January  2021, 14(1): 299-319. doi: 10.3934/dcdss.2020322

Numerical approximation of von Kármán viscoelastic plates

1. 

Institute for Computational and Applied Mathematics, University of Münster, Einsteinstr. 62, D-48149 Münster, Germany

2. 

Czech Academy of Sciences, Institute of Information Theory and Automation, Pod vodárenskou vĕží 4, CZ-182 00 Praha 8, Czechia, Faculty of Civil Engineering, Czech Technical University, Thákurova 7, CZ-166 29 Praha 6, Czechia

3. 

Czech Academy of Sciences, Institute of Information Theory and Automation, Pod vodárenskou vĕží 4, CZ-182 00 Praha 8, Czechia, Institute of Mathematics, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budĕjovice, Czechia

* Corresponding author: Martin Kružík

This paper is dedicated to Alexander Mielke in the occasion of his 60th birthday

Received  March 2019 Revised  October 2019 Published  April 2020

We consider metric gradient flows and their discretizations in time and space. We prove an abstract convergence result for time-space discretizations and identify their limits as curves of maximal slope. As an application, we consider a finite element approximation of a quasistatic evolution for viscoelastic von Kármán plates [44]. Computational experiments exploiting C1 finite elements are provided, too.

Citation: Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces (2nd ed), Elsevier, Amsterdam, 2003.  Google Scholar

[2]

L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 19 (1995), 191–246.  Google Scholar

[3]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures Math. ETH Zürich, Birkhäuser, Basel, 2005.  Google Scholar

[4]

I. Anjam and J. Valdman, Fast MATLAB assembly of FEM matrices in 2D and 3D: edge elements, Appl. Math. Comput., 267 (2015), 252-263.  doi: 10.1016/j.amc.2015.03.105.  Google Scholar

[5]

S. S. Antman, Physically unacceptable viscous stresses, Z. Angew. Math. Phys., 49 (1998), 980-988.  doi: 10.1007/s000330050134.  Google Scholar

[6]

S. S. Antman, Nonlinear Problems of Elasticity, Springer, New York, 2005.  Google Scholar

[7]

J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., 63 (1977), 337-403.  doi: 10.1007/BF00279992.  Google Scholar

[8]

J. M. BallJ. C. Currie and P. L. Olver, Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal., 41 (1981), 135-174.  doi: 10.1016/0022-1236(81)90085-9.  Google Scholar

[9]

R. C. Batra, Thermodynamics of non-simple elastic materials, J. Elasticity, 6 (1976), 451-456.  doi: 10.1007/BF00040904.  Google Scholar

[10]

I. Bock, On Von Kármán equations for viscoelastic plates, J. Comp. Appl. Math., 63 (1995), 277-282.  doi: 10.1016/0377-0427(95)00082-8.  Google Scholar

[11]

I. Bock and J. Jarušek, Solvability of dynamic contact problems for elastic von Kármán plates, SIAM J. Math. Anal., 41 (2009), 37-45.  doi: 10.1137/080712179.  Google Scholar

[12]

I. BockJ. Jarušek and M. Šilhavý, On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate, Nonlin. Anal.: Real World Appl., 32 (2016), 111-135.  doi: 10.1016/j.nonrwa.2016.04.004.  Google Scholar

[13]

F. K. Bogner, R. L. Fox and L. A. Schmit, The generation of inter-element compatible stiffness and mass matrices by the use of interpolation formulas, Proceedings of the Conference on Matrix Methods in Structural Mechanics, (1965), 397–444. Google Scholar

[14]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[15]

G. Capriz, Continua with latent microstructure, Arch. Ration. Mech. Anal., 90 (1985), 43-56.  doi: 10.1007/BF00281586.  Google Scholar

[16]

V. Casarino and D. Percivale, A variational model for nonlinear elastic plates, J. Convex Anal., 3 (1996), 221-243.   Google Scholar

[17]

P. G. Ciarlet, Mathematical Elasticity, Vol. I: Three-dimensional Elasticity, North-Holland, Amsterdam, 1988.  Google Scholar

[18]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, Philadelphia, 2002. doi: 10.1137/1.9780898719208.  Google Scholar

[19]

G. Dal Maso, An Introduction to $\Gamma$-convergence, Birkhäuser, Boston $\cdot$ Basel $\cdot$ Berlin, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[20]

E. De GiorgiA. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve, Att. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 68 (1980), 180-187.   Google Scholar

[21]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal., 88 (1985), 95-133.  doi: 10.1007/BF00250907.  Google Scholar

[22]

M. Friedrich and M. Kružík, On the passage from nonlinear to linearized viscoelasticity, SIAM J. Math. Anal., 50 (2018), 4426-4456.  doi: 10.1137/17M1131428.  Google Scholar

[23]

M. Friedrich and M. Kružík, Derivation of von Kármán plate theory in the framework of three-dimensional viscoelasticity, preprint, arXiv: 1902.10037. Google Scholar

[24]

G. FrieseckeR. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.  doi: 10.1002/cpa.10048.  Google Scholar

[25]

G. FrieseckeR. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Arch. Ration. Mech. Anal., 180 (2006), 183-236.  doi: 10.1007/s00205-005-0400-7.  Google Scholar

[26]

P. Harasim and J. Valdman, Verification of functional a posteriori error estimates for an obstacle problem in 2D, Kybernetika, 50 (2014), 978-1002.  doi: 10.14736/kyb-2014-6-0978.  Google Scholar

[27]

S. Krömer and J. Valdman, Global injectivity in second-gradient nonlinear elasticity and its approximation with penalty terms, Mathematics and Mechanics of Solids, 24 (2019), 3644-3673.  doi: 10.1177/1081286519851554.  Google Scholar

[28]

M. Lecumberry and S. Müller, Stability of slender bodies under compression and validity of the von Kármán theory, Arch. Ration. Mech. Anal., 193 (2009), 255-310.  doi: 10.1007/s00205-009-0232-y.  Google Scholar

[29]

H. Le Dret and A. Raoult, The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., 74 (1995), 549-578.   Google Scholar

[30]

H. Le Dret and A. Raoult, The membrane shell model in nonlinear elasticity: A variational asymptotic derivation,, J. Nonl. Sci., 6 (1996), 59–84. doi: 10.1007/BF02433810.  Google Scholar

[31]

A. MielkeC. Ortner and Y. Şengül, An approach to nonlinear viscoelasticity via metric gradient flows, SIAM J. Math. Anal., 46 (2014), 1317-1347.  doi: 10.1137/130927632.  Google Scholar

[32]

A. Mielke and T. Roubíček, Rate-Independent Systems - Theory and Application, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[33]

A. Mielke and T. Roubíček, Rate-independent elastoplasticity at finite strains and its numerical approximation, Math. Models & Methods in Appl. Sci., 26 (2016), 2203-2236.  doi: 10.1142/S0218202516500512.  Google Scholar

[34]

C. Ortner, Two Variational Techniques for the Approximation of Curves of Maximal Slope, , Technical report NA05/10, Oxford University Computing Laboratory, Oxford, UK, 2005. Google Scholar

[35]

O. Pantz, On the justification of the nonlinear inextensional plate model, Arch. Ration. Mech. Anal., 167 (2003), 179-209.  doi: 10.1007/s00205-002-0238-1.  Google Scholar

[36]

J. Y. Park and J. R. Kang, Uniform decay of solutions for von Karman equations of dynamic viscoelasticity with memory, Acta Appl. Math., 110 (2010), 1461-1474.  doi: 10.1007/s10440-009-9520-7.  Google Scholar

[37]

P. Podio-Guidugli, Contact interactions, stress, and material symmetry for nonsimple elastic materials, Theor. Appl. Mech., 28/29 (2002), 261-276.   Google Scholar

[38]

T. Rahman and J. Valdman, Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements, Appl. Math. Comput., 219 (2013), 7151-7158.  doi: 10.1016/j.amc.2011.08.043.  Google Scholar

[39]

E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.  doi: 10.1002/cpa.20046.  Google Scholar

[40]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst. Ser. A, 31 (2011), 1427-1451.  doi: 10.3934/dcds.2011.31.1427.  Google Scholar

[41]

R. A. Toupin, Elastic materials with couple stresses, Arch. Ration. Mech. Anal., 11 (1962), 385-414.  doi: 10.1007/BF00253945.  Google Scholar

[42]

R. A. Toupin, Theory of elasticity with couple stress, Arch. Ration. Mech. Anal., 17 (1964), 85-112.  doi: 10.1007/BF00253050.  Google Scholar

[43]

J. Valdman, MATLAB Implementation of C1 finite elements: Bogner-Fox-Schmit rectangle, In: Wyrzykowski R., Dongarra J., Deelman E., Karczewski K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019, LNCS, Springer, 12044 (2020), 256–266. doi: 10.1007/978-3-030-43222-5_22.  Google Scholar

[44]

T. von Kármán, Festigkeitsprobleme im maschinenbau in encyclopädie der mathematischen wissenschaften, Leipzig, 4 (1910), 311-385.   Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces (2nd ed), Elsevier, Amsterdam, 2003.  Google Scholar

[2]

L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 19 (1995), 191–246.  Google Scholar

[3]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures Math. ETH Zürich, Birkhäuser, Basel, 2005.  Google Scholar

[4]

I. Anjam and J. Valdman, Fast MATLAB assembly of FEM matrices in 2D and 3D: edge elements, Appl. Math. Comput., 267 (2015), 252-263.  doi: 10.1016/j.amc.2015.03.105.  Google Scholar

[5]

S. S. Antman, Physically unacceptable viscous stresses, Z. Angew. Math. Phys., 49 (1998), 980-988.  doi: 10.1007/s000330050134.  Google Scholar

[6]

S. S. Antman, Nonlinear Problems of Elasticity, Springer, New York, 2005.  Google Scholar

[7]

J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., 63 (1977), 337-403.  doi: 10.1007/BF00279992.  Google Scholar

[8]

J. M. BallJ. C. Currie and P. L. Olver, Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal., 41 (1981), 135-174.  doi: 10.1016/0022-1236(81)90085-9.  Google Scholar

[9]

R. C. Batra, Thermodynamics of non-simple elastic materials, J. Elasticity, 6 (1976), 451-456.  doi: 10.1007/BF00040904.  Google Scholar

[10]

I. Bock, On Von Kármán equations for viscoelastic plates, J. Comp. Appl. Math., 63 (1995), 277-282.  doi: 10.1016/0377-0427(95)00082-8.  Google Scholar

[11]

I. Bock and J. Jarušek, Solvability of dynamic contact problems for elastic von Kármán plates, SIAM J. Math. Anal., 41 (2009), 37-45.  doi: 10.1137/080712179.  Google Scholar

[12]

I. BockJ. Jarušek and M. Šilhavý, On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate, Nonlin. Anal.: Real World Appl., 32 (2016), 111-135.  doi: 10.1016/j.nonrwa.2016.04.004.  Google Scholar

[13]

F. K. Bogner, R. L. Fox and L. A. Schmit, The generation of inter-element compatible stiffness and mass matrices by the use of interpolation formulas, Proceedings of the Conference on Matrix Methods in Structural Mechanics, (1965), 397–444. Google Scholar

[14]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, New York, 2008. doi: 10.1007/978-0-387-75934-0.  Google Scholar

[15]

G. Capriz, Continua with latent microstructure, Arch. Ration. Mech. Anal., 90 (1985), 43-56.  doi: 10.1007/BF00281586.  Google Scholar

[16]

V. Casarino and D. Percivale, A variational model for nonlinear elastic plates, J. Convex Anal., 3 (1996), 221-243.   Google Scholar

[17]

P. G. Ciarlet, Mathematical Elasticity, Vol. I: Three-dimensional Elasticity, North-Holland, Amsterdam, 1988.  Google Scholar

[18]

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, Philadelphia, 2002. doi: 10.1137/1.9780898719208.  Google Scholar

[19]

G. Dal Maso, An Introduction to $\Gamma$-convergence, Birkhäuser, Boston $\cdot$ Basel $\cdot$ Berlin, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[20]

E. De GiorgiA. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve, Att. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 68 (1980), 180-187.   Google Scholar

[21]

J. E. Dunn and J. Serrin, On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal., 88 (1985), 95-133.  doi: 10.1007/BF00250907.  Google Scholar

[22]

M. Friedrich and M. Kružík, On the passage from nonlinear to linearized viscoelasticity, SIAM J. Math. Anal., 50 (2018), 4426-4456.  doi: 10.1137/17M1131428.  Google Scholar

[23]

M. Friedrich and M. Kružík, Derivation of von Kármán plate theory in the framework of three-dimensional viscoelasticity, preprint, arXiv: 1902.10037. Google Scholar

[24]

G. FrieseckeR. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.  doi: 10.1002/cpa.10048.  Google Scholar

[25]

G. FrieseckeR. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Arch. Ration. Mech. Anal., 180 (2006), 183-236.  doi: 10.1007/s00205-005-0400-7.  Google Scholar

[26]

P. Harasim and J. Valdman, Verification of functional a posteriori error estimates for an obstacle problem in 2D, Kybernetika, 50 (2014), 978-1002.  doi: 10.14736/kyb-2014-6-0978.  Google Scholar

[27]

S. Krömer and J. Valdman, Global injectivity in second-gradient nonlinear elasticity and its approximation with penalty terms, Mathematics and Mechanics of Solids, 24 (2019), 3644-3673.  doi: 10.1177/1081286519851554.  Google Scholar

[28]

M. Lecumberry and S. Müller, Stability of slender bodies under compression and validity of the von Kármán theory, Arch. Ration. Mech. Anal., 193 (2009), 255-310.  doi: 10.1007/s00205-009-0232-y.  Google Scholar

[29]

H. Le Dret and A. Raoult, The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., 74 (1995), 549-578.   Google Scholar

[30]

H. Le Dret and A. Raoult, The membrane shell model in nonlinear elasticity: A variational asymptotic derivation,, J. Nonl. Sci., 6 (1996), 59–84. doi: 10.1007/BF02433810.  Google Scholar

[31]

A. MielkeC. Ortner and Y. Şengül, An approach to nonlinear viscoelasticity via metric gradient flows, SIAM J. Math. Anal., 46 (2014), 1317-1347.  doi: 10.1137/130927632.  Google Scholar

[32]

A. Mielke and T. Roubíček, Rate-Independent Systems - Theory and Application, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[33]

A. Mielke and T. Roubíček, Rate-independent elastoplasticity at finite strains and its numerical approximation, Math. Models & Methods in Appl. Sci., 26 (2016), 2203-2236.  doi: 10.1142/S0218202516500512.  Google Scholar

[34]

C. Ortner, Two Variational Techniques for the Approximation of Curves of Maximal Slope, , Technical report NA05/10, Oxford University Computing Laboratory, Oxford, UK, 2005. Google Scholar

[35]

O. Pantz, On the justification of the nonlinear inextensional plate model, Arch. Ration. Mech. Anal., 167 (2003), 179-209.  doi: 10.1007/s00205-002-0238-1.  Google Scholar

[36]

J. Y. Park and J. R. Kang, Uniform decay of solutions for von Karman equations of dynamic viscoelasticity with memory, Acta Appl. Math., 110 (2010), 1461-1474.  doi: 10.1007/s10440-009-9520-7.  Google Scholar

[37]

P. Podio-Guidugli, Contact interactions, stress, and material symmetry for nonsimple elastic materials, Theor. Appl. Mech., 28/29 (2002), 261-276.   Google Scholar

[38]

T. Rahman and J. Valdman, Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements, Appl. Math. Comput., 219 (2013), 7151-7158.  doi: 10.1016/j.amc.2011.08.043.  Google Scholar

[39]

E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.  doi: 10.1002/cpa.20046.  Google Scholar

[40]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst. Ser. A, 31 (2011), 1427-1451.  doi: 10.3934/dcds.2011.31.1427.  Google Scholar

[41]

R. A. Toupin, Elastic materials with couple stresses, Arch. Ration. Mech. Anal., 11 (1962), 385-414.  doi: 10.1007/BF00253945.  Google Scholar

[42]

R. A. Toupin, Theory of elasticity with couple stress, Arch. Ration. Mech. Anal., 17 (1964), 85-112.  doi: 10.1007/BF00253050.  Google Scholar

[43]

J. Valdman, MATLAB Implementation of C1 finite elements: Bogner-Fox-Schmit rectangle, In: Wyrzykowski R., Dongarra J., Deelman E., Karczewski K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019, LNCS, Springer, 12044 (2020), 256–266. doi: 10.1007/978-3-030-43222-5_22.  Google Scholar

[44]

T. von Kármán, Festigkeitsprobleme im maschinenbau in encyclopädie der mathematischen wissenschaften, Leipzig, 4 (1910), 311-385.   Google Scholar

Figure 1.  A rectangular mesh with Gauss integration points: midpoints are used for evaluation of Q1 elements (left) and four points for evaluation of Bogner-Fox-Schmit elements (right)
Figure 2.  Time sequence of energy minimizers $ (u, v) $ in Benchmark Ⅰ. To emphasize the mesh deformation, the nodes displacement is magnified by a factor of 4
Figure 3.  Time sequence of energy minimizers $ (u, v) $ in Benchmark Ⅱ. To emphasize the mesh deformation, the nodes displacement is magnified by a factor of 7
Figure 4.  Example of $ C^1 $ approximation by the Bogner-Fox-Schmit rectangular elements: the function $ v_0 = (1-x_1^2)^2(1-x_2^2)^2 $ from Benchmark 1 is represented by its value (A), gradient components (C), (D) and the second mixed derivative (B) in all mesh nodes.
[1]

Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 373-393. doi: 10.3934/dcdss.2020324

[2]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[3]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[4]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[5]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[6]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[7]

Yasemin Şengül. Viscoelasticity with limiting strain. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 57-70. doi: 10.3934/dcdss.2020330

[8]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[9]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[10]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[11]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[12]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[13]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[14]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[15]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[16]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[17]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[18]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[19]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[20]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (87)
  • HTML views (289)
  • Cited by (2)

Other articles
by authors

[Back to Top]