January  2021, 14(1): 71-88. doi: 10.3934/dcdss.2020323

Adaptive time stepping in elastoplasticity

Department of Applied Mathematics, Mathematical Institute, University of Freiburg, Hermann-Herder-Str. 10, 79104 Freiburg i. Br., Germany

Dedicated to Alexander Mielke on the occasion of his 60th birthday

Received  March 2019 Revised  October 2019 Published  April 2020

Using rate-independent evolutions as a framework for elastoplasticity, an a posteriori bound for the error introduced by time stepping is established. A time adaptive algorithm is devised and tested in comparison to a method with constant time steps. Experiments show that a significant error reduction can be obtained using variable time steps.

Citation: Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323
References:
[1]

J. AlbertyC. CarstensenS. A. Funken and R. Klose, Matlab implementation of the finite element method in elasticity, Computing, 69 (2002), 239-263.  doi: 10.1007/s00607-002-1459-8.  Google Scholar

[2]

J. AlbertyC. Carstensen and D. Zarrabi, Adaptive numerical analysis in primal elastoplasticity with hardening, Computer Methods in Applied Mechanics and Engineering, 171 (1999), 175-204.  doi: 10.1016/S0045-7825(98)00210-2.  Google Scholar

[3]

S. Bartels, Quasi-optimal error estimates for implicit discretizations of rate-independent evolutions, SIAM Journal on Numerical Analysis, 52 (2014), 708-716.  doi: 10.1137/130933964.  Google Scholar

[4]

S. Bartels, Numerical Methods for Nonlinear Partial Differential Equations, vol. 47 of Springer Series in Computational Mathematics, Springer, 2015 doi: 10.1007/978-3-319-13797-1.  Google Scholar

[5]

L. Gallimard, P. Ladevèze and J. P. Pelle, Error estimation and adaptivity in elastoplasticity, International Journal for Numerical Methods in Engineering, 39 (1996), 189–217. doi: 10.1002/(SICI)1097-0207(19960130)39:2<189::AID-NME849>3.0.CO;2-7.  Google Scholar

[6]

W. Han and B. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, Interdisciplinary Applied Mathematics, Springer, 1999.  Google Scholar

[7]

D. Knees, On global spatial regularity in elasto-plasticity with linear hardening, Calc. Var. Partial Differential Equations, 36 (2009), 611-625.  doi: 10.1007/s00526-009-0247-0.  Google Scholar

[8]

C. KreuzerC. A. MöllerA. Schmidt and K. G. Siebert, Design and convergence analysis for an adaptive discretization of the heat equation, IMA J. Numer. Anal., 32 (2012), 1375-1403.  doi: 10.1093/imanum/drr026.  Google Scholar

[9]

A. Mielke, Evolution of rate-independent systems, Handbook of Differential Equations: Evolutionary Equations, II (2005), 461-559.   Google Scholar

[10]

A. Mielke and T. Roubíček, Rate-Independent Systems: Theory and Applications, vol. 193 of Applied Mathematical Sciences, Springer, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[11]

R. H. NochettoG. Savaré and C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations, Communications on Pure and Applied Mathematics, 53 (2000), 525-589.  doi: 10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M.  Google Scholar

[12]

S. I. Repin and J. Valdman, Functional a posteriori error estimates for incremental models in elasto-plasticity, Cent. Eur. J. Math., 7 (2009), 506–519. doi: 10.2478/s11533-009-0035-2.  Google Scholar

[13]

M. Sauter and C. Wieners, On the superlinear convergence in computational elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 200 (2011), 3646-3658.  doi: 10.1016/j.cma.2011.08.011.  Google Scholar

[14]

A. Schröder and S. Wiedemann, Error estimates in elastoplasticity using a mixed method, Appl. Numer. Math., 61 (2011), 1031-1045.  doi: 10.1016/j.apnum.2011.06.001.  Google Scholar

[15]

J. Simo and T. Hughes, Computational Inelasticity, Interdisciplinary Applied Mathematics, Springer, 1998.  Google Scholar

[16]

G. Starke, An adaptive least-squares mixed finite element method for elasto-plasticity, SIAM Journal on Numerical Analysis, 45 (2007), 371–388, URL http://www.jstor.org/stable/40232933. doi: 10.1137/060652609.  Google Scholar

[17]

U. Stefanelli, A variational principle for hardening elastoplasticity, SIAM J. Math. Anal., 40 (2008), 623-652.  doi: 10.1137/070692571.  Google Scholar

show all references

References:
[1]

J. AlbertyC. CarstensenS. A. Funken and R. Klose, Matlab implementation of the finite element method in elasticity, Computing, 69 (2002), 239-263.  doi: 10.1007/s00607-002-1459-8.  Google Scholar

[2]

J. AlbertyC. Carstensen and D. Zarrabi, Adaptive numerical analysis in primal elastoplasticity with hardening, Computer Methods in Applied Mechanics and Engineering, 171 (1999), 175-204.  doi: 10.1016/S0045-7825(98)00210-2.  Google Scholar

[3]

S. Bartels, Quasi-optimal error estimates for implicit discretizations of rate-independent evolutions, SIAM Journal on Numerical Analysis, 52 (2014), 708-716.  doi: 10.1137/130933964.  Google Scholar

[4]

S. Bartels, Numerical Methods for Nonlinear Partial Differential Equations, vol. 47 of Springer Series in Computational Mathematics, Springer, 2015 doi: 10.1007/978-3-319-13797-1.  Google Scholar

[5]

L. Gallimard, P. Ladevèze and J. P. Pelle, Error estimation and adaptivity in elastoplasticity, International Journal for Numerical Methods in Engineering, 39 (1996), 189–217. doi: 10.1002/(SICI)1097-0207(19960130)39:2<189::AID-NME849>3.0.CO;2-7.  Google Scholar

[6]

W. Han and B. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, Interdisciplinary Applied Mathematics, Springer, 1999.  Google Scholar

[7]

D. Knees, On global spatial regularity in elasto-plasticity with linear hardening, Calc. Var. Partial Differential Equations, 36 (2009), 611-625.  doi: 10.1007/s00526-009-0247-0.  Google Scholar

[8]

C. KreuzerC. A. MöllerA. Schmidt and K. G. Siebert, Design and convergence analysis for an adaptive discretization of the heat equation, IMA J. Numer. Anal., 32 (2012), 1375-1403.  doi: 10.1093/imanum/drr026.  Google Scholar

[9]

A. Mielke, Evolution of rate-independent systems, Handbook of Differential Equations: Evolutionary Equations, II (2005), 461-559.   Google Scholar

[10]

A. Mielke and T. Roubíček, Rate-Independent Systems: Theory and Applications, vol. 193 of Applied Mathematical Sciences, Springer, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[11]

R. H. NochettoG. Savaré and C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations, Communications on Pure and Applied Mathematics, 53 (2000), 525-589.  doi: 10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M.  Google Scholar

[12]

S. I. Repin and J. Valdman, Functional a posteriori error estimates for incremental models in elasto-plasticity, Cent. Eur. J. Math., 7 (2009), 506–519. doi: 10.2478/s11533-009-0035-2.  Google Scholar

[13]

M. Sauter and C. Wieners, On the superlinear convergence in computational elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 200 (2011), 3646-3658.  doi: 10.1016/j.cma.2011.08.011.  Google Scholar

[14]

A. Schröder and S. Wiedemann, Error estimates in elastoplasticity using a mixed method, Appl. Numer. Math., 61 (2011), 1031-1045.  doi: 10.1016/j.apnum.2011.06.001.  Google Scholar

[15]

J. Simo and T. Hughes, Computational Inelasticity, Interdisciplinary Applied Mathematics, Springer, 1998.  Google Scholar

[16]

G. Starke, An adaptive least-squares mixed finite element method for elasto-plasticity, SIAM Journal on Numerical Analysis, 45 (2007), 371–388, URL http://www.jstor.org/stable/40232933. doi: 10.1137/060652609.  Google Scholar

[17]

U. Stefanelli, A variational principle for hardening elastoplasticity, SIAM J. Math. Anal., 40 (2008), 623-652.  doi: 10.1137/070692571.  Google Scholar

Figure 1.  Numerical approximation of the solution for Example 5.1 at times $ t = 8, 10, 13, 15 $. The grey shading corresponds to the norm of plastic strain $ p $. For visibility purposes, we only applied 4 red refinements as opposed to our actual tests, where 6 red refinements were used. The radially symmetric nature of the problem allows us to save computation time by only computing the solution for a quarter of the ring
Figure 2.  Results of the tests using Example 5.1. Logarithmic plot of the error term $ \eta_{{\rm tot}}^2 $ as a function of $ K^{-1} \sim \tau $ for the method with constant time steps (star) and the adaptive algorithm with $ \theta = 1 $ (cross). The remaining graphs (circle, diamond and square) consider the total number of computed steps $ K_{{\rm tot}} $ instead of the number of time steps $ K $ and show the results for different values of $ \theta $ (see Algorithm 4.1). In the case of constant time steps, we have $ K = K_{{\rm tot}} $. The triangle in the bottom right references the slope of a quadratic function. An error reduction by the adaptive method is observed. The difference is less significant when considering $ K_{{\rm tot}} $, but increases for smaller values of $ \theta $
Figure 3.  Illustration of the geometry used in Example 5.2
Figure 4.  Numerical approximation of the solution for Example 5.2 at time $ T = 10 $. The original triangulation of three halved squares was red refined 6 times and the grey shading corresponds to the norm of plastic strain $ p $. The increasing force causes a curved fissure to develop across the domain
Figure 5.  Results of the tests for Examplek 5.2 using notation from Figure 2. The adaptive time stepping leads to an error reduction
Figure 6.  Results of the tests for Example 5.3 using notation from Figure 2. A stronger improvement of adaptivity is observed than in Examples 5.1 and 5.2
Figure 7.  Development of error function $ \varepsilon_{\tau} $ in time. The algorithm with constant time steps was used on Examples 5.1 (top-left), 5.2 (top-right) and 5.3 (bottom-left). The plot on the bottom-right shows the adaptive method for Example 5.1 and with $ {\varepsilon_{{\rm max}}} = 3.16\cdot 10^{-5} $. The graphs start at $ t > 0 $, because the error in the left out parts is almost zero. Similar results are observed for Examples 5.1 and 5.2, where after a certain amount of time, $ \varepsilon_{\tau} $ starts to monotonically increase. In Example 5.3, a single peak occurs during the step containing the time $ t_p \approx 138.32 $, when plastic strain first emerges
[1]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[6]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[7]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[8]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[9]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[10]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[11]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[12]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[13]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[14]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[15]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[16]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[17]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[18]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[19]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[20]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (41)
  • HTML views (272)
  • Cited by (0)

Other articles
by authors

[Back to Top]