January  2021, 14(1): 321-330. doi: 10.3934/dcdss.2020326

Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system

FB Mathematik, TU Darmstadt, Schlossgartenstr. 7, 64293 Darmstadt, Germany

Dedicated to Alexander Mielke on the occasion of his 60th birthday

Received  April 2019 Revised  November 2019 Published  April 2020

We prove a global existence, uniqueness and regularity result for a two-species reaction-diffusion volume-surface system that includes nonlinear bulk diffusion and nonlinear (weak) cross diffusion on the active surface. A key feature is a proof of upper $ L^{\infty} $-bounds that exploits the entropic gradient structure of the system.

Citation: Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326
References:
[1]

D. Bothe, On the multi-physics of mass-transfer across fluid interfaces, arXiv: 1501.05610. Google Scholar

[2]

D. BotheM. KöhneS. Maier and J. Saal, Global strong solutions for a class of heterogeneous catalysis models, J. Math. Anal. Appl., 445 (2017), 677-709.  doi: 10.1016/j.jmaa.2016.08.016.  Google Scholar

[3]

H. Brézis, Opérateurs Maximaux Montones et Semi-groupes de Contractions Dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973.  Google Scholar

[4]

K. Disser, Well-posedness for coupled bulk-interface diffusion with mixed boundary conditions, Analysis, 35 (2015), 309-317.  doi: 10.1515/anly-2014-1308.  Google Scholar

[5]

K. Disser, Global existence, uniqueness and stability for nonlinear dissipative bulk-interface interaction systems, arXiv: 1703.07616, J. Differential Equations, accepted for publication (2020). Google Scholar

[6]

K. DisserM. Meyries and J. Rehberg, A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces, J. Math. Anal. Appl., 430 (2015), 1102-1123.  doi: 10.1016/j.jmaa.2015.05.041.  Google Scholar

[7]

K. FellnerE. Latos and B. Q. Tang, Well-posedness and exponential equilibration of a volume-surface reaction-diffusion system with nonlinear boundary coupling, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 643-673.  doi: 10.1016/j.anihpc.2017.07.002.  Google Scholar

[8]

J. R. FernándezP. KalitaS. MigórskiM. C. Muñiz and C. Nuñéz, Existence and uniqueness results for a kinetic model in bulk-surface surfactant dynamics, SIAM J. Math. Anal., 48 (2016), 3065-3089.  doi: 10.1137/15M1012785.  Google Scholar

[9]

J. Fischer, Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations, Nonlinear Anal., 159 (2017), 181-207.  doi: 10.1016/j.na.2017.03.001.  Google Scholar

[10]

A. Glitzky, An electronic model for solar cells including active interfaces and energy resolved defect densities, SIAM J. Math. Anal., 44 (2012), 3874-3900.  doi: 10.1137/110858847.  Google Scholar

[11]

A. Glitzky and A. Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, Z. Angew. Math. Phys., 64 (2013), 29-52.  doi: 10.1007/s00033-012-0207-y.  Google Scholar

[12]

A. J{ü}ngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.  doi: 10.1088/0951-7715/28/6/1963.  Google Scholar

[13]

F. Keil, Complexities in modeling of heterogeneous catalytic reactions, Comput. Math. Appl., 65 (2013), 1674-1697.  doi: 10.1016/j.camwa.2012.11.023.  Google Scholar

[14]

S. Kjelstrup and D. Bedeaux, Non-equilibrium Thermodynamics of Heterogeneous Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. doi: 10.1142/9789812779144.  Google Scholar

[15]

A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk- interface interactions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 479-499.  doi: 10.3934/dcdss.2013.6.479.  Google Scholar

[16]

M. Pierre, Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417-455.  doi: 10.1007/s00032-010-0133-4.  Google Scholar

show all references

References:
[1]

D. Bothe, On the multi-physics of mass-transfer across fluid interfaces, arXiv: 1501.05610. Google Scholar

[2]

D. BotheM. KöhneS. Maier and J. Saal, Global strong solutions for a class of heterogeneous catalysis models, J. Math. Anal. Appl., 445 (2017), 677-709.  doi: 10.1016/j.jmaa.2016.08.016.  Google Scholar

[3]

H. Brézis, Opérateurs Maximaux Montones et Semi-groupes de Contractions Dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973.  Google Scholar

[4]

K. Disser, Well-posedness for coupled bulk-interface diffusion with mixed boundary conditions, Analysis, 35 (2015), 309-317.  doi: 10.1515/anly-2014-1308.  Google Scholar

[5]

K. Disser, Global existence, uniqueness and stability for nonlinear dissipative bulk-interface interaction systems, arXiv: 1703.07616, J. Differential Equations, accepted for publication (2020). Google Scholar

[6]

K. DisserM. Meyries and J. Rehberg, A unified framework for parabolic equations with mixed boundary conditions and diffusion on interfaces, J. Math. Anal. Appl., 430 (2015), 1102-1123.  doi: 10.1016/j.jmaa.2015.05.041.  Google Scholar

[7]

K. FellnerE. Latos and B. Q. Tang, Well-posedness and exponential equilibration of a volume-surface reaction-diffusion system with nonlinear boundary coupling, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 643-673.  doi: 10.1016/j.anihpc.2017.07.002.  Google Scholar

[8]

J. R. FernándezP. KalitaS. MigórskiM. C. Muñiz and C. Nuñéz, Existence and uniqueness results for a kinetic model in bulk-surface surfactant dynamics, SIAM J. Math. Anal., 48 (2016), 3065-3089.  doi: 10.1137/15M1012785.  Google Scholar

[9]

J. Fischer, Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations, Nonlinear Anal., 159 (2017), 181-207.  doi: 10.1016/j.na.2017.03.001.  Google Scholar

[10]

A. Glitzky, An electronic model for solar cells including active interfaces and energy resolved defect densities, SIAM J. Math. Anal., 44 (2012), 3874-3900.  doi: 10.1137/110858847.  Google Scholar

[11]

A. Glitzky and A. Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, Z. Angew. Math. Phys., 64 (2013), 29-52.  doi: 10.1007/s00033-012-0207-y.  Google Scholar

[12]

A. J{ü}ngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.  doi: 10.1088/0951-7715/28/6/1963.  Google Scholar

[13]

F. Keil, Complexities in modeling of heterogeneous catalytic reactions, Comput. Math. Appl., 65 (2013), 1674-1697.  doi: 10.1016/j.camwa.2012.11.023.  Google Scholar

[14]

S. Kjelstrup and D. Bedeaux, Non-equilibrium Thermodynamics of Heterogeneous Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. doi: 10.1142/9789812779144.  Google Scholar

[15]

A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk- interface interactions, Discrete Contin. Dyn. Syst. Ser. S, 6 (2013), 479-499.  doi: 10.3934/dcdss.2013.6.479.  Google Scholar

[16]

M. Pierre, Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417-455.  doi: 10.1007/s00032-010-0133-4.  Google Scholar

[1]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[2]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[3]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[4]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[7]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[8]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[9]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[10]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[11]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[12]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[13]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[16]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[17]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[18]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[19]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[20]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (69)
  • HTML views (301)
  • Cited by (0)

Other articles
by authors

[Back to Top]