• Previous Article
    Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme
  • DCDS-S Home
  • This Issue
  • Next Article
    State feedback for set stabilization of Markovian jump Boolean control networks
doi: 10.3934/dcdss.2020326

Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system

FB Mathematik, TU Darmstadt, Schlossgartenstr. 7, 64293 Darmstadt, Germany

Dedicated to Alexander Mielke on the occasion of his 60th birthday

Received  April 2019 Revised  November 2019 Published  April 2020

We prove a global existence, uniqueness and regularity result for a two-species reaction-diffusion volume-surface system that includes nonlinear bulk diffusion and nonlinear (weak) cross diffusion on the active surface. A key feature is a proof of upper $ L^{\infty} $-bounds that exploits the entropic gradient structure of the system.

Citation: Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020326
References:
[1]

D. Bothe, On the multi-physics of mass-transfer across fluid interfaces, arXiv: 1501.05610. Google Scholar

[2]

D. BotheM. KöhneS. Maier and J. Saal, Global strong solutions for a class of heterogeneous catalysis models, J. Math. Anal. Appl., 445 (2017), 677-709.  doi: 10.1016/j.jmaa.2016.08.016.  Google Scholar

[3]

H. Brézis, Opérateurs Maximaux Montones et Semi-groupes de Contractions Dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973.  Google Scholar

[4]

K. Disser, Well-posedness for coupled bulk-interface diffusion with mixed boundary conditions, Analysis, 35 (2015), 309-317.  doi: 10.1515/anly-2014-1308.  Google Scholar

[5]

K. Disser, Global existence, uniqueness and stability for nonlinear dissipative bulk-interface interaction systems, arXiv: 1703.07616, J. Differential Equations, accepted for publication (2020). Google Scholar

[6]

K. DisserM. Meyries and J. Rehberg, A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces, J. Math. Anal. Appl., 430 (2015), 1102-1123.  doi: 10.1016/j.jmaa.2015.05.041.  Google Scholar

[7]

K. FellnerE. Latos and B. Q. Tang, Well-posedness and exponential equilibration of a volume-surface reaction-diffusion system with nonlinear boundary coupling, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 643-673.  doi: 10.1016/j.anihpc.2017.07.002.  Google Scholar

[8]

J. R. FernándezP. KalitaS. MigórskiM. C. Muñiz and C. Nuñéz, Existence and uniqueness results for a kinetic model in bulk-surface surfactant dynamics, SIAM J. Math. Anal., 48 (2016), 3065-3089.  doi: 10.1137/15M1012785.  Google Scholar

[9]

J. Fischer, Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations, Nonlinear Anal., 159 (2017), 181-207.  doi: 10.1016/j.na.2017.03.001.  Google Scholar

[10]

A. Glitzky, An electronic model for solar cells including active interfaces and energy resolved defect densities, SIAM J. Math. Anal., 44 (2012), 3874-3900.  doi: 10.1137/110858847.  Google Scholar

[11]

A. Glitzky and A. Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, Z. Angew. Math. Phys., 64 (2013), 29-52.  doi: 10.1007/s00033-012-0207-y.  Google Scholar

[12]

A. J{ü}ngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.  doi: 10.1088/0951-7715/28/6/1963.  Google Scholar

[13]

F. Keil, Complexities in modeling of heterogeneous catalytic reactions, Comput. Math. Appl., 65 (2013), 1674-1697.  doi: 10.1016/j.camwa.2012.11.023.  Google Scholar

[14]

S. Kjelstrup and D. Bedeaux, Non-equilibrium Thermodynamics of Heterogeneous Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. doi: 10.1142/9789812779144.  Google Scholar

[15]

A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk- interface interactions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 479-499.  doi: 10.3934/dcdss.2013.6.479.  Google Scholar

[16]

M. Pierre, Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417-455.  doi: 10.1007/s00032-010-0133-4.  Google Scholar

show all references

References:
[1]

D. Bothe, On the multi-physics of mass-transfer across fluid interfaces, arXiv: 1501.05610. Google Scholar

[2]

D. BotheM. KöhneS. Maier and J. Saal, Global strong solutions for a class of heterogeneous catalysis models, J. Math. Anal. Appl., 445 (2017), 677-709.  doi: 10.1016/j.jmaa.2016.08.016.  Google Scholar

[3]

H. Brézis, Opérateurs Maximaux Montones et Semi-groupes de Contractions Dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973.  Google Scholar

[4]

K. Disser, Well-posedness for coupled bulk-interface diffusion with mixed boundary conditions, Analysis, 35 (2015), 309-317.  doi: 10.1515/anly-2014-1308.  Google Scholar

[5]

K. Disser, Global existence, uniqueness and stability for nonlinear dissipative bulk-interface interaction systems, arXiv: 1703.07616, J. Differential Equations, accepted for publication (2020). Google Scholar

[6]

K. DisserM. Meyries and J. Rehberg, A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces, J. Math. Anal. Appl., 430 (2015), 1102-1123.  doi: 10.1016/j.jmaa.2015.05.041.  Google Scholar

[7]

K. FellnerE. Latos and B. Q. Tang, Well-posedness and exponential equilibration of a volume-surface reaction-diffusion system with nonlinear boundary coupling, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 643-673.  doi: 10.1016/j.anihpc.2017.07.002.  Google Scholar

[8]

J. R. FernándezP. KalitaS. MigórskiM. C. Muñiz and C. Nuñéz, Existence and uniqueness results for a kinetic model in bulk-surface surfactant dynamics, SIAM J. Math. Anal., 48 (2016), 3065-3089.  doi: 10.1137/15M1012785.  Google Scholar

[9]

J. Fischer, Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations, Nonlinear Anal., 159 (2017), 181-207.  doi: 10.1016/j.na.2017.03.001.  Google Scholar

[10]

A. Glitzky, An electronic model for solar cells including active interfaces and energy resolved defect densities, SIAM J. Math. Anal., 44 (2012), 3874-3900.  doi: 10.1137/110858847.  Google Scholar

[11]

A. Glitzky and A. Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, Z. Angew. Math. Phys., 64 (2013), 29-52.  doi: 10.1007/s00033-012-0207-y.  Google Scholar

[12]

A. J{ü}ngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.  doi: 10.1088/0951-7715/28/6/1963.  Google Scholar

[13]

F. Keil, Complexities in modeling of heterogeneous catalytic reactions, Comput. Math. Appl., 65 (2013), 1674-1697.  doi: 10.1016/j.camwa.2012.11.023.  Google Scholar

[14]

S. Kjelstrup and D. Bedeaux, Non-equilibrium Thermodynamics of Heterogeneous Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. doi: 10.1142/9789812779144.  Google Scholar

[15]

A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk- interface interactions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 479-499.  doi: 10.3934/dcdss.2013.6.479.  Google Scholar

[16]

M. Pierre, Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417-455.  doi: 10.1007/s00032-010-0133-4.  Google Scholar

[1]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[2]

Boris Andreianov, Halima Labani. Preconditioning operators and $L^\infty$ attractor for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2179-2199. doi: 10.3934/cpaa.2012.11.2179

[3]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[4]

Vladimir V. Chepyzhov, Mark I. Vishik. Trajectory attractor for reaction-diffusion system with diffusion coefficient vanishing in time. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1493-1509. doi: 10.3934/dcds.2010.27.1493

[5]

Jifa Jiang, Junping Shi. Dynamics of a reaction-diffusion system of autocatalytic chemical reaction. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 245-258. doi: 10.3934/dcds.2008.21.245

[6]

Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101

[7]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[8]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

[9]

Klemens Fellner, Wolfang Prager, Bao Q. Tang. The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks. Kinetic & Related Models, 2017, 10 (4) : 1055-1087. doi: 10.3934/krm.2017042

[10]

Sze-Bi Hsu, Junping Shi, Feng-Bin Wang. Further studies of a reaction-diffusion system for an unstirred chemostat with internal storage. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3169-3189. doi: 10.3934/dcdsb.2014.19.3169

[11]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. Determination of initial data for a reaction-diffusion system with variable coefficients. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 771-801. doi: 10.3934/dcds.2019032

[12]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[13]

W. E. Fitzgibbon, M. Langlais, J.J. Morgan. A reaction-diffusion system modeling direct and indirect transmission of diseases. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 893-910. doi: 10.3934/dcdsb.2004.4.893

[14]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[15]

José-Francisco Rodrigues, Lisa Santos. On a constrained reaction-diffusion system related to multiphase problems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 299-319. doi: 10.3934/dcds.2009.25.299

[16]

Sebastian Aniţa, Vincenzo Capasso. Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1673-1684. doi: 10.3934/dcdsb.2012.17.1673

[17]

Michaël Bages, Patrick Martinez. Existence of pulsating waves in a monostable reaction-diffusion system in solid combustion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 817-869. doi: 10.3934/dcdsb.2010.14.817

[18]

José-Francisco Rodrigues, João Lita da Silva. On a unilateral reaction-diffusion system and a nonlocal evolution obstacle problem. Communications on Pure & Applied Analysis, 2004, 3 (1) : 85-95. doi: 10.3934/cpaa.2004.3.85

[19]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[20]

Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (42)
  • HTML views (247)
  • Cited by (0)

Other articles
by authors

[Back to Top]