doi: 10.3934/dcdss.2020327

Contraction and regularizing properties of heat flows in metric measure spaces

1. 

Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK

2. 

Dipartimento di Matematica 'Felice Casorati', University of Pavia, Via Ferrata 1, 27100 Pavia, Italy

* Corresponding author: Giuseppe Savaré

Dedicated to Alexander Mielke on the occasion of his 60th birthday

Received  April 2019 Revised  October 2019 Published  April 2020

Fund Project: The second author is partially supported by PRIN2015 grant from MIUR for the project Calculus of Variations and by IMATI-CNR

We illustrate some novel contraction and regularizing properties of the Heat flow in metric-measure spaces that emphasize an interplay between Hellinger-Kakutani, Kantorovich-Wasserstein and Hellinger-Kantorovich distances. Contraction properties of Hellinger-Kakutani distances and general Csiszár divergences hold in arbitrary metric-measure spaces and do not require assumptions on the linearity of the flow.

When weaker transport distances are involved, we will show that contraction and regularizing effects rely on the dual formulations of the distances and are strictly related to lower Ricci curvature bounds in the setting of $ \mathrm{RCD}(K, \infty) $ metric measure spaces. As a byproduct, when $ K\ge0 $ we will also find new estimates for the asymptotic decay of the solution.

Citation: Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020327
References:
[1]

L. Ambrosio, A. Mondino and G. Savaré, Nonlinear diffusion equations and curvature conditions in metric measure spaces,, Amer. Math. Soc., 262 (2019), v+121 pp. doi: 10.1090/memo/1270.  Google Scholar

[2]

L. AmbrosioM. Erbar and G. Savaré, Optimal transport, Cheeger energies and contractivity of dynamic transport distances in extended spaces, Nonlinear Anal., 137 (2016), 77-134.  doi: 10.1016/j.na.2015.12.006.  Google Scholar

[3]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[4]

L. AmbrosioN. Gigli and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195 (2014), 289-391.  doi: 10.1007/s00222-013-0456-1.  Google Scholar

[5]

L. AmbrosioN. Gigli and G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163 (2014), 1405-1490.  doi: 10.1215/00127094-2681605.  Google Scholar

[6]

L. AmbrosioN. Gigli and G. Savaré, Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43 (2015), 339-404.  doi: 10.1214/14-AOP907.  Google Scholar

[7]

L. AmbrosioG. Savaré and L. Zambotti, Existence and stability for Fokker-Planck equations with log-concave reference measure, Probab. Theory Relat. Fields, 145 (2009), 517-564.  doi: 10.1007/s00440-008-0177-3.  Google Scholar

[8]

D. Bakry and M. Émery, Diffusions hypercontractives,, Séminaire de Probabilités de Strasbourg, 19 (1985), 177–206. doi: 10.1007/BFb0075847.  Google Scholar

[9]

D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, vol. 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Cham, 2014. doi: 10.1007/978-3-319-00227-9.  Google Scholar

[10]

D. BakryI. Gentil and M. Ledoux, On Harnack inequalities and optimal transportation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 14 (2015), 705-727.   Google Scholar

[11]

A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, vol. 17 of EMS Tracts in Mathematics, European Mathematical Society (EMS), Zürich, 2011. doi: 10.4171/099.  Google Scholar

[12]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).  Google Scholar

[13]

J. A. CarrilloR. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263.  doi: 10.1007/s00205-005-0386-1.  Google Scholar

[14]

L. ChizatG. PeyréB. Schmitzer and F.-X. Vialard, An interpolating distance between optimal transport and Fisher-Rao metrics, Found. Comput. Math., 18 (2018), 1-44.  doi: 10.1007/s10208-016-9331-y.  Google Scholar

[15]

L. ChizatG. PeyréB. Schmitzer and F.-X. Vialard, Unbalanced optimal transport: Dynamic and Kantorovich formulations, J. Funct. Anal., 274 (2018), 3090-3123.  doi: 10.1016/j.jfa.2018.03.008.  Google Scholar

[16]

I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar., 2 (1967), 299-318.   Google Scholar

[17]

S. Daneri and G. Savaré, Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., 40 (2008), 1104-1122.  doi: 10.1137/08071346X.  Google Scholar

[18]

C. Dellacherie and P.-A. Meyer, Probabilities and Potential. C, vol. 151 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1988, Potential theory for discrete and continuous semigroups, Translated from the French by J. Norris.  Google Scholar

[19]

M. Erbar, The heat equation on manifolds as a gradient flow in the Wasserstein space, Annales de l'Institut Henri Poincaré - Probabilités et Statistiques, 46 (2010), 1-23.  doi: 10.1214/08-AIHP306.  Google Scholar

[20]

M. ErbarK. Kuwada and K.-T. Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces, Invent. Math., 201 (2015), 993-1071.  doi: 10.1007/s00222-014-0563-7.  Google Scholar

[21]

N. GigliK. Kuwada and S. Ohta, Heat flow on Alexandrov spaces, Comm. Pure Appl. Math., 66 (2013), 307-331.  doi: 10.1002/cpa.21431.  Google Scholar

[22]

J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181 (1998), 1-61.  doi: 10.1007/BF02392747.  Google Scholar

[23]

J. Heinonen, P. Koskela, N. Shanmugalingam and J. T. Tyson, Sobolev Spaces on Metric Measure Spaces, vol. 27 of New Mathematical Monographs, Cambridge University Press, Cambridge, 2015, An approach based on upper gradients. doi: 10.1017/CBO9781316135914.  Google Scholar

[24]

E. Hellinger, Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen, J. Reine Angew. Math., 136 (1909), 210-271.  doi: 10.1515/crll.1909.136.210.  Google Scholar

[25]

R. JordanD. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM Journal on Mathematical Analysis, 29 (1998), 1-17.  doi: 10.1137/S0036141096303359.  Google Scholar

[26]

S. Kakutani, On equivalence of infinite product measures, Ann. of Math. (2), 49 (1948), 214-224.  doi: 10.2307/1969123.  Google Scholar

[27]

S. Kondratyev, L. Monsaingeon and D. Vorotnikov, A new optimal transport distance on the space of finite Radon measures, Adv. Differential Equations, 21 (2016), 1117–1164, URL http://projecteuclid.org/euclid.ade/1476369298.  Google Scholar

[28]

P. Koskela and P. MacManus, Quasiconformal mappings and Sobolev spaces, Studia Math., 131 (1998), 1-17.   Google Scholar

[29]

S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statistics, 22 (1951), 79-86.  doi: 10.1214/aoms/1177729694.  Google Scholar

[30]

K. Kuwada, Duality on gradient estimates and Wasserstein controls, J. Funct. Anal., 258 (2010), 3758-3774.  doi: 10.1016/j.jfa.2010.01.010.  Google Scholar

[31]

M. LieroA. Mielke and G. Savaré, Optimal transport in competition with reaction: The Hellinger-Kantorovich distance and geodesic curves, SIAM J. Math. Anal., 48 (2016), 2869-2911.  doi: 10.1137/15M1041420.  Google Scholar

[32]

M. LieroA. Mielke and G. Savaré, Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures, Invent. Math., 211 (2018), 969-1117.  doi: 10.1007/s00222-017-0759-8.  Google Scholar

[33]

F. Liese and I. Vajda, On divergences and informations in statistics and information theory, IEEE Trans. Inform. Theory, 52 (2006), 4394-4412.  doi: 10.1109/TIT.2006.881731.  Google Scholar

[34]

J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903-991.  doi: 10.4007/annals.2009.169.903.  Google Scholar

[35]

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361-400.  doi: 10.1006/jfan.1999.3557.  Google Scholar

[36]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.  doi: 10.1081/PDE-100002243.  Google Scholar

[37]

F. Otto and M. Westdickenberg, Eulerian calculus for the contraction in the Wasserstein distance,, SIAM J. Math. Anal., 37 (2005), 1227–1255 (electronic). doi: 10.1137/050622420.  Google Scholar

[38]

G. Savaré, Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD$ (K,\infty) $ metric measure spaces, Discrete Contin. Dyn. Syst., 34 (2014), 1641-1661.  doi: 10.3934/dcds.2014.34.1641.  Google Scholar

[39]

N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, 16 (2000), 243-279.  doi: 10.4171/RMI/275.  Google Scholar

[40]

K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65-131.  doi: 10.1007/s11511-006-0002-8.  Google Scholar

[41]

K.-T. Sturm and M.-K. von Renesse, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math., 58 (2005), 923-940.  doi: 10.1002/cpa.20060.  Google Scholar

[42]

C. Villani, Optimal Transport. Old and New, vol. 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

show all references

References:
[1]

L. Ambrosio, A. Mondino and G. Savaré, Nonlinear diffusion equations and curvature conditions in metric measure spaces,, Amer. Math. Soc., 262 (2019), v+121 pp. doi: 10.1090/memo/1270.  Google Scholar

[2]

L. AmbrosioM. Erbar and G. Savaré, Optimal transport, Cheeger energies and contractivity of dynamic transport distances in extended spaces, Nonlinear Anal., 137 (2016), 77-134.  doi: 10.1016/j.na.2015.12.006.  Google Scholar

[3]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[4]

L. AmbrosioN. Gigli and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195 (2014), 289-391.  doi: 10.1007/s00222-013-0456-1.  Google Scholar

[5]

L. AmbrosioN. Gigli and G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163 (2014), 1405-1490.  doi: 10.1215/00127094-2681605.  Google Scholar

[6]

L. AmbrosioN. Gigli and G. Savaré, Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds, Ann. Probab., 43 (2015), 339-404.  doi: 10.1214/14-AOP907.  Google Scholar

[7]

L. AmbrosioG. Savaré and L. Zambotti, Existence and stability for Fokker-Planck equations with log-concave reference measure, Probab. Theory Relat. Fields, 145 (2009), 517-564.  doi: 10.1007/s00440-008-0177-3.  Google Scholar

[8]

D. Bakry and M. Émery, Diffusions hypercontractives,, Séminaire de Probabilités de Strasbourg, 19 (1985), 177–206. doi: 10.1007/BFb0075847.  Google Scholar

[9]

D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, vol. 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer, Cham, 2014. doi: 10.1007/978-3-319-00227-9.  Google Scholar

[10]

D. BakryI. Gentil and M. Ledoux, On Harnack inequalities and optimal transportation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 14 (2015), 705-727.   Google Scholar

[11]

A. Björn and J. Björn, Nonlinear Potential Theory on Metric Spaces, vol. 17 of EMS Tracts in Mathematics, European Mathematical Society (EMS), Zürich, 2011. doi: 10.4171/099.  Google Scholar

[12]

H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing Co., Amsterdam, 1973, North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).  Google Scholar

[13]

J. A. CarrilloR. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263.  doi: 10.1007/s00205-005-0386-1.  Google Scholar

[14]

L. ChizatG. PeyréB. Schmitzer and F.-X. Vialard, An interpolating distance between optimal transport and Fisher-Rao metrics, Found. Comput. Math., 18 (2018), 1-44.  doi: 10.1007/s10208-016-9331-y.  Google Scholar

[15]

L. ChizatG. PeyréB. Schmitzer and F.-X. Vialard, Unbalanced optimal transport: Dynamic and Kantorovich formulations, J. Funct. Anal., 274 (2018), 3090-3123.  doi: 10.1016/j.jfa.2018.03.008.  Google Scholar

[16]

I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar., 2 (1967), 299-318.   Google Scholar

[17]

S. Daneri and G. Savaré, Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., 40 (2008), 1104-1122.  doi: 10.1137/08071346X.  Google Scholar

[18]

C. Dellacherie and P.-A. Meyer, Probabilities and Potential. C, vol. 151 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1988, Potential theory for discrete and continuous semigroups, Translated from the French by J. Norris.  Google Scholar

[19]

M. Erbar, The heat equation on manifolds as a gradient flow in the Wasserstein space, Annales de l'Institut Henri Poincaré - Probabilités et Statistiques, 46 (2010), 1-23.  doi: 10.1214/08-AIHP306.  Google Scholar

[20]

M. ErbarK. Kuwada and K.-T. Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces, Invent. Math., 201 (2015), 993-1071.  doi: 10.1007/s00222-014-0563-7.  Google Scholar

[21]

N. GigliK. Kuwada and S. Ohta, Heat flow on Alexandrov spaces, Comm. Pure Appl. Math., 66 (2013), 307-331.  doi: 10.1002/cpa.21431.  Google Scholar

[22]

J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181 (1998), 1-61.  doi: 10.1007/BF02392747.  Google Scholar

[23]

J. Heinonen, P. Koskela, N. Shanmugalingam and J. T. Tyson, Sobolev Spaces on Metric Measure Spaces, vol. 27 of New Mathematical Monographs, Cambridge University Press, Cambridge, 2015, An approach based on upper gradients. doi: 10.1017/CBO9781316135914.  Google Scholar

[24]

E. Hellinger, Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen, J. Reine Angew. Math., 136 (1909), 210-271.  doi: 10.1515/crll.1909.136.210.  Google Scholar

[25]

R. JordanD. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM Journal on Mathematical Analysis, 29 (1998), 1-17.  doi: 10.1137/S0036141096303359.  Google Scholar

[26]

S. Kakutani, On equivalence of infinite product measures, Ann. of Math. (2), 49 (1948), 214-224.  doi: 10.2307/1969123.  Google Scholar

[27]

S. Kondratyev, L. Monsaingeon and D. Vorotnikov, A new optimal transport distance on the space of finite Radon measures, Adv. Differential Equations, 21 (2016), 1117–1164, URL http://projecteuclid.org/euclid.ade/1476369298.  Google Scholar

[28]

P. Koskela and P. MacManus, Quasiconformal mappings and Sobolev spaces, Studia Math., 131 (1998), 1-17.   Google Scholar

[29]

S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statistics, 22 (1951), 79-86.  doi: 10.1214/aoms/1177729694.  Google Scholar

[30]

K. Kuwada, Duality on gradient estimates and Wasserstein controls, J. Funct. Anal., 258 (2010), 3758-3774.  doi: 10.1016/j.jfa.2010.01.010.  Google Scholar

[31]

M. LieroA. Mielke and G. Savaré, Optimal transport in competition with reaction: The Hellinger-Kantorovich distance and geodesic curves, SIAM J. Math. Anal., 48 (2016), 2869-2911.  doi: 10.1137/15M1041420.  Google Scholar

[32]

M. LieroA. Mielke and G. Savaré, Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures, Invent. Math., 211 (2018), 969-1117.  doi: 10.1007/s00222-017-0759-8.  Google Scholar

[33]

F. Liese and I. Vajda, On divergences and informations in statistics and information theory, IEEE Trans. Inform. Theory, 52 (2006), 4394-4412.  doi: 10.1109/TIT.2006.881731.  Google Scholar

[34]

J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903-991.  doi: 10.4007/annals.2009.169.903.  Google Scholar

[35]

F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361-400.  doi: 10.1006/jfan.1999.3557.  Google Scholar

[36]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174.  doi: 10.1081/PDE-100002243.  Google Scholar

[37]

F. Otto and M. Westdickenberg, Eulerian calculus for the contraction in the Wasserstein distance,, SIAM J. Math. Anal., 37 (2005), 1227–1255 (electronic). doi: 10.1137/050622420.  Google Scholar

[38]

G. Savaré, Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in RCD$ (K,\infty) $ metric measure spaces, Discrete Contin. Dyn. Syst., 34 (2014), 1641-1661.  doi: 10.3934/dcds.2014.34.1641.  Google Scholar

[39]

N. Shanmugalingam, Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, 16 (2000), 243-279.  doi: 10.4171/RMI/275.  Google Scholar

[40]

K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math., 196 (2006), 65-131.  doi: 10.1007/s11511-006-0002-8.  Google Scholar

[41]

K.-T. Sturm and M.-K. von Renesse, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math., 58 (2005), 923-940.  doi: 10.1002/cpa.20060.  Google Scholar

[42]

C. Villani, Optimal Transport. Old and New, vol. 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.  Google Scholar

[1]

Giuseppe Savaré. Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1641-1661. doi: 10.3934/dcds.2014.34.1641

[2]

Pak Tung Ho. Prescribing $ Q $-curvature on $ S^n $ in the presence of symmetry. Communications on Pure & Applied Analysis, 2020, 19 (2) : 715-722. doi: 10.3934/cpaa.2020033

[3]

Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085

[4]

Ekta Mittal, Sunil Joshi. Note on a $ k $-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 797-804. doi: 10.3934/dcdss.2020045

[5]

Haisheng Tan, Liuyan Liu, Hongyu Liang. Total $\{k\}$-domination in special graphs. Mathematical Foundations of Computing, 2018, 1 (3) : 255-263. doi: 10.3934/mfc.2018011

[6]

Pak Tung Ho. Prescribing the $ Q' $-curvature in three dimension. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2285-2294. doi: 10.3934/dcds.2019096

[7]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020293

[8]

Koya Nishimura. Global existence for the Boltzmann equation in $ L^r_v L^\infty_t L^\infty_x $ spaces. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1769-1782. doi: 10.3934/cpaa.2019083

[9]

Lingyan Cheng, Ruinan Li, Liming Wu. Exponential convergence in the Wasserstein metric $ W_1 $ for one dimensional diffusions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5131-5148. doi: 10.3934/dcds.2020222

[10]

Benjamin Söllner, Oliver Junge. A convergent Lagrangian discretization for $ p $-Wasserstein and flux-limited diffusion equations. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4227-4256. doi: 10.3934/cpaa.2020190

[11]

Jianqin Zhou, Wanquan Liu, Xifeng Wang, Guanglu Zhou. On the $ k $-error linear complexity for $ p^n $-periodic binary sequences via hypercube theory. Mathematical Foundations of Computing, 2019, 2 (4) : 279-297. doi: 10.3934/mfc.2019018

[12]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020328

[13]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020365

[14]

Dean Crnković, Nina Mostarac, Bernardo G. Rodrigues, Leo Storme. $ s $-PD-sets for codes from projective planes $ \mathrm{PG}(2,2^h) $, $ 5 \leq h\leq 9 $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020075

[15]

Jean Dolbeault, Marta García-Huidobro, Rául Manásevich. Interpolation inequalities in $ \mathrm W^{1,p}( {\mathbb S}^1) $ and carré du champ methods. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 375-394. doi: 10.3934/dcds.2020014

[16]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020363

[17]

Weiwei Ao, Chao Liu. Asymptotic behavior of sign-changing radial solutions of a semilinear elliptic equation in $ \mathbb{R}^2 $ when exponent approaches $ +\infty $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (8) : 5047-5077. doi: 10.3934/dcds.2020211

[18]

Burak Ordin, Adil Bagirov, Ehsan Mohebi. An incremental nonsmooth optimization algorithm for clustering using $ L_1 $ and $ L_\infty $ norms. Journal of Industrial & Management Optimization, 2020, 16 (6) : 2757-2779. doi: 10.3934/jimo.2019079

[19]

Silvia Frassu. Nonlinear Dirichlet problem for the nonlocal anisotropic operator $ L_K $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1847-1867. doi: 10.3934/cpaa.2019086

[20]

Yishui Wang, Dongmei Zhang, Peng Zhang, Yong Zhang. Local search algorithm for the squared metric $ k $-facility location problem with linear penalties. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020056

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (50)
  • HTML views (256)
  • Cited by (0)

Other articles
by authors

[Back to Top]