January  2021, 14(1): 121-149. doi: 10.3934/dcdss.2020332

Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads

1. 

University of Kassel, Institute for Mathematics, Heinrich-Plett-Str. 40, 34132 Kassel, Germany

2. 

Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

* Corresponding author: Dorothee Knees

Dedicated to Alexander Mielke to the occasion of his 60th birthday

Received  September 2019 Revised  November 2019 Published  April 2020

We study a rate-independent system with non-convex energy in the case of a time-discontinuous loading. We prove existence of the rate-dependent viscous regularization by time-incremental problems, while the existence of the so called parameterized $ BV $-solutions is obtained via vanishing viscosity in a suitable parameterized setting. In addition, we prove that the solution set is compact.

Citation: Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.  Google Scholar

[2]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Mathematics and its Applications, 10. D. Reidel Publishing Co., Dordrecht, Editura Academiei Republicii Socialiste Romania, Bucharest, 1986.  Google Scholar

[3]

J. Dieudonné, Foundations of Modern Analysis. Enlarged and Corrected Printing, Pure and Applied Mathematics, Vol. 10-Ⅰ. Academic Press, New York-London, 1969.  Google Scholar

[4]

M. A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity, J. Convex Anal., 13 (2006), 151-167.   Google Scholar

[5]

P. Krejčí and P. Laurençot, Generalized variational inequalities, J. Convex Anal., 9 (2002), 159-183.   Google Scholar

[6]

P. Krejčí and M. Liero, Rate independent Kurzweil processes, Appl. Math., 54 (2009), 117-145.  doi: 10.1007/s10492-009-0009-5.  Google Scholar

[7]

D. Knees, Convergence analysis of time-discretization schemes for rate-independent systems, ESAIM Control Optim. Calc. Var., 25 (2019), Art. 65, 38 pp. doi: 10.1051/cocv/2018048.  Google Scholar

[8]

P. Krejčí and V. Recupero, Comparing BV solutions of rate independent processes, J. Convex Anal., 21 (2014), 121-146.   Google Scholar

[9]

D. Knees and S. Thomas, Optimal Control of a Rate-Independent System Constrained to Parametrized Balanced Viscosity Solutions, University of Kassel, 2018, arXiv: 1810.12572. Google Scholar

[10]

G. Leoni, A First Course in Sobolev Spaces, Second edition, Graduate Studies in Mathematics, 181. American Mathematical Society, Providence, RI, 2017.  Google Scholar

[11]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differ. Equ., 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.  Google Scholar

[12]

J.-J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations, 26 (1977), 347-374.  doi: 10.1016/0022-0396(77)90085-7.  Google Scholar

[13]

A. Mielke and T. Roubíček, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193. Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[14]

A. MielkeR. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces, Discrete Contin. Dyn. Syst., 25 (2009), 585-615.  doi: 10.3934/dcds.2009.25.585.  Google Scholar

[15]

A. MielkeR. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc. Var., 18 (2012), 36-80.  doi: 10.1051/cocv/2010054.  Google Scholar

[16]

A. MielkeR. Rossi and G. Savaré, Variational convergence of gradient flows and rate-independent evolutions in metric spaces, Milan J. Math., 80 (2012), 381-410.  doi: 10.1007/s00032-012-0190-y.  Google Scholar

[17]

A. MielkeR. Rossi and G. Savaré, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems, J. Eur. Math. Soc. (JEMS), 18 (2016), 2107-2165.  doi: 10.4171/JEMS/639.  Google Scholar

[18]

A. Mielke and S. Zelik, On the vanishing-viscosity limit in parabolic systems with rate-independent dissipation terms, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13 (2014), 67-135.   Google Scholar

[19]

V. Recupero, $BV$solutions of rate independent variational inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (2011), 269-315.   Google Scholar

[20]

V. Recupero, Sweeping processes and rate independence, J. Convex Anal., 23 (2016), 921-946.   Google Scholar

[21]

R. RossiA. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 7 (2008), 97-169.   Google Scholar

[22]

V. Recupero and F. Santambrogio, Sweeping processes with prescribed behavior on jumps, Ann. Mat. Pura Appl., 197 (2018), 1311-1332.  doi: 10.1007/s10231-018-0726-z.  Google Scholar

[23]

M. Tvrdý, Regulated functions and the Perron-Stieltjes integral, Časopis Pěst. Mat., 114 (1989), 187–209.  Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.  Google Scholar

[2]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Mathematics and its Applications, 10. D. Reidel Publishing Co., Dordrecht, Editura Academiei Republicii Socialiste Romania, Bucharest, 1986.  Google Scholar

[3]

J. Dieudonné, Foundations of Modern Analysis. Enlarged and Corrected Printing, Pure and Applied Mathematics, Vol. 10-Ⅰ. Academic Press, New York-London, 1969.  Google Scholar

[4]

M. A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity, J. Convex Anal., 13 (2006), 151-167.   Google Scholar

[5]

P. Krejčí and P. Laurençot, Generalized variational inequalities, J. Convex Anal., 9 (2002), 159-183.   Google Scholar

[6]

P. Krejčí and M. Liero, Rate independent Kurzweil processes, Appl. Math., 54 (2009), 117-145.  doi: 10.1007/s10492-009-0009-5.  Google Scholar

[7]

D. Knees, Convergence analysis of time-discretization schemes for rate-independent systems, ESAIM Control Optim. Calc. Var., 25 (2019), Art. 65, 38 pp. doi: 10.1051/cocv/2018048.  Google Scholar

[8]

P. Krejčí and V. Recupero, Comparing BV solutions of rate independent processes, J. Convex Anal., 21 (2014), 121-146.   Google Scholar

[9]

D. Knees and S. Thomas, Optimal Control of a Rate-Independent System Constrained to Parametrized Balanced Viscosity Solutions, University of Kassel, 2018, arXiv: 1810.12572. Google Scholar

[10]

G. Leoni, A First Course in Sobolev Spaces, Second edition, Graduate Studies in Mathematics, 181. American Mathematical Society, Providence, RI, 2017.  Google Scholar

[11]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differ. Equ., 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.  Google Scholar

[12]

J.-J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations, 26 (1977), 347-374.  doi: 10.1016/0022-0396(77)90085-7.  Google Scholar

[13]

A. Mielke and T. Roubíček, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193. Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[14]

A. MielkeR. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces, Discrete Contin. Dyn. Syst., 25 (2009), 585-615.  doi: 10.3934/dcds.2009.25.585.  Google Scholar

[15]

A. MielkeR. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc. Var., 18 (2012), 36-80.  doi: 10.1051/cocv/2010054.  Google Scholar

[16]

A. MielkeR. Rossi and G. Savaré, Variational convergence of gradient flows and rate-independent evolutions in metric spaces, Milan J. Math., 80 (2012), 381-410.  doi: 10.1007/s00032-012-0190-y.  Google Scholar

[17]

A. MielkeR. Rossi and G. Savaré, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems, J. Eur. Math. Soc. (JEMS), 18 (2016), 2107-2165.  doi: 10.4171/JEMS/639.  Google Scholar

[18]

A. Mielke and S. Zelik, On the vanishing-viscosity limit in parabolic systems with rate-independent dissipation terms, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13 (2014), 67-135.   Google Scholar

[19]

V. Recupero, $BV$solutions of rate independent variational inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (2011), 269-315.   Google Scholar

[20]

V. Recupero, Sweeping processes and rate independence, J. Convex Anal., 23 (2016), 921-946.   Google Scholar

[21]

R. RossiA. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 7 (2008), 97-169.   Google Scholar

[22]

V. Recupero and F. Santambrogio, Sweeping processes with prescribed behavior on jumps, Ann. Mat. Pura Appl., 197 (2018), 1311-1332.  doi: 10.1007/s10231-018-0726-z.  Google Scholar

[23]

M. Tvrdý, Regulated functions and the Perron-Stieltjes integral, Časopis Pěst. Mat., 114 (1989), 187–209.  Google Scholar

[1]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[2]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[3]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[4]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[5]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[6]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[7]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[8]

Håkon Hoel, Gaukhar Shaimerdenova, Raúl Tempone. Multilevel Ensemble Kalman Filtering based on a sample average of independent EnKF estimators. Foundations of Data Science, 2020  doi: 10.3934/fods.2020017

[9]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[10]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[11]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[12]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[13]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[14]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[15]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[16]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[19]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[20]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (37)
  • HTML views (283)
  • Cited by (0)

Other articles
by authors

[Back to Top]