
-
Previous Article
Perturbed minimizing movements of families of functionals
- DCDS-S Home
- This Issue
-
Next Article
Existence of weak solutions for a sharp interface model for phase separation on biological membranes
Threshold phenomenon for homogenized fronts in random elastic media
1. | Abteilung für Angewandte Mathematik, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 10, 79104 Freiburg, Germany |
We consider a model for the motion of a phase interface in an elastic medium, for example, a twin boundary in martensite. The model is given by a semilinear parabolic equation with a fractional Laplacian as regularizing operator, stemming from the interaction of the front with its elastic environment. We show that the presence of randomly distributed, localized obstacles leads to a threshold phenomenon, i.e., stationary solutions exist up to a positive, critical driving force leading to a stick-slip behaviour of the phase boundary. The main result is proved by an explicit construction of a stationary viscosity supersolution to the evolution equation and is based on a percolation result for the obstacle sites. Furthermore, we derive a homogenization result for such fronts in the case of the half-Laplacian in the pinning regime.
References:
[1] |
C. Bucur,
Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal., 15 (2016), 657-699.
doi: 10.3934/cpaa.2016.15.657. |
[2] |
L. Caffarelli and L. Silvestre,
Regularity theory for fully nonlinear integro-differential equations, Communications on Pure and Applied Mathematics, 62 (2009), 597-638.
doi: 10.1002/cpa.20274. |
[3] |
L. Courte, K. Bhattacharya and P. Dondl, Bounds on precipitate hardening of line and surface defects in solids, (2019), arXiv: 1903.07505. Google Scholar |
[4] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[5] |
N. Dirr, P. W. Dondl and M. Scheutzow,
Pinning of interfaces in random media, Interfaces Free Bound., 13 (2011), 411-421.
doi: 10.4171/IFB/265. |
[6] |
P. W. Dondl and K. Bhattacharya,
Effective behavior of an interface propagating through a periodic elastic medium, Interfaces Free Bound., 18 (2016), 91-113.
doi: 10.4171/IFB/358. |
[7] |
P. W. Dondl, M. Scheutzow and S. Throm,
Pinning of interfaces in a random elastic medium and logarithmic lattice embeddings in percolation, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 481-512.
doi: 10.1017/S0308210512001291. |
[8] |
J. Droniou and C. Imbert,
Fractal first-order partial differential equations, Archive For Rational Mechanics And Analysis, 182 (2006), 299-331.
doi: 10.1007/s00205-006-0429-2. |
[9] |
R. K. Getoor,
First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., 101 (1961), 75-90.
doi: 10.1090/S0002-9947-1961-0137148-5. |
[10] |
M. Koslowski, A. M. Cuitiño and M. Ortiz,
A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, 50 (2002), 2597-2635.
doi: 10.1016/S0022-5096(02)00037-6. |
[11] |
R. Monneau and S. Patrizi,
Derivation of Orowan's law from the Peierls-Nabarro model, Comm. Partial Differential Equations, 37 (2012), 1887-1911.
doi: 10.1080/03605302.2012.683504. |
[12] |
S. Moulinet, C. Guthmann and E. Rolley,
Roughness and dynamics of a contact line of a viscous fluid on a disordered substrate, The European Physical Journal E, 8 (2002), 437-443.
doi: 10.1140/epje/i2002-10032-2. |
[13] |
C. Pozrikidis, The Fractional Laplacian, CRC Press, Boca Raton, FL, 2016.
doi: 10.1201/b19666.![]() ![]() |
[14] |
X. Ros-Oton,
Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3-26.
doi: 10.5565/PUBLMAT_60116_01. |
[15] |
X. Ros-Oton and J. Serra,
The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl. (9), 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003. |
[16] |
J. Schmittbuhl, A. Delaplace, K. J. Mäløy, H. Perfettini and J. P. Vilotte,
Slow crack propagation and slip correlations, Pure And Applied Geophysics, 160 (2003), 961-976.
doi: 10.1007/978-3-0348-8083-1_10. |
[17] |
J. Schmittbuhl, S. Roux, J.-P. Vilotte and K. Maloy,
Interfacial crack pinning: Effect of nonlocal interactions, Physical Review Letters, 74 (1995), 1787-1790.
doi: 10.1103/PhysRevLett.74.1787. |
[18] |
R. Servadei and E. Valdinoci,
On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.
doi: 10.1017/S0308210512001783. |
[19] |
S. Throm, Pinning of Interfaces in a Random Elastic Medium, Master's Thesis, Ruprecht Karls Universität Heidelberg, 2012. Google Scholar |
show all references
References:
[1] |
C. Bucur,
Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal., 15 (2016), 657-699.
doi: 10.3934/cpaa.2016.15.657. |
[2] |
L. Caffarelli and L. Silvestre,
Regularity theory for fully nonlinear integro-differential equations, Communications on Pure and Applied Mathematics, 62 (2009), 597-638.
doi: 10.1002/cpa.20274. |
[3] |
L. Courte, K. Bhattacharya and P. Dondl, Bounds on precipitate hardening of line and surface defects in solids, (2019), arXiv: 1903.07505. Google Scholar |
[4] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[5] |
N. Dirr, P. W. Dondl and M. Scheutzow,
Pinning of interfaces in random media, Interfaces Free Bound., 13 (2011), 411-421.
doi: 10.4171/IFB/265. |
[6] |
P. W. Dondl and K. Bhattacharya,
Effective behavior of an interface propagating through a periodic elastic medium, Interfaces Free Bound., 18 (2016), 91-113.
doi: 10.4171/IFB/358. |
[7] |
P. W. Dondl, M. Scheutzow and S. Throm,
Pinning of interfaces in a random elastic medium and logarithmic lattice embeddings in percolation, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 481-512.
doi: 10.1017/S0308210512001291. |
[8] |
J. Droniou and C. Imbert,
Fractal first-order partial differential equations, Archive For Rational Mechanics And Analysis, 182 (2006), 299-331.
doi: 10.1007/s00205-006-0429-2. |
[9] |
R. K. Getoor,
First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., 101 (1961), 75-90.
doi: 10.1090/S0002-9947-1961-0137148-5. |
[10] |
M. Koslowski, A. M. Cuitiño and M. Ortiz,
A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, 50 (2002), 2597-2635.
doi: 10.1016/S0022-5096(02)00037-6. |
[11] |
R. Monneau and S. Patrizi,
Derivation of Orowan's law from the Peierls-Nabarro model, Comm. Partial Differential Equations, 37 (2012), 1887-1911.
doi: 10.1080/03605302.2012.683504. |
[12] |
S. Moulinet, C. Guthmann and E. Rolley,
Roughness and dynamics of a contact line of a viscous fluid on a disordered substrate, The European Physical Journal E, 8 (2002), 437-443.
doi: 10.1140/epje/i2002-10032-2. |
[13] |
C. Pozrikidis, The Fractional Laplacian, CRC Press, Boca Raton, FL, 2016.
doi: 10.1201/b19666.![]() ![]() |
[14] |
X. Ros-Oton,
Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3-26.
doi: 10.5565/PUBLMAT_60116_01. |
[15] |
X. Ros-Oton and J. Serra,
The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl. (9), 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003. |
[16] |
J. Schmittbuhl, A. Delaplace, K. J. Mäløy, H. Perfettini and J. P. Vilotte,
Slow crack propagation and slip correlations, Pure And Applied Geophysics, 160 (2003), 961-976.
doi: 10.1007/978-3-0348-8083-1_10. |
[17] |
J. Schmittbuhl, S. Roux, J.-P. Vilotte and K. Maloy,
Interfacial crack pinning: Effect of nonlocal interactions, Physical Review Letters, 74 (1995), 1787-1790.
doi: 10.1103/PhysRevLett.74.1787. |
[18] |
R. Servadei and E. Valdinoci,
On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.
doi: 10.1017/S0308210512001783. |
[19] |
S. Throm, Pinning of Interfaces in a Random Elastic Medium, Master's Thesis, Ruprecht Karls Universität Heidelberg, 2012. Google Scholar |


[1] |
Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, 2021, 20 (2) : 533-545. doi: 10.3934/cpaa.2020279 |
[2] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020448 |
[3] |
Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020400 |
[4] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[5] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[6] |
Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020436 |
[7] |
Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032 |
[8] |
Alain Damlamian, Klas Pettersson. Homogenization of oscillating boundaries. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 197-219. doi: 10.3934/dcds.2009.23.197 |
[9] |
Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020385 |
[10] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[11] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[12] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[13] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[14] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[15] |
Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382 |
[16] |
Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020463 |
[17] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[18] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[19] |
Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 |
[20] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]