-
Previous Article
Threshold phenomenon for homogenized fronts in random elastic media
- DCDS-S Home
- This Issue
-
Next Article
Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system
Existence of weak solutions for a sharp interface model for phase separation on biological membranes
Faculty of Mathematics, University of Regensburg, 93040 Regensburg, Germany |
We prove existence of weak solutions of a Mullins-Sekerka equation on a surface that is coupled to diffusion equations in a bulk domain and on the boundary. This model arises as a sharp interface limit of a phase field model to describe the formation of liqid rafts on a cell membrane. The solutions are constructed with the aid of an implicit time discretization and tools from geometric measure theory to pass to the limit.
References:
[1] |
H. Abels and J. Kampmann, On the sharp interface limit of a model for phase separation on biological membranes, Preprint, arXiv: 1811.12489, 2018. Google Scholar |
[2] |
H. Abels and M. Röger,
Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2403-2424.
doi: 10.1016/j.anihpc.2009.06.002. |
[3] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity
Problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press,
New York, 2000. |
[4] |
R. E. Edwards, Functional Analysis, Dover Publications Inc. New York, 1995. |
[5] |
H. Garcke, J. Kampmann, A. Rätz and M. Röger,
A coupled surface-Cahn-Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes, Math. Models Methods Appl. Sci., 26 (2016), 1149-1189.
doi: 10.1142/S0218202516500275. |
[6] |
S. Luckhaus, The Stefan problem with the Gibbs-Thomson law, Preprint Univ. Pisa, 591 (1991). Google Scholar |
[7] |
S. Luckhaus and T. Sturzenhecker,
Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations, 3 (1995), 253-271.
doi: 10.1007/BF01205007. |
[8] |
F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems, volume 135 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2012. An
introduction to geometric measure theory.
doi: 10.1017/CBO9781139108133. |
[9] |
M. Röger,
Solutions for the Stefan problem with Gibbs-Thomson law by a local minimisation, Interfaces Free Bound., 6 (2004), 105-133.
doi: 10.4171/IFB/93. |
[10] |
R. Schätzle,
Hypersurfaces with mean curvature given by an ambient {S}obolev function, J. Differential Geom., 58 (2001), 371-420.
doi: 10.4310/jdg/1090348353. |
[11] |
J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987),
65–96.
doi: 10.1007/BF01762360. |
[12] |
L. Simon, Lectures on Geometric Measure Theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University., Australian National University Centre for Mathematical Analysis, Canberra, 1983. |
show all references
References:
[1] |
H. Abels and J. Kampmann, On the sharp interface limit of a model for phase separation on biological membranes, Preprint, arXiv: 1811.12489, 2018. Google Scholar |
[2] |
H. Abels and M. Röger,
Existence of weak solutions for a non-classical sharp interface model for a two-phase flow of viscous, incompressible fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2403-2424.
doi: 10.1016/j.anihpc.2009.06.002. |
[3] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity
Problems, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press,
New York, 2000. |
[4] |
R. E. Edwards, Functional Analysis, Dover Publications Inc. New York, 1995. |
[5] |
H. Garcke, J. Kampmann, A. Rätz and M. Röger,
A coupled surface-Cahn-Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes, Math. Models Methods Appl. Sci., 26 (2016), 1149-1189.
doi: 10.1142/S0218202516500275. |
[6] |
S. Luckhaus, The Stefan problem with the Gibbs-Thomson law, Preprint Univ. Pisa, 591 (1991). Google Scholar |
[7] |
S. Luckhaus and T. Sturzenhecker,
Implicit time discretization for the mean curvature flow equation, Calc. Var. Partial Differential Equations, 3 (1995), 253-271.
doi: 10.1007/BF01205007. |
[8] |
F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems, volume 135 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2012. An
introduction to geometric measure theory.
doi: 10.1017/CBO9781139108133. |
[9] |
M. Röger,
Solutions for the Stefan problem with Gibbs-Thomson law by a local minimisation, Interfaces Free Bound., 6 (2004), 105-133.
doi: 10.4171/IFB/93. |
[10] |
R. Schätzle,
Hypersurfaces with mean curvature given by an ambient {S}obolev function, J. Differential Geom., 58 (2001), 371-420.
doi: 10.4310/jdg/1090348353. |
[11] |
J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987),
65–96.
doi: 10.1007/BF01762360. |
[12] |
L. Simon, Lectures on Geometric Measure Theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University., Australian National University Centre for Mathematical Analysis, Canberra, 1983. |
[1] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[2] |
Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020467 |
[3] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[4] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[5] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[6] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[7] |
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 |
[8] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[9] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
[10] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[11] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021019 |
[12] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[13] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[14] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[15] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
[16] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[17] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[18] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[19] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[20] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]