
-
Previous Article
Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system
- DCDS-S Home
- This Issue
-
Next Article
Contraction and regularizing properties of heat flows in metric measure spaces
Numerical approximation of von Kármán viscoelastic plates
1. | Institute for Computational and Applied Mathematics, University of Münster, Einsteinstr. 62, D-48149 Münster, Germany |
2. | Czech Academy of Sciences, Institute of Information Theory and Automation, Pod vodárenskou vĕží 4, CZ-182 00 Praha 8, Czechia, Faculty of Civil Engineering, Czech Technical University, Thákurova 7, CZ-166 29 Praha 6, Czechia |
3. | Czech Academy of Sciences, Institute of Information Theory and Automation, Pod vodárenskou vĕží 4, CZ-182 00 Praha 8, Czechia, Institute of Mathematics, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budĕjovice, Czechia |
We consider metric gradient flows and their discretizations in time and space. We prove an abstract convergence result for time-space discretizations and identify their limits as curves of maximal slope. As an application, we consider a finite element approximation of a quasistatic evolution for viscoelastic von Kármán plates [
References:
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces (2nd ed), Elsevier, Amsterdam, 2003. |
[2] |
L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 19 (1995), 191–246. |
[3] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures Math. ETH Zürich, Birkhäuser, Basel, 2005. |
[4] |
I. Anjam and J. Valdman,
Fast MATLAB assembly of FEM matrices in 2D and 3D: edge elements, Appl. Math. Comput., 267 (2015), 252-263.
doi: 10.1016/j.amc.2015.03.105. |
[5] |
S. S. Antman,
Physically unacceptable viscous stresses, Z. Angew. Math. Phys., 49 (1998), 980-988.
doi: 10.1007/s000330050134. |
[6] |
S. S. Antman, Nonlinear Problems of Elasticity, Springer, New York, 2005. |
[7] |
J. M. Ball,
Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., 63 (1977), 337-403.
doi: 10.1007/BF00279992. |
[8] |
J. M. Ball, J. C. Currie and P. L. Olver,
Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal., 41 (1981), 135-174.
doi: 10.1016/0022-1236(81)90085-9. |
[9] |
R. C. Batra,
Thermodynamics of non-simple elastic materials, J. Elasticity, 6 (1976), 451-456.
doi: 10.1007/BF00040904. |
[10] |
I. Bock,
On Von Kármán equations for viscoelastic plates, J. Comp. Appl. Math., 63 (1995), 277-282.
doi: 10.1016/0377-0427(95)00082-8. |
[11] |
I. Bock and J. Jarušek,
Solvability of dynamic contact problems for elastic von Kármán plates, SIAM J. Math. Anal., 41 (2009), 37-45.
doi: 10.1137/080712179. |
[12] |
I. Bock, J. Jarušek and M. Šilhavý,
On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate, Nonlin. Anal.: Real World Appl., 32 (2016), 111-135.
doi: 10.1016/j.nonrwa.2016.04.004. |
[13] |
F. K. Bogner, R. L. Fox and L. A. Schmit, The generation of inter-element compatible stiffness and mass matrices by the use of interpolation formulas, Proceedings of the Conference on Matrix Methods in Structural Mechanics, (1965), 397–444. |
[14] |
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, New York, 2008.
doi: 10.1007/978-0-387-75934-0. |
[15] |
G. Capriz,
Continua with latent microstructure, Arch. Ration. Mech. Anal., 90 (1985), 43-56.
doi: 10.1007/BF00281586. |
[16] |
V. Casarino and D. Percivale,
A variational model for nonlinear elastic plates, J. Convex Anal., 3 (1996), 221-243.
|
[17] |
P. G. Ciarlet, Mathematical Elasticity, Vol. I: Three-dimensional Elasticity, North-Holland, Amsterdam, 1988. |
[18] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, Philadelphia, 2002.
doi: 10.1137/1.9780898719208. |
[19] |
G. Dal Maso, An Introduction to $\Gamma$-convergence, Birkhäuser, Boston $\cdot$ Basel $\cdot$ Berlin, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[20] |
E. De Giorgi, A. Marino and M. Tosques,
Problems of evolution in metric spaces and maximal decreasing curve, Att. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 68 (1980), 180-187.
|
[21] |
J. E. Dunn and J. Serrin,
On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal., 88 (1985), 95-133.
doi: 10.1007/BF00250907. |
[22] |
M. Friedrich and M. Kružík,
On the passage from nonlinear to linearized viscoelasticity, SIAM J. Math. Anal., 50 (2018), 4426-4456.
doi: 10.1137/17M1131428. |
[23] |
M. Friedrich and M. Kružík, Derivation of von Kármán plate theory in the framework of three-dimensional viscoelasticity, preprint, arXiv: 1902.10037. |
[24] |
G. Friesecke, R. D. James and S. Müller,
A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.
doi: 10.1002/cpa.10048. |
[25] |
G. Friesecke, R. D. James and S. Müller,
A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Arch. Ration. Mech. Anal., 180 (2006), 183-236.
doi: 10.1007/s00205-005-0400-7. |
[26] |
P. Harasim and J. Valdman,
Verification of functional a posteriori error estimates for an obstacle problem in 2D, Kybernetika, 50 (2014), 978-1002.
doi: 10.14736/kyb-2014-6-0978. |
[27] |
S. Krömer and J. Valdman,
Global injectivity in second-gradient nonlinear elasticity and its approximation with penalty terms, Mathematics and Mechanics of Solids, 24 (2019), 3644-3673.
doi: 10.1177/1081286519851554. |
[28] |
M. Lecumberry and S. Müller,
Stability of slender bodies under compression and validity of the von Kármán theory, Arch. Ration. Mech. Anal., 193 (2009), 255-310.
doi: 10.1007/s00205-009-0232-y. |
[29] |
H. Le Dret and A. Raoult,
The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., 74 (1995), 549-578.
|
[30] |
H. Le Dret and A. Raoult, The membrane shell model in nonlinear elasticity: A variational asymptotic derivation,, J. Nonl. Sci., 6 (1996), 59–84.
doi: 10.1007/BF02433810. |
[31] |
A. Mielke, C. Ortner and Y. Şengül,
An approach to nonlinear viscoelasticity via metric gradient flows, SIAM J. Math. Anal., 46 (2014), 1317-1347.
doi: 10.1137/130927632. |
[32] |
A. Mielke and T. Roubíček, Rate-Independent Systems - Theory and Application, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7. |
[33] |
A. Mielke and T. Roubíček,
Rate-independent elastoplasticity at finite strains and its numerical approximation, Math. Models & Methods in Appl. Sci., 26 (2016), 2203-2236.
doi: 10.1142/S0218202516500512. |
[34] |
C. Ortner, Two Variational Techniques for the Approximation of Curves of Maximal Slope, , Technical report NA05/10, Oxford University Computing Laboratory, Oxford, UK, 2005. |
[35] |
O. Pantz,
On the justification of the nonlinear inextensional plate model, Arch. Ration. Mech. Anal., 167 (2003), 179-209.
doi: 10.1007/s00205-002-0238-1. |
[36] |
J. Y. Park and J. R. Kang,
Uniform decay of solutions for von Karman equations of dynamic viscoelasticity with memory, Acta Appl. Math., 110 (2010), 1461-1474.
doi: 10.1007/s10440-009-9520-7. |
[37] |
P. Podio-Guidugli,
Contact interactions, stress, and material symmetry for nonsimple elastic materials, Theor. Appl. Mech., 28/29 (2002), 261-276.
|
[38] |
T. Rahman and J. Valdman,
Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements, Appl. Math. Comput., 219 (2013), 7151-7158.
doi: 10.1016/j.amc.2011.08.043. |
[39] |
E. Sandier and S. Serfaty,
Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.
doi: 10.1002/cpa.20046. |
[40] |
S. Serfaty,
Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst. Ser. A, 31 (2011), 1427-1451.
doi: 10.3934/dcds.2011.31.1427. |
[41] |
R. A. Toupin,
Elastic materials with couple stresses, Arch. Ration. Mech. Anal., 11 (1962), 385-414.
doi: 10.1007/BF00253945. |
[42] |
R. A. Toupin,
Theory of elasticity with couple stress, Arch. Ration. Mech. Anal., 17 (1964), 85-112.
doi: 10.1007/BF00253050. |
[43] |
J. Valdman, MATLAB Implementation of C1 finite elements: Bogner-Fox-Schmit rectangle, In: Wyrzykowski R., Dongarra J., Deelman E., Karczewski K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019, LNCS, Springer, 12044 (2020), 256–266.
doi: 10.1007/978-3-030-43222-5_22. |
[44] |
T. von Kármán,
Festigkeitsprobleme im maschinenbau in encyclopädie der mathematischen wissenschaften, Leipzig, 4 (1910), 311-385.
|
show all references
References:
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces (2nd ed), Elsevier, Amsterdam, 2003. |
[2] |
L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 19 (1995), 191–246. |
[3] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures Math. ETH Zürich, Birkhäuser, Basel, 2005. |
[4] |
I. Anjam and J. Valdman,
Fast MATLAB assembly of FEM matrices in 2D and 3D: edge elements, Appl. Math. Comput., 267 (2015), 252-263.
doi: 10.1016/j.amc.2015.03.105. |
[5] |
S. S. Antman,
Physically unacceptable viscous stresses, Z. Angew. Math. Phys., 49 (1998), 980-988.
doi: 10.1007/s000330050134. |
[6] |
S. S. Antman, Nonlinear Problems of Elasticity, Springer, New York, 2005. |
[7] |
J. M. Ball,
Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., 63 (1977), 337-403.
doi: 10.1007/BF00279992. |
[8] |
J. M. Ball, J. C. Currie and P. L. Olver,
Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal., 41 (1981), 135-174.
doi: 10.1016/0022-1236(81)90085-9. |
[9] |
R. C. Batra,
Thermodynamics of non-simple elastic materials, J. Elasticity, 6 (1976), 451-456.
doi: 10.1007/BF00040904. |
[10] |
I. Bock,
On Von Kármán equations for viscoelastic plates, J. Comp. Appl. Math., 63 (1995), 277-282.
doi: 10.1016/0377-0427(95)00082-8. |
[11] |
I. Bock and J. Jarušek,
Solvability of dynamic contact problems for elastic von Kármán plates, SIAM J. Math. Anal., 41 (2009), 37-45.
doi: 10.1137/080712179. |
[12] |
I. Bock, J. Jarušek and M. Šilhavý,
On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate, Nonlin. Anal.: Real World Appl., 32 (2016), 111-135.
doi: 10.1016/j.nonrwa.2016.04.004. |
[13] |
F. K. Bogner, R. L. Fox and L. A. Schmit, The generation of inter-element compatible stiffness and mass matrices by the use of interpolation formulas, Proceedings of the Conference on Matrix Methods in Structural Mechanics, (1965), 397–444. |
[14] |
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, New York, 2008.
doi: 10.1007/978-0-387-75934-0. |
[15] |
G. Capriz,
Continua with latent microstructure, Arch. Ration. Mech. Anal., 90 (1985), 43-56.
doi: 10.1007/BF00281586. |
[16] |
V. Casarino and D. Percivale,
A variational model for nonlinear elastic plates, J. Convex Anal., 3 (1996), 221-243.
|
[17] |
P. G. Ciarlet, Mathematical Elasticity, Vol. I: Three-dimensional Elasticity, North-Holland, Amsterdam, 1988. |
[18] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, Philadelphia, 2002.
doi: 10.1137/1.9780898719208. |
[19] |
G. Dal Maso, An Introduction to $\Gamma$-convergence, Birkhäuser, Boston $\cdot$ Basel $\cdot$ Berlin, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[20] |
E. De Giorgi, A. Marino and M. Tosques,
Problems of evolution in metric spaces and maximal decreasing curve, Att. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 68 (1980), 180-187.
|
[21] |
J. E. Dunn and J. Serrin,
On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal., 88 (1985), 95-133.
doi: 10.1007/BF00250907. |
[22] |
M. Friedrich and M. Kružík,
On the passage from nonlinear to linearized viscoelasticity, SIAM J. Math. Anal., 50 (2018), 4426-4456.
doi: 10.1137/17M1131428. |
[23] |
M. Friedrich and M. Kružík, Derivation of von Kármán plate theory in the framework of three-dimensional viscoelasticity, preprint, arXiv: 1902.10037. |
[24] |
G. Friesecke, R. D. James and S. Müller,
A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.
doi: 10.1002/cpa.10048. |
[25] |
G. Friesecke, R. D. James and S. Müller,
A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Arch. Ration. Mech. Anal., 180 (2006), 183-236.
doi: 10.1007/s00205-005-0400-7. |
[26] |
P. Harasim and J. Valdman,
Verification of functional a posteriori error estimates for an obstacle problem in 2D, Kybernetika, 50 (2014), 978-1002.
doi: 10.14736/kyb-2014-6-0978. |
[27] |
S. Krömer and J. Valdman,
Global injectivity in second-gradient nonlinear elasticity and its approximation with penalty terms, Mathematics and Mechanics of Solids, 24 (2019), 3644-3673.
doi: 10.1177/1081286519851554. |
[28] |
M. Lecumberry and S. Müller,
Stability of slender bodies under compression and validity of the von Kármán theory, Arch. Ration. Mech. Anal., 193 (2009), 255-310.
doi: 10.1007/s00205-009-0232-y. |
[29] |
H. Le Dret and A. Raoult,
The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., 74 (1995), 549-578.
|
[30] |
H. Le Dret and A. Raoult, The membrane shell model in nonlinear elasticity: A variational asymptotic derivation,, J. Nonl. Sci., 6 (1996), 59–84.
doi: 10.1007/BF02433810. |
[31] |
A. Mielke, C. Ortner and Y. Şengül,
An approach to nonlinear viscoelasticity via metric gradient flows, SIAM J. Math. Anal., 46 (2014), 1317-1347.
doi: 10.1137/130927632. |
[32] |
A. Mielke and T. Roubíček, Rate-Independent Systems - Theory and Application, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7. |
[33] |
A. Mielke and T. Roubíček,
Rate-independent elastoplasticity at finite strains and its numerical approximation, Math. Models & Methods in Appl. Sci., 26 (2016), 2203-2236.
doi: 10.1142/S0218202516500512. |
[34] |
C. Ortner, Two Variational Techniques for the Approximation of Curves of Maximal Slope, , Technical report NA05/10, Oxford University Computing Laboratory, Oxford, UK, 2005. |
[35] |
O. Pantz,
On the justification of the nonlinear inextensional plate model, Arch. Ration. Mech. Anal., 167 (2003), 179-209.
doi: 10.1007/s00205-002-0238-1. |
[36] |
J. Y. Park and J. R. Kang,
Uniform decay of solutions for von Karman equations of dynamic viscoelasticity with memory, Acta Appl. Math., 110 (2010), 1461-1474.
doi: 10.1007/s10440-009-9520-7. |
[37] |
P. Podio-Guidugli,
Contact interactions, stress, and material symmetry for nonsimple elastic materials, Theor. Appl. Mech., 28/29 (2002), 261-276.
|
[38] |
T. Rahman and J. Valdman,
Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements, Appl. Math. Comput., 219 (2013), 7151-7158.
doi: 10.1016/j.amc.2011.08.043. |
[39] |
E. Sandier and S. Serfaty,
Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.
doi: 10.1002/cpa.20046. |
[40] |
S. Serfaty,
Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst. Ser. A, 31 (2011), 1427-1451.
doi: 10.3934/dcds.2011.31.1427. |
[41] |
R. A. Toupin,
Elastic materials with couple stresses, Arch. Ration. Mech. Anal., 11 (1962), 385-414.
doi: 10.1007/BF00253945. |
[42] |
R. A. Toupin,
Theory of elasticity with couple stress, Arch. Ration. Mech. Anal., 17 (1964), 85-112.
doi: 10.1007/BF00253050. |
[43] |
J. Valdman, MATLAB Implementation of C1 finite elements: Bogner-Fox-Schmit rectangle, In: Wyrzykowski R., Dongarra J., Deelman E., Karczewski K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019, LNCS, Springer, 12044 (2020), 256–266.
doi: 10.1007/978-3-030-43222-5_22. |
[44] |
T. von Kármán,
Festigkeitsprobleme im maschinenbau in encyclopädie der mathematischen wissenschaften, Leipzig, 4 (1910), 311-385.
|




[1] |
Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427 |
[2] |
Antonin Chambolle, Francesco Doveri. Minimizing movements of the Mumford and Shah energy. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 153-174. doi: 10.3934/dcds.1997.3.153 |
[3] |
Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 373-393. doi: 10.3934/dcdss.2020324 |
[4] |
Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2101-2116. doi: 10.3934/cpaa.2021059 |
[5] |
Anton Petrunin. Correction to: Metric minimizing surfaces. Electronic Research Announcements, 2018, 25: 96-96. doi: 10.3934/era.2018.25.010 |
[6] |
Anton Petrunin. Metric minimizing surfaces. Electronic Research Announcements, 1999, 5: 47-54. |
[7] |
Antonio Tribuzio. Perturbations of minimizing movements and curves of maximal slope. Networks and Heterogeneous Media, 2018, 13 (3) : 423-448. doi: 10.3934/nhm.2018019 |
[8] |
José Antonio Carrillo, Yanghong Huang, Francesco Saverio Patacchini, Gershon Wolansky. Numerical study of a particle method for gradient flows. Kinetic and Related Models, 2017, 10 (3) : 613-641. doi: 10.3934/krm.2017025 |
[9] |
Monica Conti, V. Pata. Weakly dissipative semilinear equations of viscoelasticity. Communications on Pure and Applied Analysis, 2005, 4 (4) : 705-720. doi: 10.3934/cpaa.2005.4.705 |
[10] |
Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001 |
[11] |
Julián Fernández Bonder, Analía Silva, Juan F. Spedaletti. Gamma convergence and asymptotic behavior for eigenvalues of nonlocal problems. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2125-2140. doi: 10.3934/dcds.2020355 |
[12] |
Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017 |
[13] |
Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679 |
[14] |
Radu Saghin. On the number of ergodic minimizing measures for Lagrangian flows. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 501-507. doi: 10.3934/dcds.2007.17.501 |
[15] |
Antonio DeSimone, Martin Kružík. Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks and Heterogeneous Media, 2013, 8 (2) : 481-499. doi: 10.3934/nhm.2013.8.481 |
[16] |
Jaeyoo Choy, Hahng-Yun Chu. On the dynamics of flows on compact metric spaces. Communications on Pure and Applied Analysis, 2010, 9 (1) : 103-108. doi: 10.3934/cpaa.2010.9.103 |
[17] |
Lorenza D'Elia. $ \Gamma $-convergence of quadratic functionals with non uniformly elliptic conductivity matrices. Networks and Heterogeneous Media, 2022, 17 (1) : 15-45. doi: 10.3934/nhm.2021022 |
[18] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[19] |
Hartmut Schwetlick, Daniel C. Sutton, Johannes Zimmer. On the $\Gamma$-limit for a non-uniformly bounded sequence of two-phase metric functionals. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 411-426. doi: 10.3934/dcds.2015.35.411 |
[20] |
Jean-Paul Chehab, Georges Sadaka. Numerical study of a family of dissipative KdV equations. Communications on Pure and Applied Analysis, 2013, 12 (1) : 519-546. doi: 10.3934/cpaa.2013.12.519 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]