
-
Previous Article
Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system
- DCDS-S Home
- This Issue
-
Next Article
Contraction and regularizing properties of heat flows in metric measure spaces
Numerical approximation of von Kármán viscoelastic plates
1. | Institute for Computational and Applied Mathematics, University of Münster, Einsteinstr. 62, D-48149 Münster, Germany |
2. | Czech Academy of Sciences, Institute of Information Theory and Automation, Pod vodárenskou vĕží 4, CZ-182 00 Praha 8, Czechia, Faculty of Civil Engineering, Czech Technical University, Thákurova 7, CZ-166 29 Praha 6, Czechia |
3. | Czech Academy of Sciences, Institute of Information Theory and Automation, Pod vodárenskou vĕží 4, CZ-182 00 Praha 8, Czechia, Institute of Mathematics, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budĕjovice, Czechia |
We consider metric gradient flows and their discretizations in time and space. We prove an abstract convergence result for time-space discretizations and identify their limits as curves of maximal slope. As an application, we consider a finite element approximation of a quasistatic evolution for viscoelastic von Kármán plates [
References:
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces (2nd ed), Elsevier, Amsterdam, 2003. |
[2] |
L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 19 (1995), 191–246. |
[3] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures Math. ETH Zürich, Birkhäuser, Basel, 2005. |
[4] |
I. Anjam and J. Valdman,
Fast MATLAB assembly of FEM matrices in 2D and 3D: edge elements, Appl. Math. Comput., 267 (2015), 252-263.
doi: 10.1016/j.amc.2015.03.105. |
[5] |
S. S. Antman,
Physically unacceptable viscous stresses, Z. Angew. Math. Phys., 49 (1998), 980-988.
doi: 10.1007/s000330050134. |
[6] |
S. S. Antman, Nonlinear Problems of Elasticity, Springer, New York, 2005. |
[7] |
J. M. Ball,
Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., 63 (1977), 337-403.
doi: 10.1007/BF00279992. |
[8] |
J. M. Ball, J. C. Currie and P. L. Olver,
Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal., 41 (1981), 135-174.
doi: 10.1016/0022-1236(81)90085-9. |
[9] |
R. C. Batra,
Thermodynamics of non-simple elastic materials, J. Elasticity, 6 (1976), 451-456.
doi: 10.1007/BF00040904. |
[10] |
I. Bock,
On Von Kármán equations for viscoelastic plates, J. Comp. Appl. Math., 63 (1995), 277-282.
doi: 10.1016/0377-0427(95)00082-8. |
[11] |
I. Bock and J. Jarušek,
Solvability of dynamic contact problems for elastic von Kármán plates, SIAM J. Math. Anal., 41 (2009), 37-45.
doi: 10.1137/080712179. |
[12] |
I. Bock, J. Jarušek and M. Šilhavý,
On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate, Nonlin. Anal.: Real World Appl., 32 (2016), 111-135.
doi: 10.1016/j.nonrwa.2016.04.004. |
[13] |
F. K. Bogner, R. L. Fox and L. A. Schmit, The generation of inter-element compatible stiffness and mass matrices by the use of interpolation formulas, Proceedings of the Conference on Matrix Methods in Structural Mechanics, (1965), 397–444. Google Scholar |
[14] |
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, New York, 2008.
doi: 10.1007/978-0-387-75934-0. |
[15] |
G. Capriz,
Continua with latent microstructure, Arch. Ration. Mech. Anal., 90 (1985), 43-56.
doi: 10.1007/BF00281586. |
[16] |
V. Casarino and D. Percivale,
A variational model for nonlinear elastic plates, J. Convex Anal., 3 (1996), 221-243.
|
[17] |
P. G. Ciarlet, Mathematical Elasticity, Vol. I: Three-dimensional Elasticity, North-Holland, Amsterdam, 1988. |
[18] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, Philadelphia, 2002.
doi: 10.1137/1.9780898719208. |
[19] |
G. Dal Maso, An Introduction to $\Gamma$-convergence, Birkhäuser, Boston $\cdot$ Basel $\cdot$ Berlin, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[20] |
E. De Giorgi, A. Marino and M. Tosques,
Problems of evolution in metric spaces and maximal decreasing curve, Att. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 68 (1980), 180-187.
|
[21] |
J. E. Dunn and J. Serrin,
On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal., 88 (1985), 95-133.
doi: 10.1007/BF00250907. |
[22] |
M. Friedrich and M. Kružík,
On the passage from nonlinear to linearized viscoelasticity, SIAM J. Math. Anal., 50 (2018), 4426-4456.
doi: 10.1137/17M1131428. |
[23] |
M. Friedrich and M. Kružík, Derivation of von Kármán plate theory in the framework of three-dimensional viscoelasticity, preprint, arXiv: 1902.10037. Google Scholar |
[24] |
G. Friesecke, R. D. James and S. Müller,
A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.
doi: 10.1002/cpa.10048. |
[25] |
G. Friesecke, R. D. James and S. Müller,
A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Arch. Ration. Mech. Anal., 180 (2006), 183-236.
doi: 10.1007/s00205-005-0400-7. |
[26] |
P. Harasim and J. Valdman,
Verification of functional a posteriori error estimates for an obstacle problem in 2D, Kybernetika, 50 (2014), 978-1002.
doi: 10.14736/kyb-2014-6-0978. |
[27] |
S. Krömer and J. Valdman,
Global injectivity in second-gradient nonlinear elasticity and its approximation with penalty terms, Mathematics and Mechanics of Solids, 24 (2019), 3644-3673.
doi: 10.1177/1081286519851554. |
[28] |
M. Lecumberry and S. Müller,
Stability of slender bodies under compression and validity of the von Kármán theory, Arch. Ration. Mech. Anal., 193 (2009), 255-310.
doi: 10.1007/s00205-009-0232-y. |
[29] |
H. Le Dret and A. Raoult,
The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., 74 (1995), 549-578.
|
[30] |
H. Le Dret and A. Raoult, The membrane shell model in nonlinear elasticity: A variational asymptotic derivation,, J. Nonl. Sci., 6 (1996), 59–84.
doi: 10.1007/BF02433810. |
[31] |
A. Mielke, C. Ortner and Y. Şengül,
An approach to nonlinear viscoelasticity via metric gradient flows, SIAM J. Math. Anal., 46 (2014), 1317-1347.
doi: 10.1137/130927632. |
[32] |
A. Mielke and T. Roubíček, Rate-Independent Systems - Theory and Application, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7. |
[33] |
A. Mielke and T. Roubíček,
Rate-independent elastoplasticity at finite strains and its numerical approximation, Math. Models & Methods in Appl. Sci., 26 (2016), 2203-2236.
doi: 10.1142/S0218202516500512. |
[34] |
C. Ortner, Two Variational Techniques for the Approximation of Curves of Maximal Slope, , Technical report NA05/10, Oxford University Computing Laboratory, Oxford, UK, 2005. Google Scholar |
[35] |
O. Pantz,
On the justification of the nonlinear inextensional plate model, Arch. Ration. Mech. Anal., 167 (2003), 179-209.
doi: 10.1007/s00205-002-0238-1. |
[36] |
J. Y. Park and J. R. Kang,
Uniform decay of solutions for von Karman equations of dynamic viscoelasticity with memory, Acta Appl. Math., 110 (2010), 1461-1474.
doi: 10.1007/s10440-009-9520-7. |
[37] |
P. Podio-Guidugli,
Contact interactions, stress, and material symmetry for nonsimple elastic materials, Theor. Appl. Mech., 28/29 (2002), 261-276.
|
[38] |
T. Rahman and J. Valdman,
Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements, Appl. Math. Comput., 219 (2013), 7151-7158.
doi: 10.1016/j.amc.2011.08.043. |
[39] |
E. Sandier and S. Serfaty,
Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.
doi: 10.1002/cpa.20046. |
[40] |
S. Serfaty,
Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst. Ser. A, 31 (2011), 1427-1451.
doi: 10.3934/dcds.2011.31.1427. |
[41] |
R. A. Toupin,
Elastic materials with couple stresses, Arch. Ration. Mech. Anal., 11 (1962), 385-414.
doi: 10.1007/BF00253945. |
[42] |
R. A. Toupin,
Theory of elasticity with couple stress, Arch. Ration. Mech. Anal., 17 (1964), 85-112.
doi: 10.1007/BF00253050. |
[43] |
J. Valdman, MATLAB Implementation of C1 finite elements: Bogner-Fox-Schmit rectangle, In: Wyrzykowski R., Dongarra J., Deelman E., Karczewski K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019, LNCS, Springer, 12044 (2020), 256–266.
doi: 10.1007/978-3-030-43222-5_22. |
[44] |
T. von Kármán, Festigkeitsprobleme im maschinenbau in encyclopädie der mathematischen wissenschaften, Leipzig, 4 (1910), 311-385. Google Scholar |
show all references
References:
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces (2nd ed), Elsevier, Amsterdam, 2003. |
[2] |
L. Ambrosio, Minimizing movements, Rend. Accad. Naz. Sci. XL Mem. Mat. Appl., 19 (1995), 191–246. |
[3] |
L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures Math. ETH Zürich, Birkhäuser, Basel, 2005. |
[4] |
I. Anjam and J. Valdman,
Fast MATLAB assembly of FEM matrices in 2D and 3D: edge elements, Appl. Math. Comput., 267 (2015), 252-263.
doi: 10.1016/j.amc.2015.03.105. |
[5] |
S. S. Antman,
Physically unacceptable viscous stresses, Z. Angew. Math. Phys., 49 (1998), 980-988.
doi: 10.1007/s000330050134. |
[6] |
S. S. Antman, Nonlinear Problems of Elasticity, Springer, New York, 2005. |
[7] |
J. M. Ball,
Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., 63 (1977), 337-403.
doi: 10.1007/BF00279992. |
[8] |
J. M. Ball, J. C. Currie and P. L. Olver,
Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Funct. Anal., 41 (1981), 135-174.
doi: 10.1016/0022-1236(81)90085-9. |
[9] |
R. C. Batra,
Thermodynamics of non-simple elastic materials, J. Elasticity, 6 (1976), 451-456.
doi: 10.1007/BF00040904. |
[10] |
I. Bock,
On Von Kármán equations for viscoelastic plates, J. Comp. Appl. Math., 63 (1995), 277-282.
doi: 10.1016/0377-0427(95)00082-8. |
[11] |
I. Bock and J. Jarušek,
Solvability of dynamic contact problems for elastic von Kármán plates, SIAM J. Math. Anal., 41 (2009), 37-45.
doi: 10.1137/080712179. |
[12] |
I. Bock, J. Jarušek and M. Šilhavý,
On the solutions of a dynamic contact problem for a thermoelastic von Kármán plate, Nonlin. Anal.: Real World Appl., 32 (2016), 111-135.
doi: 10.1016/j.nonrwa.2016.04.004. |
[13] |
F. K. Bogner, R. L. Fox and L. A. Schmit, The generation of inter-element compatible stiffness and mass matrices by the use of interpolation formulas, Proceedings of the Conference on Matrix Methods in Structural Mechanics, (1965), 397–444. Google Scholar |
[14] |
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer, New York, 2008.
doi: 10.1007/978-0-387-75934-0. |
[15] |
G. Capriz,
Continua with latent microstructure, Arch. Ration. Mech. Anal., 90 (1985), 43-56.
doi: 10.1007/BF00281586. |
[16] |
V. Casarino and D. Percivale,
A variational model for nonlinear elastic plates, J. Convex Anal., 3 (1996), 221-243.
|
[17] |
P. G. Ciarlet, Mathematical Elasticity, Vol. I: Three-dimensional Elasticity, North-Holland, Amsterdam, 1988. |
[18] |
P. G. Ciarlet, The Finite Element Method for Elliptic Problems, SIAM, Philadelphia, 2002.
doi: 10.1137/1.9780898719208. |
[19] |
G. Dal Maso, An Introduction to $\Gamma$-convergence, Birkhäuser, Boston $\cdot$ Basel $\cdot$ Berlin, 1993.
doi: 10.1007/978-1-4612-0327-8. |
[20] |
E. De Giorgi, A. Marino and M. Tosques,
Problems of evolution in metric spaces and maximal decreasing curve, Att. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 68 (1980), 180-187.
|
[21] |
J. E. Dunn and J. Serrin,
On the thermomechanics of interstitial working, Arch. Ration. Mech. Anal., 88 (1985), 95-133.
doi: 10.1007/BF00250907. |
[22] |
M. Friedrich and M. Kružík,
On the passage from nonlinear to linearized viscoelasticity, SIAM J. Math. Anal., 50 (2018), 4426-4456.
doi: 10.1137/17M1131428. |
[23] |
M. Friedrich and M. Kružík, Derivation of von Kármán plate theory in the framework of three-dimensional viscoelasticity, preprint, arXiv: 1902.10037. Google Scholar |
[24] |
G. Friesecke, R. D. James and S. Müller,
A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.
doi: 10.1002/cpa.10048. |
[25] |
G. Friesecke, R. D. James and S. Müller,
A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Arch. Ration. Mech. Anal., 180 (2006), 183-236.
doi: 10.1007/s00205-005-0400-7. |
[26] |
P. Harasim and J. Valdman,
Verification of functional a posteriori error estimates for an obstacle problem in 2D, Kybernetika, 50 (2014), 978-1002.
doi: 10.14736/kyb-2014-6-0978. |
[27] |
S. Krömer and J. Valdman,
Global injectivity in second-gradient nonlinear elasticity and its approximation with penalty terms, Mathematics and Mechanics of Solids, 24 (2019), 3644-3673.
doi: 10.1177/1081286519851554. |
[28] |
M. Lecumberry and S. Müller,
Stability of slender bodies under compression and validity of the von Kármán theory, Arch. Ration. Mech. Anal., 193 (2009), 255-310.
doi: 10.1007/s00205-009-0232-y. |
[29] |
H. Le Dret and A. Raoult,
The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., 74 (1995), 549-578.
|
[30] |
H. Le Dret and A. Raoult, The membrane shell model in nonlinear elasticity: A variational asymptotic derivation,, J. Nonl. Sci., 6 (1996), 59–84.
doi: 10.1007/BF02433810. |
[31] |
A. Mielke, C. Ortner and Y. Şengül,
An approach to nonlinear viscoelasticity via metric gradient flows, SIAM J. Math. Anal., 46 (2014), 1317-1347.
doi: 10.1137/130927632. |
[32] |
A. Mielke and T. Roubíček, Rate-Independent Systems - Theory and Application, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7. |
[33] |
A. Mielke and T. Roubíček,
Rate-independent elastoplasticity at finite strains and its numerical approximation, Math. Models & Methods in Appl. Sci., 26 (2016), 2203-2236.
doi: 10.1142/S0218202516500512. |
[34] |
C. Ortner, Two Variational Techniques for the Approximation of Curves of Maximal Slope, , Technical report NA05/10, Oxford University Computing Laboratory, Oxford, UK, 2005. Google Scholar |
[35] |
O. Pantz,
On the justification of the nonlinear inextensional plate model, Arch. Ration. Mech. Anal., 167 (2003), 179-209.
doi: 10.1007/s00205-002-0238-1. |
[36] |
J. Y. Park and J. R. Kang,
Uniform decay of solutions for von Karman equations of dynamic viscoelasticity with memory, Acta Appl. Math., 110 (2010), 1461-1474.
doi: 10.1007/s10440-009-9520-7. |
[37] |
P. Podio-Guidugli,
Contact interactions, stress, and material symmetry for nonsimple elastic materials, Theor. Appl. Mech., 28/29 (2002), 261-276.
|
[38] |
T. Rahman and J. Valdman,
Fast MATLAB assembly of FEM matrices in 2D and 3D: Nodal elements, Appl. Math. Comput., 219 (2013), 7151-7158.
doi: 10.1016/j.amc.2011.08.043. |
[39] |
E. Sandier and S. Serfaty,
Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672.
doi: 10.1002/cpa.20046. |
[40] |
S. Serfaty,
Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst. Ser. A, 31 (2011), 1427-1451.
doi: 10.3934/dcds.2011.31.1427. |
[41] |
R. A. Toupin,
Elastic materials with couple stresses, Arch. Ration. Mech. Anal., 11 (1962), 385-414.
doi: 10.1007/BF00253945. |
[42] |
R. A. Toupin,
Theory of elasticity with couple stress, Arch. Ration. Mech. Anal., 17 (1964), 85-112.
doi: 10.1007/BF00253050. |
[43] |
J. Valdman, MATLAB Implementation of C1 finite elements: Bogner-Fox-Schmit rectangle, In: Wyrzykowski R., Dongarra J., Deelman E., Karczewski K. (eds) Parallel Processing and Applied Mathematics. PPAM 2019, LNCS, Springer, 12044 (2020), 256–266.
doi: 10.1007/978-3-030-43222-5_22. |
[44] |
T. von Kármán, Festigkeitsprobleme im maschinenbau in encyclopädie der mathematischen wissenschaften, Leipzig, 4 (1910), 311-385. Google Scholar |




[1] |
Michael Schmidt, Emmanuel Trélat. Controllability of couette flows. Communications on Pure & Applied Analysis, 2006, 5 (1) : 201-211. doi: 10.3934/cpaa.2006.5.201 |
[2] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[3] |
Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012 |
[4] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[5] |
Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321 |
[6] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[7] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[8] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[9] |
Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053 |
[10] |
Alberto Bressan, Carlotta Donadello. On the convergence of viscous approximations after shock interactions. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 29-48. doi: 10.3934/dcds.2009.23.29 |
[11] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[12] |
Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021018 |
[13] |
Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363 |
[14] |
Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193 |
[15] |
Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025 |
[16] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 |
[17] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449 |
[18] |
Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021 |
[19] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[20] |
Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]