Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020304
References:
[1]

F. AlmgrenJ. E. Taylor and L. Wang, Curvature-driven flows: A variational approach, SIAM J. Control Optim., 31 (1993), 387-438.  doi: 10.1137/0331020.  Google Scholar

[2] L. AmbrosioN. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.   Google Scholar
[3]

L. Ambrosio, N. Gigli and G. Savar{é}, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. doi: 10.1007/b137080.  Google Scholar

[4]

L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191-246.   Google Scholar

[5]

D. BucurG. Buttazzo and A. Lux, Quasistatic evolution in debonding problems via capacitary methods, Arch. Ration. Mech. Anal., 190 (2008), 281-306.  doi: 10.1007/s00205-008-0166-9.  Google Scholar

[6]

S. Campanato, Propriet{à} di h{ö}lderianit{à} di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 175-188.   Google Scholar

[7]

S. Campanato, Propriet{à} di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 18 (1964), 137-160.   Google Scholar

[8]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: Existence and approximation results, Arch. Ration. Mech. Anal., 162 (2002), 101-135.  doi: 10.1007/s002050100187.  Google Scholar

[9]

A. Ferriero and N. Fusco, A note on the convex hull of sets of finite perimeter in the plane, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 102-108.  doi: 10.3934/dcdsb.2009.11.103.  Google Scholar

[10]

I. Fonseca and G. A. Francfort, Relaxation in BV versus quasiconvexification in {${W^{1, p}}$}; A model for the interaction between fracture and damage, Calc. Var. Partial Differential Equations, 3 (1995), 407-446.  doi: 10.1007/BF01187895.  Google Scholar

[11]

G. A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319-1342.  doi: 10.1016/S0022-5096(98)00034-9.  Google Scholar

[12]

M. Fr{é}mond, Contact with adhesion, in Topics in Nonsmooth Mechanics, Birkh{ä}user, Basel, 1988,157–185.  Google Scholar

[13]

M. Fr{é}mond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04800-9.  Google Scholar

[14]

B. Kawohl, On starshaped rearrangement and applications, Trans. Amer. Math. Soc., 296 (1986), 377-386.  doi: 10.1090/S0002-9947-1986-0837818-4.  Google Scholar

[15]

M. Ko{\v c}varaA. Mielke and T. Roub{í}{\v c}ek, A rate-independent approach to the delamination problem, Math. Mech. Solids, 11 (2006), 423-447.  doi: 10.1177/1081286505046482.  Google Scholar

[16]

P. Krej{\v c}{\'\i} and M. Liero, Rate independent {K}urzweil processes, Appl. Math., 54 (2009), 117-145.  doi: 10.1007/s10492-009-0009-5.  Google Scholar

[17]

S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations, 3 (1995), 253-271.  doi: 10.1007/BF01205007.  Google Scholar

[18]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.  Google Scholar

[19]

A. MielkeT. Roub{í}{\v c}ek and U. Stefanelli, {$\Gamma$}-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Partial Differential Equations, 31 (2008), 387-416.  doi: 10.1007/s00526-007-0119-4.  Google Scholar

[20]

A. Mielke and T. Roub{\'\i}{\v c}ek, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[21]

A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, Proceedings of the Workshop on ''Models of Continuum Mechanics in Analysis and Engineering'', Shaker-Verlag, 1999,117–129. Google Scholar

[22]

A. Mielke and F. Theil, On rate–independent hysteresis models, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151-189.  doi: 10.1007/s00030-003-1052-7.  Google Scholar

[23]

R. Rossi and M. Thomas, From an adhesive to a brittle delamination model in thermo-visco-elasticity, ESAIM Control Optim. Calc. Var., 21 (2015), 1-59.  doi: 10.1051/cocv/2014015.  Google Scholar

[24]

T. Roub{í}{\v c}ekL. Scardia and C. Zanini, Quasistatic delamination problem, Contin. Mech. Thermodyn., 21 (2009), 223-235.  doi: 10.1007/s00161-009-0106-4.  Google Scholar

[25]

T. Roub{\'\i}{\v c}ekM. Thomas and C. G. Panagiotopoulos, Stress-driven local-solution approach to quasistatic brittle delamination, Nonlinear Anal. Real World Appl., 22 (2015), 645-663.  doi: 10.1016/j.nonrwa.2014.09.011.  Google Scholar

[26]

M. Thomas, Quasistatic damage evolution with spatial BV-regularization, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 235-255.  doi: 10.3934/dcdss.2013.6.235.  Google Scholar

[27]

M. Thomas, Uniform {P}oincaré-{S}obolev and isoperimetric inequalities for classes of domains, Discrete Contin. Dyn. Syst., 35 (2015), 2741-2761.  doi: 10.3934/dcds.2015.35.2741.  Google Scholar

[28]

A. Visintin, Motion by mean curvature and nucleation, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 55-60.  doi: 10.1016/S0764-4442(97)83933-X.  Google Scholar

[29]

A. Visintin, Nucleation and mean curvature flow, Comm. Partial Differential Equations, 23 (1998), 17-53.  doi: 10.1080/03605309808821337.  Google Scholar

show all references

References:
[1]

F. AlmgrenJ. E. Taylor and L. Wang, Curvature-driven flows: A variational approach, SIAM J. Control Optim., 31 (1993), 387-438.  doi: 10.1137/0331020.  Google Scholar

[2] L. AmbrosioN. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000.   Google Scholar
[3]

L. Ambrosio, N. Gigli and G. Savar{é}, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. doi: 10.1007/b137080.  Google Scholar

[4]

L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (5), 19 (1995), 191-246.   Google Scholar

[5]

D. BucurG. Buttazzo and A. Lux, Quasistatic evolution in debonding problems via capacitary methods, Arch. Ration. Mech. Anal., 190 (2008), 281-306.  doi: 10.1007/s00205-008-0166-9.  Google Scholar

[6]

S. Campanato, Propriet{à} di h{ö}lderianit{à} di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 17 (1963), 175-188.   Google Scholar

[7]

S. Campanato, Propriet{à} di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3), 18 (1964), 137-160.   Google Scholar

[8]

G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures: Existence and approximation results, Arch. Ration. Mech. Anal., 162 (2002), 101-135.  doi: 10.1007/s002050100187.  Google Scholar

[9]

A. Ferriero and N. Fusco, A note on the convex hull of sets of finite perimeter in the plane, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 102-108.  doi: 10.3934/dcdsb.2009.11.103.  Google Scholar

[10]

I. Fonseca and G. A. Francfort, Relaxation in BV versus quasiconvexification in {${W^{1, p}}$}; A model for the interaction between fracture and damage, Calc. Var. Partial Differential Equations, 3 (1995), 407-446.  doi: 10.1007/BF01187895.  Google Scholar

[11]

G. A. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319-1342.  doi: 10.1016/S0022-5096(98)00034-9.  Google Scholar

[12]

M. Fr{é}mond, Contact with adhesion, in Topics in Nonsmooth Mechanics, Birkh{ä}user, Basel, 1988,157–185.  Google Scholar

[13]

M. Fr{é}mond, Non-Smooth Thermomechanics, Springer-Verlag, Berlin, 2002. doi: 10.1007/978-3-662-04800-9.  Google Scholar

[14]

B. Kawohl, On starshaped rearrangement and applications, Trans. Amer. Math. Soc., 296 (1986), 377-386.  doi: 10.1090/S0002-9947-1986-0837818-4.  Google Scholar

[15]

M. Ko{\v c}varaA. Mielke and T. Roub{í}{\v c}ek, A rate-independent approach to the delamination problem, Math. Mech. Solids, 11 (2006), 423-447.  doi: 10.1177/1081286505046482.  Google Scholar

[16]

P. Krej{\v c}{\'\i} and M. Liero, Rate independent {K}urzweil processes, Appl. Math., 54 (2009), 117-145.  doi: 10.1007/s10492-009-0009-5.  Google Scholar

[17]

S. Luckhaus and T. Sturzenhecker, Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations, 3 (1995), 253-271.  doi: 10.1007/BF01205007.  Google Scholar

[18]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.  Google Scholar

[19]

A. MielkeT. Roub{í}{\v c}ek and U. Stefanelli, {$\Gamma$}-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Partial Differential Equations, 31 (2008), 387-416.  doi: 10.1007/s00526-007-0119-4.  Google Scholar

[20]

A. Mielke and T. Roub{\'\i}{\v c}ek, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[21]

A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, Proceedings of the Workshop on ''Models of Continuum Mechanics in Analysis and Engineering'', Shaker-Verlag, 1999,117–129. Google Scholar

[22]

A. Mielke and F. Theil, On rate–independent hysteresis models, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 151-189.  doi: 10.1007/s00030-003-1052-7.  Google Scholar

[23]

R. Rossi and M. Thomas, From an adhesive to a brittle delamination model in thermo-visco-elasticity, ESAIM Control Optim. Calc. Var., 21 (2015), 1-59.  doi: 10.1051/cocv/2014015.  Google Scholar

[24]

T. Roub{í}{\v c}ekL. Scardia and C. Zanini, Quasistatic delamination problem, Contin. Mech. Thermodyn., 21 (2009), 223-235.  doi: 10.1007/s00161-009-0106-4.  Google Scholar

[25]

T. Roub{\'\i}{\v c}ekM. Thomas and C. G. Panagiotopoulos, Stress-driven local-solution approach to quasistatic brittle delamination, Nonlinear Anal. Real World Appl., 22 (2015), 645-663.  doi: 10.1016/j.nonrwa.2014.09.011.  Google Scholar

[26]

M. Thomas, Quasistatic damage evolution with spatial BV-regularization, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 235-255.  doi: 10.3934/dcdss.2013.6.235.  Google Scholar

[27]

M. Thomas, Uniform {P}oincaré-{S}obolev and isoperimetric inequalities for classes of domains, Discrete Contin. Dyn. Syst., 35 (2015), 2741-2761.  doi: 10.3934/dcds.2015.35.2741.  Google Scholar

[28]

A. Visintin, Motion by mean curvature and nucleation, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 55-60.  doi: 10.1016/S0764-4442(97)83933-X.  Google Scholar

[29]

A. Visintin, Nucleation and mean curvature flow, Comm. Partial Differential Equations, 23 (1998), 17-53.  doi: 10.1080/03605309808821337.  Google Scholar

Figure 1.  An example for nonconnectedness: A needle-like forcing F.
Figure 3.  Solutions of the minimization problem (54) with forcing $ F^c $ being an equilateral triangle, a square, and a regular hexagon, respectively
Figure 8.  Partial $ C^1 $ regularity. The two solutions correspond to $ v(x) = 3/4 - |x{-}1/2| $ (left) and $ v(x) = 1/4 + |x{-}1/2| $ (right)
Figure 2.  The C1 competitor profile
Figure 7.  Convex forcing $ F^{c} $. The two solutions correspond to $ v(x) = 3/4 - \beta(x{-}1/2)^2 $ for $ \beta = 2 $ (left) and $ \beta = 1/5 $ (right). The minimal set $ Z $ is convex
Figure 4.  The evolution from (60) for $ M = 5 $ and time $ t = 2 $.
Figure 5.  An evolution of connected sets fulfilling the compatibility condition (50), time flows from left to right
Figure 6.  The effect of changing the parameter $ a $. The two solutions correspond to $ v(x) = (x{-}1/2)^2+1/2 $ for $ a = 7 $ (left) and $ a = 3 $ (right). The top adhesion zone is smaller for smaller $ a $. Note that the parts of the boundary of $ Z $ which are not in contact with $ F^c $ are arcs of circles with radius $ 1/a $ (recall that $ a $ is different in the two figures), as predicted in Subsection 4.1
Figure 9.  Extreme configurations. The solution for $ v(x) = \max\{1-5|x{-}1/2|,1/2\} $ (left) and $ v(x) = \lfloor 5x\rfloor/5+1/5 $ (right)
[1]

Annalisa Cesaroni, Matteo Novaga. Volume constrained minimizers of the fractional perimeter with a potential energy. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 715-727. doi: 10.3934/dcdss.2017036

[2]

Luigi Ambrosio, Michele Miranda jr., Diego Pallara. Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 591-606. doi: 10.3934/dcds.2010.28.591

[3]

Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020324

[4]

Alessandro Ferriero, Nicola Fusco. A note on the convex hull of sets of finite perimeter in the plane. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 103-108. doi: 10.3934/dcdsb.2009.11.103

[5]

Annibale Magni, Matteo Novaga. A note on non lower semicontinuous perimeter functionals on partitions. Networks & Heterogeneous Media, 2016, 11 (3) : 501-508. doi: 10.3934/nhm.2016006

[6]

Serena Dipierro, Alessio Figalli, Giampiero Palatucci, Enrico Valdinoci. Asymptotics of the $s$-perimeter as $s\searrow 0$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2777-2790. doi: 10.3934/dcds.2013.33.2777

[7]

Antonin Chambolle, Francesco Doveri. Minimizing movements of the Mumford and Shah energy. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 153-174. doi: 10.3934/dcds.1997.3.153

[8]

Agissilaos G. Athanassoulis, Gerassimos A. Athanassoulis, Mariya Ptashnyk, Themistoklis Sapsis. Strong solutions for the Alber equation and stability of unidirectional wave spectra. Kinetic & Related Models, 2020, 13 (4) : 703-737. doi: 10.3934/krm.2020024

[9]

Antonio Tribuzio. Perturbations of minimizing movements and curves of maximal slope. Networks & Heterogeneous Media, 2018, 13 (3) : 423-448. doi: 10.3934/nhm.2018019

[10]

Samuel Amstutz, Antonio André Novotny, Nicolas Van Goethem. Minimal partitions and image classification using a gradient-free perimeter approximation. Inverse Problems & Imaging, 2014, 8 (2) : 361-387. doi: 10.3934/ipi.2014.8.361

[11]

Gyula Csató. On the isoperimetric problem with perimeter density $r^p$. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2729-2749. doi: 10.3934/cpaa.2018129

[12]

Hayk Mikayelyan, Henrik Shahgholian. Convexity of the free boundary for an exterior free boundary problem involving the perimeter. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1431-1443. doi: 10.3934/cpaa.2013.12.1431

[13]

Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319

[14]

Nobuyuki Kato. Linearized stability and asymptotic properties for abstract boundary value functional evolution problems. Conference Publications, 1998, 1998 (Special) : 371-387. doi: 10.3934/proc.1998.1998.371

[15]

Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295

[16]

Armands Gritsans, Felix Sadyrbaev. The Nehari solutions and asymmetric minimizers. Conference Publications, 2015, 2015 (special) : 562-568. doi: 10.3934/proc.2015.0562

[17]

Florian Krügel. Some properties of minimizers of a variational problem involving the total variation functional. Communications on Pure & Applied Analysis, 2015, 14 (1) : 341-360. doi: 10.3934/cpaa.2015.14.341

[18]

Annalisa Cesaroni, Serena Dipierro, Matteo Novaga, Enrico Valdinoci. Minimizers of the $ p $-oscillation functional. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6785-6799. doi: 10.3934/dcds.2019231

[19]

Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations & Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032

[20]

Valentina Taddei. Bound sets for floquet boundary value problems: The nonsmooth case. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 459-473. doi: 10.3934/dcds.2000.6.459

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]