doi: 10.3934/dcdss.2020330

Viscoelasticity with limiting strain

Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey

Dedicated to Alexander Mielke on the occasion of his 60th birthday

Received  June 2019 Revised  October 2019 Published  April 2020

A self-contained review is given for the development and current state of implicit constitutive modelling of viscoelastic response of materials in the context of strain-limiting theory.

Citation: Yasemin Şengül. Viscoelasticity with limiting strain. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020330
References:
[1]

S. P. Atul Narayan and K. R. Rajagopal, Unsteady flows of a class of novel generalizations of the Navier-Stokes fluid, Appl. Math. Comput., 219 (2013), 9935-9946.  doi: 10.1016/j.amc.2013.03.049.  Google Scholar

[2]

B. BenešováM. Kružík and A. Schlömerkemper, A note on locking materials and gradient polyconvexity, Math. Mod. Methods Appl. Sci., 28 (2018), 2367-2401.  doi: 10.1142/S0218202518500513.  Google Scholar

[3]

C. Bridges and K. R. Rajagopal, Implicit constitutive models with a thermodynamic basis: A study of stress concentration, Z. Angew. Math. Phys., 66 (2015), 191-208.  doi: 10.1007/s00033-014-0398-5.  Google Scholar

[4]

M. BulíčekJ. MálekK. Rajagopal and E. Süli, On elastic solids with limiting small strain: Modelling and analysis, EMS Surv. Math. Sci., 1 (2014), 283-332.  doi: 10.4171/EMSS/7.  Google Scholar

[5]

M. BulíčekJ. Málek and E. Süli, Analysis and approximation of a strain-limiting nonlinear elastic model, Math. Mech. Solids, 20 (2015), 92-118.  doi: 10.1177/1081286514543601.  Google Scholar

[6]

R. Bustamante, Some topics on a new class of elastic bodies, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 1377-1392.  doi: 10.1098/rspa.2008.0427.  Google Scholar

[7]

R. Bustamante and K. R. Rajagopal, A note on plain strain and stress problems for a new class of elastic bodies, Math. Mech. Solids, 15 (2010), 229-238.  doi: 10.1177/1081286508098178.  Google Scholar

[8]

R. Bustamante and K. R. Rajagopal, Solutions of some simple boundary value problems within the context of a new class of elastic materials, Int. J. Nonlinear Mech., 46 (2011), 376-386.  doi: 10.1016/j.ijnonlinmec.2010.10.002.  Google Scholar

[9]

R. Bustamante and D. Sfyris, Direct determination of stresses from the stress equations of motion and wave propagation for a new class of elastic bodies, Math. Mech. Solids, 20 (2015), 80-91.  doi: 10.1177/1081286514543600.  Google Scholar

[10]

J. C. Criscione and K. R. Rajagopal, On the modeling of the non-linear response of soft elastic bodies, Int. J. Nonlinear Mech., 56 (2013), 20-24.  doi: 10.1016/j.ijnonlinmec.2013.05.004.  Google Scholar

[11]

F. Demengel and P. Suquet, On locking materials, Acta Appl. Math., 6 (1986), 185-211.  doi: 10.1007/BF00046725.  Google Scholar

[12]

V. K. DevendiranR. K. SandeepK. Kannan and K. R. Rajagopal, A thermodynamically consistent constitutive equation for describing the response exhibited by several alloys and the study of a meaningful physical problem, Int. J. Solids and Struct., 108 (2017), 1-10.  doi: 10.1016/j.ijsolstr.2016.07.036.  Google Scholar

[13]

H. A. Erbay and Y. Şengül, Traveling waves in one-dimensional non-linear models of strain-limiting viscoelasticity, Int. J. Nonlinear Mech., 77 (2015), 61-68.  doi: 10.1016/j.ijnonlinmec.2015.07.005.  Google Scholar

[14]

H. A. Erbay and Y. Şengül, A thermodynamically consistent stress-rate type model of one-dimensional strain-limiting viscoelasticity, Z. Angew. Math. Phys., accepted. Google Scholar

[15]

H. A. Erbay, A. Erkip and Y. Şengül, Local existence of solutions to the initial-value problem for one-dimensional strain-limiting viscoelasticity, submitted. Google Scholar

[16]

N. Gelmetti and E. Süli, Spectral approximation of a strain-limiting nonlinear elastic model, Mat. Vesnik, 71 (2019), 63-89.   Google Scholar

[17]

F. Golay and P. Seppecher, Locking materials and the topology of optimal shapes, Eur. J. Mech. A Solids, 20 (2001), 631-644.  doi: 10.1016/S0997-7538(01)01146-9.  Google Scholar

[18]

K. GouM. MallikarjunaK. R. Rajagopal and J. R. Walton, Modeling fracture in the context of a strain-limiting theory of elasticity: A single plane-strain crack, Int. J. Eng. Sci., 88 (2015), 73-82.  doi: 10.1016/j.ijengsci.2014.04.018.  Google Scholar

[19] M. E. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science and Engineering, 158. Academic Press, Inc., New York-London, 1981.   Google Scholar
[20]

Y. L. Hao, S. J. Li, S. Y. Sun, C. Y. Zheng, Q. M. Hu and R. Yang, Super-elastic titanium alloy with unstable plastic deformation, Appl. Physc. Lett., 87 (2005), 091906. doi: 10.1063/1.2037192.  Google Scholar

[21]

F. Q. HouS. J. LiY. L. Hao and R. Yang, Nonlinear elastic deformation behaviour of Ti-30Nb-12Zr alloys, Scr. Mater., 63 (2010), 54-57.   Google Scholar

[22]

H. ItouV. A. Kovtunenko and K. R. Rajagopal, Contacting crack faces within the context of bodies exhibiting limiting strains, JSIAM Letters, 9 (2017), 61-64.  doi: 10.14495/jsiaml.9.61.  Google Scholar

[23]

H. ItouV. A. Kovtunenko and K. R. Rajagopal, Nonlinear elasticity with limiting small strain for cracks subject to non-penetration, Math. Mech. Solids, 22 (2017), 1334-1346.  doi: 10.1177/1081286516632380.  Google Scholar

[24]

H. ItouV. A. Kovtunenko and K. R. Rajagopal, On the states of stress and strain adjacent to a crack in a strain-limiting viscoelastic body, Math. Mech. Solids, 23 (2018), 433-444.  doi: 10.1177/1081286517709517.  Google Scholar

[25]

H. ItouV. A. Kovtunenko and K. R. Rajagopal, Crack problem within the context of implicitly constituted quasi-linear viscoelasticity, Math. Mod. Meth. Appl. Sci., 29 (2019), 355-372.  doi: 10.1142/S0218202519500118.  Google Scholar

[26]

K. KannanK. R. Rajagopal and G. Saccomandi, Unsteady motions of a new class of elastic solids, Wave Motion, 51 (2014), 833-843.  doi: 10.1016/j.wavemoti.2014.02.004.  Google Scholar

[27]

V. KulvaitJ. Málek and K. R. Rajagopal, Anti-plane stress state of a plate with a V-notch for a new class of elastic solids, Int. J. Fract., 179 (2013), 59-73.   Google Scholar

[28]

V. KulvaitJ. Málek and K. R. Rajagopal, Modeling gum metal and other newly developed titanium alloys within a new class of constitutive relations for elastic bodies, Arch. Mech., 69 (2017), 223-241.   Google Scholar

[29]

V. KulvaitJ. Málek and K. R. Rajagopal, The state of stress and strain adjacent to notches in a new class of nonlinear elastic bodies, J. Elast., 135 (2019), 375-397.  doi: 10.1007/s10659-019-09724-0.  Google Scholar

[30]

A. B. MaganD. P. Mason and C. Harley, Two-dimensional nonlinear stress and displacement waves for a new class of constitutive equations, Wave Motion, 77 (2018), 156-185.  doi: 10.1016/j.wavemoti.2017.12.003.  Google Scholar

[31]

T. Mai and J. R. Walton, On monotonicity for strain-limiting theories of elasticity, Math. Mech. Solids, 20 (2014), 121-139.   Google Scholar

[32]

R. MenesesO. Orellana and R. Bustamante, A note on the wave equation for a class of constitutive relations for nonlinear elastic bodies that are not Green elastic, Math. Mech. Solids, 23 (2018), 148-158.  doi: 10.1177/1081286516673234.  Google Scholar

[33]

J. Merodio and K. R. Rajagopal, On constitutive equations for anisotropic nonlinearly viscoelastic solids, Math. Mech. Solids, 12 (2007), 131-147.  doi: 10.1177/1081286505055472.  Google Scholar

[34]

A. MielkeC. Ortner and Y. Şengül, An approach to nonlinear viscoelasticity via metric gradient flows, SIAM J. Math. Anal., 46 (2014), 1317-1347.  doi: 10.1137/130927632.  Google Scholar

[35]

A. MielkeF. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Rational Mech. Anal., 162 (2002), 137-177.  doi: 10.1007/s002050200194.  Google Scholar

[36]

A. Mielke and M. Thomas, Damage of nonlinearly elastic materials at small strain-existence and regularity results, Z. Angew. Math. Mech., 90 (2010), 88-112.  doi: 10.1002/zamm.200900243.  Google Scholar

[37]

A. Mielke and L. Truskinovsky, From discrete visco-elasticity to continuum rate-independent plasticity: Rigorous results, Arch. Rational Mech. Anal., 203 (2012), 577-619.  doi: 10.1007/s00205-011-0460-9.  Google Scholar

[38]

S. MonteroR. Bustamante and A. Ortiz-Bernardin, A finite element analysis of some boundary value problems for a new type of constitutive relation for elastic bodies, Acta Mech., 227 (2016), 601-615.  doi: 10.1007/s00707-015-1480-6.  Google Scholar

[39]

A. MulianaK. R. Rajagopal and A. S. Wineman, A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials, Acta Mech., 224 (2013), 2169-2183.  doi: 10.1007/s00707-013-0848-8.  Google Scholar

[40]

N. NagasakoR. Asahi and J. Hafner, First-principles study of Gum-Metal alloys: Mechanism of ideal strength, R & D Review of Toyota CRDL, 44 (2013), 61-68.   Google Scholar

[41]

A. OrtizR. Bustamante and K. R. Rajagopal, A numerical study of a plate with a hole for a new class of elastic bodies, Acta Mech., 223 (2012), 1971-1981.  doi: 10.1007/s00707-012-0690-4.  Google Scholar

[42]

A. Ortiz-BernardinR. Bustamante and K. R. Rajagopal, A numerical study of elastic bodies that are described by constitutive equations that exhibit limited strains, Int. J. Solids and Struct., 51 (2014), 875-885.  doi: 10.1016/j.ijsolstr.2013.11.014.  Google Scholar

[43]

N. Payne and K. Pochiraju, Methodologies for constitutive model parameter identification for strain locking materials, Mech. Mater., 134 (2019), 30-37.  doi: 10.1016/j.mechmat.2019.04.004.  Google Scholar

[44]

A. Phillips, The theory of locking materials, Trans. Soc. Rheol., 3 (1959), 13-26.  doi: 10.1122/1.548840.  Google Scholar

[45]

W. Prager, On ideal locking materials, Trans. Soc. Rheol., 1 (1957), 169-175.  doi: 10.1122/1.548818.  Google Scholar

[46]

K. R. Rajagopal, On implicit constitutive theories, Appl. Math., 48 (2003), 279-319.  doi: 10.1023/A:1026062615145.  Google Scholar

[47]

K. R. Rajagopal, On implicit constitutive theories for fluids, J. Fluid Mech., 550 (2006), 243-249.  doi: 10.1017/S0022112005008025.  Google Scholar

[48]

K. R. Rajagopal, The elasticity of elasticity, Z. Angew. Math. Phys., 58 (2007), 309-317.  doi: 10.1007/s00033-006-6084-5.  Google Scholar

[49]

K. R. Rajagopal, On a new class of models in elasticity, J. Math. Comp. Appl., 15 (2010), 506-528.  doi: 10.3390/mca15040506.  Google Scholar

[50]

K. R. Rajagopal, Non-linear elastic bodies exhibiting limiting small strain, Math. Mech. Solids, 16 (2011), 122-139.  doi: 10.1177/1081286509357272.  Google Scholar

[51]

K. R. Rajagopal, Conspectus of concepts of elasticity, Math. Mech. Solids, 16 (2011), 536-562.  doi: 10.1177/1081286510387856.  Google Scholar

[52]

K. R. Rajagopal, On the nonlinear elastic response of bodies in the small strain range, Acta Mech., 225 (2014), 1545-1553.  doi: 10.1007/s00707-013-1015-y.  Google Scholar

[53]

K. R. Rajagopal, A note on the classification of anisotropy of bodies defined by implicit constitutive relations, Mech. Res. Comm., 64 (2015), 38-41.  doi: 10.1016/j.mechrescom.2014.11.005.  Google Scholar

[54]

K. R. Rajagopal, A note on the linearization of the constitutive relations of non-linear elastic bodies, Mech. Res. Comm., 93 (2018), 132-137.  doi: 10.1016/j.mechrescom.2017.08.002.  Google Scholar

[55]

K. R. Rajagopal and G. Saccomandi, Circularly polarized wave propagation in a class of bodies defined by a new class of implicit constitutive relations, Z. Angew. Math. Phys., 65 (2014), 1003-1010.  doi: 10.1007/s00033-013-0362-9.  Google Scholar

[56]

K. R. Rajagopal and G. Saccomandi, Shear waves in a class of nonlinear viscoelastic solids, Quart. J. Mech. Appl. Math., 56 (2003), 311-326.  doi: 10.1093/qjmam/56.2.311.  Google Scholar

[57]

K. R. Rajagopal and A. R. Srinivasa, A thermodynamic frame work for rate type fluid models, J. Non-Newton. Fluid Mech., 88 (2000), 207-227.  doi: 10.1016/S0377-0257(99)00023-3.  Google Scholar

[58]

K. R. Rajagopal and A. R. Srinivasa, On thermomechanical restrictions of continua, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 631-651.  doi: 10.1098/rspa.2002.1111.  Google Scholar

[59]

K. R. Rajagopal and A. R. Srinivasa, On the nature of constraints for continua undergoing dissipative processes, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 2785-2795.  doi: 10.1098/rspa.2004.1385.  Google Scholar

[60]

K. R. Rajagopal and A. R. Srinivasa, On the response of non-dissipative solids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 357-367.  doi: 10.1098/rspa.2006.1760.  Google Scholar

[61]

K. R. Rajagopal and A. R. Srinivasa, On the development of fluid models of the differential type within a new thermodynamic framework, Mech. Res. Commun., 35 (2008), 483-489.  doi: 10.1016/j.mechrescom.2008.02.004.  Google Scholar

[62]

K. R. Rajagopal and A. R. Srinivasa, A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467 (2011), 39-58.  doi: 10.1098/rspa.2010.0136.  Google Scholar

[63]

K. R. Rajagopal and A. R. Srinivasa, An implicit thermomechanical theory based on a Gibbs potential formulation for describing the response of thermoviscoelastic solids, Int. J. Eng. Sci., 70 (2013), 15-28.  doi: 10.1016/j.ijengsci.2013.03.005.  Google Scholar

[64]

K. R. Rajagopal and J. R. Walton, Modeling fracture in the context of a strain-limiting theory of elasticity: A single anti-plane shear crack, Int. J. Fract., 169 (2011), 39-48.  doi: 10.1007/s10704-010-9581-7.  Google Scholar

[65]

K. R. Rajagopal and A. S. Wineman, A quasi-correspondence principle for quasi-linear viscoelastic solids, Mech. Time-Depend. Mater., 12 (2008), 1-14.   Google Scholar

[66]

R. S. Rivlin, Further remarks on the stress-deformation relations for isotropic materials, Indiana Univ. Math. J., 4 (1955), 681-702.  doi: 10.1512/iumj.1955.4.54025.  Google Scholar

[67]

T. SaitoT. FurutaJ. H. HwangS. KuramotoK. NishinoN. SuzukiR. ChenA. YamadaK. ItoY. SenoT. NonakaH. IkehataN. NagasakoC. IwamotoY. Ikuhara and T. Sakuma, Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism, Science, 300 (2003), 464-467.  doi: 10.1126/science.1081957.  Google Scholar

[68]

N. SakaguchM. Niinomi and T. Akahori, Tensile deformation behavior of Ti-Nb-Ta-Zr biomedical alloys, Mater. Trans., 45 (2004), 1113-1119.   Google Scholar

[69]

U. Saravanan, Advanced Solid Mechanics, McGraw-Hill Inc., Indian Institute of Technology Madras, 2013. Google Scholar

[70] A. J. M. Spencer, Theory of Invariants, Continuum Physics, Academic Press, New York, 1971.   Google Scholar
[71]

Y. Şengül, On one-dimensional strain-limiting viscoelasticity with an arctangent type nonlinearity, submitted. Google Scholar

[72]

R. J. TallingR. J. DashwoodM. Jackson and D. Dye, On the mechanism of superelasticity in Gum metal, Acta Mater., 57 (2009), 1188-1198.  doi: 10.1016/j.actamat.2008.11.013.  Google Scholar

[73]

C. Truesdell, The Elements of Continuum Mechanics, Springer-Verlag New York, Inc., New York, 1966.  Google Scholar

[74] A. S. Wineman and K. R. Rajagopal, Mechanical Response of Polymers: An Introduction, Cambridge University Press, Cambridge, 2000.   Google Scholar
[75]

E. WitheyM. JinA. MinorS. KuramotoD. C. Chrzan and J. W. Morris, The deformation of "Gum Metal" in nanoindentation, Mater. Sci. Eng. A, 493 (2008), 26-32.  doi: 10.1016/j.msea.2007.07.097.  Google Scholar

[76]

S. Q. ZhangS. J. LiM. T. JiaY. L. Hao and R. Yang, Fatigue properties of a multifunctional titanium alloy exhibiting nonlinear elastic deformation behavior, Scr. Mater., 60 (2009), 733-736.  doi: 10.1016/j.scriptamat.2009.01.007.  Google Scholar

[77]

M. ZappalortoF. Berto and K. R. Rajagopal, On the anti-plane state of stress near pointed or sharply radiused notches in strain limiting elastic materials: Closed form solution and implications for fracture assessements, Int. J. Fract., 199 (2016), 169-184.  doi: 10.1007/s10704-016-0102-1.  Google Scholar

show all references

References:
[1]

S. P. Atul Narayan and K. R. Rajagopal, Unsteady flows of a class of novel generalizations of the Navier-Stokes fluid, Appl. Math. Comput., 219 (2013), 9935-9946.  doi: 10.1016/j.amc.2013.03.049.  Google Scholar

[2]

B. BenešováM. Kružík and A. Schlömerkemper, A note on locking materials and gradient polyconvexity, Math. Mod. Methods Appl. Sci., 28 (2018), 2367-2401.  doi: 10.1142/S0218202518500513.  Google Scholar

[3]

C. Bridges and K. R. Rajagopal, Implicit constitutive models with a thermodynamic basis: A study of stress concentration, Z. Angew. Math. Phys., 66 (2015), 191-208.  doi: 10.1007/s00033-014-0398-5.  Google Scholar

[4]

M. BulíčekJ. MálekK. Rajagopal and E. Süli, On elastic solids with limiting small strain: Modelling and analysis, EMS Surv. Math. Sci., 1 (2014), 283-332.  doi: 10.4171/EMSS/7.  Google Scholar

[5]

M. BulíčekJ. Málek and E. Süli, Analysis and approximation of a strain-limiting nonlinear elastic model, Math. Mech. Solids, 20 (2015), 92-118.  doi: 10.1177/1081286514543601.  Google Scholar

[6]

R. Bustamante, Some topics on a new class of elastic bodies, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 1377-1392.  doi: 10.1098/rspa.2008.0427.  Google Scholar

[7]

R. Bustamante and K. R. Rajagopal, A note on plain strain and stress problems for a new class of elastic bodies, Math. Mech. Solids, 15 (2010), 229-238.  doi: 10.1177/1081286508098178.  Google Scholar

[8]

R. Bustamante and K. R. Rajagopal, Solutions of some simple boundary value problems within the context of a new class of elastic materials, Int. J. Nonlinear Mech., 46 (2011), 376-386.  doi: 10.1016/j.ijnonlinmec.2010.10.002.  Google Scholar

[9]

R. Bustamante and D. Sfyris, Direct determination of stresses from the stress equations of motion and wave propagation for a new class of elastic bodies, Math. Mech. Solids, 20 (2015), 80-91.  doi: 10.1177/1081286514543600.  Google Scholar

[10]

J. C. Criscione and K. R. Rajagopal, On the modeling of the non-linear response of soft elastic bodies, Int. J. Nonlinear Mech., 56 (2013), 20-24.  doi: 10.1016/j.ijnonlinmec.2013.05.004.  Google Scholar

[11]

F. Demengel and P. Suquet, On locking materials, Acta Appl. Math., 6 (1986), 185-211.  doi: 10.1007/BF00046725.  Google Scholar

[12]

V. K. DevendiranR. K. SandeepK. Kannan and K. R. Rajagopal, A thermodynamically consistent constitutive equation for describing the response exhibited by several alloys and the study of a meaningful physical problem, Int. J. Solids and Struct., 108 (2017), 1-10.  doi: 10.1016/j.ijsolstr.2016.07.036.  Google Scholar

[13]

H. A. Erbay and Y. Şengül, Traveling waves in one-dimensional non-linear models of strain-limiting viscoelasticity, Int. J. Nonlinear Mech., 77 (2015), 61-68.  doi: 10.1016/j.ijnonlinmec.2015.07.005.  Google Scholar

[14]

H. A. Erbay and Y. Şengül, A thermodynamically consistent stress-rate type model of one-dimensional strain-limiting viscoelasticity, Z. Angew. Math. Phys., accepted. Google Scholar

[15]

H. A. Erbay, A. Erkip and Y. Şengül, Local existence of solutions to the initial-value problem for one-dimensional strain-limiting viscoelasticity, submitted. Google Scholar

[16]

N. Gelmetti and E. Süli, Spectral approximation of a strain-limiting nonlinear elastic model, Mat. Vesnik, 71 (2019), 63-89.   Google Scholar

[17]

F. Golay and P. Seppecher, Locking materials and the topology of optimal shapes, Eur. J. Mech. A Solids, 20 (2001), 631-644.  doi: 10.1016/S0997-7538(01)01146-9.  Google Scholar

[18]

K. GouM. MallikarjunaK. R. Rajagopal and J. R. Walton, Modeling fracture in the context of a strain-limiting theory of elasticity: A single plane-strain crack, Int. J. Eng. Sci., 88 (2015), 73-82.  doi: 10.1016/j.ijengsci.2014.04.018.  Google Scholar

[19] M. E. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science and Engineering, 158. Academic Press, Inc., New York-London, 1981.   Google Scholar
[20]

Y. L. Hao, S. J. Li, S. Y. Sun, C. Y. Zheng, Q. M. Hu and R. Yang, Super-elastic titanium alloy with unstable plastic deformation, Appl. Physc. Lett., 87 (2005), 091906. doi: 10.1063/1.2037192.  Google Scholar

[21]

F. Q. HouS. J. LiY. L. Hao and R. Yang, Nonlinear elastic deformation behaviour of Ti-30Nb-12Zr alloys, Scr. Mater., 63 (2010), 54-57.   Google Scholar

[22]

H. ItouV. A. Kovtunenko and K. R. Rajagopal, Contacting crack faces within the context of bodies exhibiting limiting strains, JSIAM Letters, 9 (2017), 61-64.  doi: 10.14495/jsiaml.9.61.  Google Scholar

[23]

H. ItouV. A. Kovtunenko and K. R. Rajagopal, Nonlinear elasticity with limiting small strain for cracks subject to non-penetration, Math. Mech. Solids, 22 (2017), 1334-1346.  doi: 10.1177/1081286516632380.  Google Scholar

[24]

H. ItouV. A. Kovtunenko and K. R. Rajagopal, On the states of stress and strain adjacent to a crack in a strain-limiting viscoelastic body, Math. Mech. Solids, 23 (2018), 433-444.  doi: 10.1177/1081286517709517.  Google Scholar

[25]

H. ItouV. A. Kovtunenko and K. R. Rajagopal, Crack problem within the context of implicitly constituted quasi-linear viscoelasticity, Math. Mod. Meth. Appl. Sci., 29 (2019), 355-372.  doi: 10.1142/S0218202519500118.  Google Scholar

[26]

K. KannanK. R. Rajagopal and G. Saccomandi, Unsteady motions of a new class of elastic solids, Wave Motion, 51 (2014), 833-843.  doi: 10.1016/j.wavemoti.2014.02.004.  Google Scholar

[27]

V. KulvaitJ. Málek and K. R. Rajagopal, Anti-plane stress state of a plate with a V-notch for a new class of elastic solids, Int. J. Fract., 179 (2013), 59-73.   Google Scholar

[28]

V. KulvaitJ. Málek and K. R. Rajagopal, Modeling gum metal and other newly developed titanium alloys within a new class of constitutive relations for elastic bodies, Arch. Mech., 69 (2017), 223-241.   Google Scholar

[29]

V. KulvaitJ. Málek and K. R. Rajagopal, The state of stress and strain adjacent to notches in a new class of nonlinear elastic bodies, J. Elast., 135 (2019), 375-397.  doi: 10.1007/s10659-019-09724-0.  Google Scholar

[30]

A. B. MaganD. P. Mason and C. Harley, Two-dimensional nonlinear stress and displacement waves for a new class of constitutive equations, Wave Motion, 77 (2018), 156-185.  doi: 10.1016/j.wavemoti.2017.12.003.  Google Scholar

[31]

T. Mai and J. R. Walton, On monotonicity for strain-limiting theories of elasticity, Math. Mech. Solids, 20 (2014), 121-139.   Google Scholar

[32]

R. MenesesO. Orellana and R. Bustamante, A note on the wave equation for a class of constitutive relations for nonlinear elastic bodies that are not Green elastic, Math. Mech. Solids, 23 (2018), 148-158.  doi: 10.1177/1081286516673234.  Google Scholar

[33]

J. Merodio and K. R. Rajagopal, On constitutive equations for anisotropic nonlinearly viscoelastic solids, Math. Mech. Solids, 12 (2007), 131-147.  doi: 10.1177/1081286505055472.  Google Scholar

[34]

A. MielkeC. Ortner and Y. Şengül, An approach to nonlinear viscoelasticity via metric gradient flows, SIAM J. Math. Anal., 46 (2014), 1317-1347.  doi: 10.1137/130927632.  Google Scholar

[35]

A. MielkeF. Theil and V. I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle, Arch. Rational Mech. Anal., 162 (2002), 137-177.  doi: 10.1007/s002050200194.  Google Scholar

[36]

A. Mielke and M. Thomas, Damage of nonlinearly elastic materials at small strain-existence and regularity results, Z. Angew. Math. Mech., 90 (2010), 88-112.  doi: 10.1002/zamm.200900243.  Google Scholar

[37]

A. Mielke and L. Truskinovsky, From discrete visco-elasticity to continuum rate-independent plasticity: Rigorous results, Arch. Rational Mech. Anal., 203 (2012), 577-619.  doi: 10.1007/s00205-011-0460-9.  Google Scholar

[38]

S. MonteroR. Bustamante and A. Ortiz-Bernardin, A finite element analysis of some boundary value problems for a new type of constitutive relation for elastic bodies, Acta Mech., 227 (2016), 601-615.  doi: 10.1007/s00707-015-1480-6.  Google Scholar

[39]

A. MulianaK. R. Rajagopal and A. S. Wineman, A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials, Acta Mech., 224 (2013), 2169-2183.  doi: 10.1007/s00707-013-0848-8.  Google Scholar

[40]

N. NagasakoR. Asahi and J. Hafner, First-principles study of Gum-Metal alloys: Mechanism of ideal strength, R & D Review of Toyota CRDL, 44 (2013), 61-68.   Google Scholar

[41]

A. OrtizR. Bustamante and K. R. Rajagopal, A numerical study of a plate with a hole for a new class of elastic bodies, Acta Mech., 223 (2012), 1971-1981.  doi: 10.1007/s00707-012-0690-4.  Google Scholar

[42]

A. Ortiz-BernardinR. Bustamante and K. R. Rajagopal, A numerical study of elastic bodies that are described by constitutive equations that exhibit limited strains, Int. J. Solids and Struct., 51 (2014), 875-885.  doi: 10.1016/j.ijsolstr.2013.11.014.  Google Scholar

[43]

N. Payne and K. Pochiraju, Methodologies for constitutive model parameter identification for strain locking materials, Mech. Mater., 134 (2019), 30-37.  doi: 10.1016/j.mechmat.2019.04.004.  Google Scholar

[44]

A. Phillips, The theory of locking materials, Trans. Soc. Rheol., 3 (1959), 13-26.  doi: 10.1122/1.548840.  Google Scholar

[45]

W. Prager, On ideal locking materials, Trans. Soc. Rheol., 1 (1957), 169-175.  doi: 10.1122/1.548818.  Google Scholar

[46]

K. R. Rajagopal, On implicit constitutive theories, Appl. Math., 48 (2003), 279-319.  doi: 10.1023/A:1026062615145.  Google Scholar

[47]

K. R. Rajagopal, On implicit constitutive theories for fluids, J. Fluid Mech., 550 (2006), 243-249.  doi: 10.1017/S0022112005008025.  Google Scholar

[48]

K. R. Rajagopal, The elasticity of elasticity, Z. Angew. Math. Phys., 58 (2007), 309-317.  doi: 10.1007/s00033-006-6084-5.  Google Scholar

[49]

K. R. Rajagopal, On a new class of models in elasticity, J. Math. Comp. Appl., 15 (2010), 506-528.  doi: 10.3390/mca15040506.  Google Scholar

[50]

K. R. Rajagopal, Non-linear elastic bodies exhibiting limiting small strain, Math. Mech. Solids, 16 (2011), 122-139.  doi: 10.1177/1081286509357272.  Google Scholar

[51]

K. R. Rajagopal, Conspectus of concepts of elasticity, Math. Mech. Solids, 16 (2011), 536-562.  doi: 10.1177/1081286510387856.  Google Scholar

[52]

K. R. Rajagopal, On the nonlinear elastic response of bodies in the small strain range, Acta Mech., 225 (2014), 1545-1553.  doi: 10.1007/s00707-013-1015-y.  Google Scholar

[53]

K. R. Rajagopal, A note on the classification of anisotropy of bodies defined by implicit constitutive relations, Mech. Res. Comm., 64 (2015), 38-41.  doi: 10.1016/j.mechrescom.2014.11.005.  Google Scholar

[54]

K. R. Rajagopal, A note on the linearization of the constitutive relations of non-linear elastic bodies, Mech. Res. Comm., 93 (2018), 132-137.  doi: 10.1016/j.mechrescom.2017.08.002.  Google Scholar

[55]

K. R. Rajagopal and G. Saccomandi, Circularly polarized wave propagation in a class of bodies defined by a new class of implicit constitutive relations, Z. Angew. Math. Phys., 65 (2014), 1003-1010.  doi: 10.1007/s00033-013-0362-9.  Google Scholar

[56]

K. R. Rajagopal and G. Saccomandi, Shear waves in a class of nonlinear viscoelastic solids, Quart. J. Mech. Appl. Math., 56 (2003), 311-326.  doi: 10.1093/qjmam/56.2.311.  Google Scholar

[57]

K. R. Rajagopal and A. R. Srinivasa, A thermodynamic frame work for rate type fluid models, J. Non-Newton. Fluid Mech., 88 (2000), 207-227.  doi: 10.1016/S0377-0257(99)00023-3.  Google Scholar

[58]

K. R. Rajagopal and A. R. Srinivasa, On thermomechanical restrictions of continua, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460 (2004), 631-651.  doi: 10.1098/rspa.2002.1111.  Google Scholar

[59]

K. R. Rajagopal and A. R. Srinivasa, On the nature of constraints for continua undergoing dissipative processes, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 2785-2795.  doi: 10.1098/rspa.2004.1385.  Google Scholar

[60]

K. R. Rajagopal and A. R. Srinivasa, On the response of non-dissipative solids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 357-367.  doi: 10.1098/rspa.2006.1760.  Google Scholar

[61]

K. R. Rajagopal and A. R. Srinivasa, On the development of fluid models of the differential type within a new thermodynamic framework, Mech. Res. Commun., 35 (2008), 483-489.  doi: 10.1016/j.mechrescom.2008.02.004.  Google Scholar

[62]

K. R. Rajagopal and A. R. Srinivasa, A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467 (2011), 39-58.  doi: 10.1098/rspa.2010.0136.  Google Scholar

[63]

K. R. Rajagopal and A. R. Srinivasa, An implicit thermomechanical theory based on a Gibbs potential formulation for describing the response of thermoviscoelastic solids, Int. J. Eng. Sci., 70 (2013), 15-28.  doi: 10.1016/j.ijengsci.2013.03.005.  Google Scholar

[64]

K. R. Rajagopal and J. R. Walton, Modeling fracture in the context of a strain-limiting theory of elasticity: A single anti-plane shear crack, Int. J. Fract., 169 (2011), 39-48.  doi: 10.1007/s10704-010-9581-7.  Google Scholar

[65]

K. R. Rajagopal and A. S. Wineman, A quasi-correspondence principle for quasi-linear viscoelastic solids, Mech. Time-Depend. Mater., 12 (2008), 1-14.   Google Scholar

[66]

R. S. Rivlin, Further remarks on the stress-deformation relations for isotropic materials, Indiana Univ. Math. J., 4 (1955), 681-702.  doi: 10.1512/iumj.1955.4.54025.  Google Scholar

[67]

T. SaitoT. FurutaJ. H. HwangS. KuramotoK. NishinoN. SuzukiR. ChenA. YamadaK. ItoY. SenoT. NonakaH. IkehataN. NagasakoC. IwamotoY. Ikuhara and T. Sakuma, Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism, Science, 300 (2003), 464-467.  doi: 10.1126/science.1081957.  Google Scholar

[68]

N. SakaguchM. Niinomi and T. Akahori, Tensile deformation behavior of Ti-Nb-Ta-Zr biomedical alloys, Mater. Trans., 45 (2004), 1113-1119.   Google Scholar

[69]

U. Saravanan, Advanced Solid Mechanics, McGraw-Hill Inc., Indian Institute of Technology Madras, 2013. Google Scholar

[70] A. J. M. Spencer, Theory of Invariants, Continuum Physics, Academic Press, New York, 1971.   Google Scholar
[71]

Y. Şengül, On one-dimensional strain-limiting viscoelasticity with an arctangent type nonlinearity, submitted. Google Scholar

[72]

R. J. TallingR. J. DashwoodM. Jackson and D. Dye, On the mechanism of superelasticity in Gum metal, Acta Mater., 57 (2009), 1188-1198.  doi: 10.1016/j.actamat.2008.11.013.  Google Scholar

[73]

C. Truesdell, The Elements of Continuum Mechanics, Springer-Verlag New York, Inc., New York, 1966.  Google Scholar

[74] A. S. Wineman and K. R. Rajagopal, Mechanical Response of Polymers: An Introduction, Cambridge University Press, Cambridge, 2000.   Google Scholar
[75]

E. WitheyM. JinA. MinorS. KuramotoD. C. Chrzan and J. W. Morris, The deformation of "Gum Metal" in nanoindentation, Mater. Sci. Eng. A, 493 (2008), 26-32.  doi: 10.1016/j.msea.2007.07.097.  Google Scholar

[76]

S. Q. ZhangS. J. LiM. T. JiaY. L. Hao and R. Yang, Fatigue properties of a multifunctional titanium alloy exhibiting nonlinear elastic deformation behavior, Scr. Mater., 60 (2009), 733-736.  doi: 10.1016/j.scriptamat.2009.01.007.  Google Scholar

[77]

M. ZappalortoF. Berto and K. R. Rajagopal, On the anti-plane state of stress near pointed or sharply radiused notches in strain limiting elastic materials: Closed form solution and implications for fracture assessements, Int. J. Fract., 199 (2016), 169-184.  doi: 10.1007/s10704-016-0102-1.  Google Scholar

Figure 1.  Limiting strain behaviour
Figure 2.  Experimental data for the stress-strain relationship for porcine carotid and thoracic artery tissues (cf. [43])
Figure 3.  Left. Model A: $ g(T) = \beta T + \alpha \left(1 + \frac{\gamma}{2} T^{2}\right)^{n} T $; Model B: $ g(T) = \frac{T}{(1 + |T|^{r})^{1/r}} $; Model C: $ g(T) = \alpha \left\{\left[1 - \exp\left(- \frac{\beta T}{1 + \delta |T|}\right)\right] + \frac{\gamma T}{1 + |T|} \right\} $; Model D: $ g(T) = \alpha \left(1-\frac{1}{1 +\frac{ T}{1 + \delta |T|}}\right) + \beta \left(1 + \frac{1}{1 + \gamma T^{2}}\right)^{n} T $, where $ \alpha, \beta, \gamma, \delta, n $ and $ r > 0 $ are constants. Right. General linear, quadratic and cubic nonlinearities
[1]

B. L. G. Jonsson. Wave splitting of Maxwell's equations with anisotropic heterogeneous constitutive relations. Inverse Problems & Imaging, 2009, 3 (3) : 405-452. doi: 10.3934/ipi.2009.3.405

[2]

Merab Svanadze. On the theory of viscoelasticity for materials with double porosity. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2335-2352. doi: 10.3934/dcdsb.2014.19.2335

[3]

Zhen Lei. Rotation-strain decomposition for the incompressible viscoelasticity in two dimensions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2861-2871. doi: 10.3934/dcds.2014.34.2861

[4]

Claude Vallée, Camelia Lerintiu, Danielle Fortuné, Kossi Atchonouglo, Jamal Chaoufi. Modelling of implicit standard materials. Application to linear coaxial non-associated constitutive laws. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1641-1649. doi: 10.3934/dcdss.2013.6.1641

[5]

Dorin Ieşan. Strain gradient theory of porous solids with initial stresses and initial heat flux. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2169-2187. doi: 10.3934/dcdsb.2014.19.2169

[6]

A. C. Eberhard, J-P. Crouzeix. Existence of closed graph, maximal, cyclic pseudo-monotone relations and revealed preference theory. Journal of Industrial & Management Optimization, 2007, 3 (2) : 233-255. doi: 10.3934/jimo.2007.3.233

[7]

Donatella Donatelli, Corrado Lattanzio. On the diffusive stress relaxation for multidimensional viscoelasticity. Communications on Pure & Applied Analysis, 2009, 8 (2) : 645-654. doi: 10.3934/cpaa.2009.8.645

[8]

Monica Conti, V. Pata. Weakly dissipative semilinear equations of viscoelasticity. Communications on Pure & Applied Analysis, 2005, 4 (4) : 705-720. doi: 10.3934/cpaa.2005.4.705

[9]

Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62.

[10]

David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117

[11]

Victor Zvyagin, Vladimir Orlov. Weak solvability of fractional Voigt model of viscoelasticity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6327-6350. doi: 10.3934/dcds.2018270

[12]

Marta Lewicka, Piotr B. Mucha. A local existence result for a system of viscoelasticity with physical viscosity. Evolution Equations & Control Theory, 2013, 2 (2) : 337-353. doi: 10.3934/eect.2013.2.337

[13]

Valeria Danese, Pelin G. Geredeli, Vittorino Pata. Exponential attractors for abstract equations with memory and applications to viscoelasticity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2881-2904. doi: 10.3934/dcds.2015.35.2881

[14]

Monica Conti, Elsa M. Marchini, Vittorino Pata. Semilinear wave equations of viscoelasticity in the minimal state framework. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1535-1552. doi: 10.3934/dcds.2010.27.1535

[15]

Christophe Cheverry, Adrien Fontaine. Dispersion relations in cold magnetized plasmas. Kinetic & Related Models, 2017, 10 (2) : 373-421. doi: 10.3934/krm.2017015

[16]

Artur Babiarz, Adam Czornik, Michał Niezabitowski, Evgenij Barabanov, Aliaksei Vaidzelevich, Alexander Konyukh. Relations between Bohl and general exponents. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5319-5335. doi: 10.3934/dcds.2017231

[17]

Evelyn Sander. Hyperbolic sets for noninvertible maps and relations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 339-357. doi: 10.3934/dcds.1999.5.339

[18]

Gilles A. Francfort, Alessandro Giacomini, Alessandro Musesti. On the Fleck and Willis homogenization procedure in strain gradient plasticity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 43-62. doi: 10.3934/dcdss.2013.6.43

[19]

Ryusuke Kon. Dynamics of competitive systems with a single common limiting factor. Mathematical Biosciences & Engineering, 2015, 12 (1) : 71-81. doi: 10.3934/mbe.2015.12.71

[20]

Tony Liimatainen, Mikko Salo. Nowhere conformally homogeneous manifolds and limiting Carleman weights. Inverse Problems & Imaging, 2012, 6 (3) : 523-530. doi: 10.3934/ipi.2012.6.523

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (43)
  • HTML views (161)
  • Cited by (1)

Other articles
by authors

[Back to Top]