
-
Previous Article
Perturbed minimizing movements of families of functionals
- DCDS-S Home
- This Issue
-
Next Article
Existence of weak solutions for a sharp interface model for phase separation on biological membranes
Threshold phenomenon for homogenized fronts in random elastic media
1. | Abteilung für Angewandte Mathematik, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 10, 79104 Freiburg, Germany |
We consider a model for the motion of a phase interface in an elastic medium, for example, a twin boundary in martensite. The model is given by a semilinear parabolic equation with a fractional Laplacian as regularizing operator, stemming from the interaction of the front with its elastic environment. We show that the presence of randomly distributed, localized obstacles leads to a threshold phenomenon, i.e., stationary solutions exist up to a positive, critical driving force leading to a stick-slip behaviour of the phase boundary. The main result is proved by an explicit construction of a stationary viscosity supersolution to the evolution equation and is based on a percolation result for the obstacle sites. Furthermore, we derive a homogenization result for such fronts in the case of the half-Laplacian in the pinning regime.
References:
[1] |
C. Bucur,
Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal., 15 (2016), 657-699.
doi: 10.3934/cpaa.2016.15.657. |
[2] |
L. Caffarelli and L. Silvestre,
Regularity theory for fully nonlinear integro-differential equations, Communications on Pure and Applied Mathematics, 62 (2009), 597-638.
doi: 10.1002/cpa.20274. |
[3] |
L. Courte, K. Bhattacharya and P. Dondl, Bounds on precipitate hardening of line and surface defects in solids, (2019), arXiv: 1903.07505. |
[4] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[5] |
N. Dirr, P. W. Dondl and M. Scheutzow,
Pinning of interfaces in random media, Interfaces Free Bound., 13 (2011), 411-421.
doi: 10.4171/IFB/265. |
[6] |
P. W. Dondl and K. Bhattacharya,
Effective behavior of an interface propagating through a periodic elastic medium, Interfaces Free Bound., 18 (2016), 91-113.
doi: 10.4171/IFB/358. |
[7] |
P. W. Dondl, M. Scheutzow and S. Throm,
Pinning of interfaces in a random elastic medium and logarithmic lattice embeddings in percolation, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 481-512.
doi: 10.1017/S0308210512001291. |
[8] |
J. Droniou and C. Imbert,
Fractal first-order partial differential equations, Archive For Rational Mechanics And Analysis, 182 (2006), 299-331.
doi: 10.1007/s00205-006-0429-2. |
[9] |
R. K. Getoor,
First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., 101 (1961), 75-90.
doi: 10.1090/S0002-9947-1961-0137148-5. |
[10] |
M. Koslowski, A. M. Cuitiño and M. Ortiz,
A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, 50 (2002), 2597-2635.
doi: 10.1016/S0022-5096(02)00037-6. |
[11] |
R. Monneau and S. Patrizi,
Derivation of Orowan's law from the Peierls-Nabarro model, Comm. Partial Differential Equations, 37 (2012), 1887-1911.
doi: 10.1080/03605302.2012.683504. |
[12] |
S. Moulinet, C. Guthmann and E. Rolley,
Roughness and dynamics of a contact line of a viscous fluid on a disordered substrate, The European Physical Journal E, 8 (2002), 437-443.
doi: 10.1140/epje/i2002-10032-2. |
[13] |
C. Pozrikidis, The Fractional Laplacian, CRC Press, Boca Raton, FL, 2016.
doi: 10.1201/b19666.![]() ![]() ![]() |
[14] |
X. Ros-Oton,
Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3-26.
doi: 10.5565/PUBLMAT_60116_01. |
[15] |
X. Ros-Oton and J. Serra,
The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl. (9), 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003. |
[16] |
J. Schmittbuhl, A. Delaplace, K. J. Mäløy, H. Perfettini and J. P. Vilotte,
Slow crack propagation and slip correlations, Pure And Applied Geophysics, 160 (2003), 961-976.
doi: 10.1007/978-3-0348-8083-1_10. |
[17] |
J. Schmittbuhl, S. Roux, J.-P. Vilotte and K. Maloy,
Interfacial crack pinning: Effect of nonlocal interactions, Physical Review Letters, 74 (1995), 1787-1790.
doi: 10.1103/PhysRevLett.74.1787. |
[18] |
R. Servadei and E. Valdinoci,
On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.
doi: 10.1017/S0308210512001783. |
[19] |
S. Throm, Pinning of Interfaces in a Random Elastic Medium, Master's Thesis, Ruprecht Karls Universität Heidelberg, 2012. |
show all references
References:
[1] |
C. Bucur,
Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal., 15 (2016), 657-699.
doi: 10.3934/cpaa.2016.15.657. |
[2] |
L. Caffarelli and L. Silvestre,
Regularity theory for fully nonlinear integro-differential equations, Communications on Pure and Applied Mathematics, 62 (2009), 597-638.
doi: 10.1002/cpa.20274. |
[3] |
L. Courte, K. Bhattacharya and P. Dondl, Bounds on precipitate hardening of line and surface defects in solids, (2019), arXiv: 1903.07505. |
[4] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[5] |
N. Dirr, P. W. Dondl and M. Scheutzow,
Pinning of interfaces in random media, Interfaces Free Bound., 13 (2011), 411-421.
doi: 10.4171/IFB/265. |
[6] |
P. W. Dondl and K. Bhattacharya,
Effective behavior of an interface propagating through a periodic elastic medium, Interfaces Free Bound., 18 (2016), 91-113.
doi: 10.4171/IFB/358. |
[7] |
P. W. Dondl, M. Scheutzow and S. Throm,
Pinning of interfaces in a random elastic medium and logarithmic lattice embeddings in percolation, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 481-512.
doi: 10.1017/S0308210512001291. |
[8] |
J. Droniou and C. Imbert,
Fractal first-order partial differential equations, Archive For Rational Mechanics And Analysis, 182 (2006), 299-331.
doi: 10.1007/s00205-006-0429-2. |
[9] |
R. K. Getoor,
First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., 101 (1961), 75-90.
doi: 10.1090/S0002-9947-1961-0137148-5. |
[10] |
M. Koslowski, A. M. Cuitiño and M. Ortiz,
A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, 50 (2002), 2597-2635.
doi: 10.1016/S0022-5096(02)00037-6. |
[11] |
R. Monneau and S. Patrizi,
Derivation of Orowan's law from the Peierls-Nabarro model, Comm. Partial Differential Equations, 37 (2012), 1887-1911.
doi: 10.1080/03605302.2012.683504. |
[12] |
S. Moulinet, C. Guthmann and E. Rolley,
Roughness and dynamics of a contact line of a viscous fluid on a disordered substrate, The European Physical Journal E, 8 (2002), 437-443.
doi: 10.1140/epje/i2002-10032-2. |
[13] |
C. Pozrikidis, The Fractional Laplacian, CRC Press, Boca Raton, FL, 2016.
doi: 10.1201/b19666.![]() ![]() ![]() |
[14] |
X. Ros-Oton,
Nonlocal elliptic equations in bounded domains: A survey, Publ. Mat., 60 (2016), 3-26.
doi: 10.5565/PUBLMAT_60116_01. |
[15] |
X. Ros-Oton and J. Serra,
The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary, J. Math. Pures Appl. (9), 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003. |
[16] |
J. Schmittbuhl, A. Delaplace, K. J. Mäløy, H. Perfettini and J. P. Vilotte,
Slow crack propagation and slip correlations, Pure And Applied Geophysics, 160 (2003), 961-976.
doi: 10.1007/978-3-0348-8083-1_10. |
[17] |
J. Schmittbuhl, S. Roux, J.-P. Vilotte and K. Maloy,
Interfacial crack pinning: Effect of nonlocal interactions, Physical Review Letters, 74 (1995), 1787-1790.
doi: 10.1103/PhysRevLett.74.1787. |
[18] |
R. Servadei and E. Valdinoci,
On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831-855.
doi: 10.1017/S0308210512001783. |
[19] |
S. Throm, Pinning of Interfaces in a Random Elastic Medium, Master's Thesis, Ruprecht Karls Universität Heidelberg, 2012. |


[1] |
Chiu-Yen Kao, Yuan Lou, Wenxian Shen. Random dispersal vs. non-local dispersal. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 551-596. doi: 10.3934/dcds.2010.26.551 |
[2] |
Florent Berthelin, Paola Goatin. Regularity results for the solutions of a non-local model of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3197-3213. doi: 10.3934/dcds.2019132 |
[3] |
Stig-Olof Londen, Hana Petzeltová. Convergence of solutions of a non-local phase-field system. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 653-670. doi: 10.3934/dcdss.2011.4.653 |
[4] |
Juan C. Pozo, Vicente Vergara. Fundamental solutions and decay of fully non-local problems. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 639-666. doi: 10.3934/dcds.2019026 |
[5] |
Joelma Azevedo, Juan Carlos Pozo, Arlúcio Viana. Global solutions to the non-local Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2515-2535. doi: 10.3934/dcdsb.2021146 |
[6] |
Bin Guo, Wenjie Gao. Finite-time blow-up and extinction rates of solutions to an initial Neumann problem involving the $p(x,t)-Laplace$ operator and a non-local term. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 715-730. doi: 10.3934/dcds.2016.36.715 |
[7] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3387-3399. doi: 10.3934/dcdss.2021017 |
[8] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations and Control Theory, 2022, 11 (1) : 301-324. doi: 10.3934/eect.2021014 |
[9] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[10] |
Laura Sigalotti. Homogenization of pinning conditions on periodic networks. Networks and Heterogeneous Media, 2012, 7 (3) : 543-582. doi: 10.3934/nhm.2012.7.543 |
[11] |
Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473 |
[12] |
Qiyu Jin, Ion Grama, Quansheng Liu. Convergence theorems for the Non-Local Means filter. Inverse Problems and Imaging, 2018, 12 (4) : 853-881. doi: 10.3934/ipi.2018036 |
[13] |
Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Non-local regularization of inverse problems. Inverse Problems and Imaging, 2011, 5 (2) : 511-530. doi: 10.3934/ipi.2011.5.511 |
[14] |
Olivier Bonnefon, Jérôme Coville, Guillaume Legendre. Concentration phenomenon in some non-local equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 763-781. doi: 10.3934/dcdsb.2017037 |
[15] |
Imran H. Biswas, Indranil Chowdhury. On the differentiability of the solutions of non-local Isaacs equations involving $\frac{1}{2}$-Laplacian. Communications on Pure and Applied Analysis, 2016, 15 (3) : 907-927. doi: 10.3934/cpaa.2016.15.907 |
[16] |
Massimiliano Ferrara, Giovanni Molica Bisci, Binlin Zhang. Existence of weak solutions for non-local fractional problems via Morse theory. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2483-2499. doi: 10.3934/dcdsb.2014.19.2483 |
[17] |
Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055 |
[18] |
Monica Marras, Nicola Pintus, Giuseppe Viglialoro. On the lifespan of classical solutions to a non-local porous medium problem with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 2033-2045. doi: 10.3934/dcdss.2020156 |
[19] |
Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029 |
[20] |
Matteo Focardi. Vector-valued obstacle problems for non-local energies. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 487-507. doi: 10.3934/dcdsb.2012.17.487 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]