January  2021, 14(1): 121-149. doi: 10.3934/dcdss.2020332

Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads

1. 

University of Kassel, Institute for Mathematics, Heinrich-Plett-Str. 40, 34132 Kassel, Germany

2. 

Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

* Corresponding author: Dorothee Knees

Dedicated to Alexander Mielke to the occasion of his 60th birthday

Received  September 2019 Revised  November 2019 Published  April 2020

We study a rate-independent system with non-convex energy in the case of a time-discontinuous loading. We prove existence of the rate-dependent viscous regularization by time-incremental problems, while the existence of the so called parameterized $ BV $-solutions is obtained via vanishing viscosity in a suitable parameterized setting. In addition, we prove that the solution set is compact.

Citation: Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.  Google Scholar

[2]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Mathematics and its Applications, 10. D. Reidel Publishing Co., Dordrecht, Editura Academiei Republicii Socialiste Romania, Bucharest, 1986.  Google Scholar

[3]

J. Dieudonné, Foundations of Modern Analysis. Enlarged and Corrected Printing, Pure and Applied Mathematics, Vol. 10-Ⅰ. Academic Press, New York-London, 1969.  Google Scholar

[4]

M. A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity, J. Convex Anal., 13 (2006), 151-167.   Google Scholar

[5]

P. Krejčí and P. Laurençot, Generalized variational inequalities, J. Convex Anal., 9 (2002), 159-183.   Google Scholar

[6]

P. Krejčí and M. Liero, Rate independent Kurzweil processes, Appl. Math., 54 (2009), 117-145.  doi: 10.1007/s10492-009-0009-5.  Google Scholar

[7]

D. Knees, Convergence analysis of time-discretization schemes for rate-independent systems, ESAIM Control Optim. Calc. Var., 25 (2019), Art. 65, 38 pp. doi: 10.1051/cocv/2018048.  Google Scholar

[8]

P. Krejčí and V. Recupero, Comparing BV solutions of rate independent processes, J. Convex Anal., 21 (2014), 121-146.   Google Scholar

[9]

D. Knees and S. Thomas, Optimal Control of a Rate-Independent System Constrained to Parametrized Balanced Viscosity Solutions, University of Kassel, 2018, arXiv: 1810.12572. Google Scholar

[10]

G. Leoni, A First Course in Sobolev Spaces, Second edition, Graduate Studies in Mathematics, 181. American Mathematical Society, Providence, RI, 2017.  Google Scholar

[11]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differ. Equ., 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.  Google Scholar

[12]

J.-J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations, 26 (1977), 347-374.  doi: 10.1016/0022-0396(77)90085-7.  Google Scholar

[13]

A. Mielke and T. Roubíček, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193. Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[14]

A. MielkeR. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces, Discrete Contin. Dyn. Syst., 25 (2009), 585-615.  doi: 10.3934/dcds.2009.25.585.  Google Scholar

[15]

A. MielkeR. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc. Var., 18 (2012), 36-80.  doi: 10.1051/cocv/2010054.  Google Scholar

[16]

A. MielkeR. Rossi and G. Savaré, Variational convergence of gradient flows and rate-independent evolutions in metric spaces, Milan J. Math., 80 (2012), 381-410.  doi: 10.1007/s00032-012-0190-y.  Google Scholar

[17]

A. MielkeR. Rossi and G. Savaré, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems, J. Eur. Math. Soc. (JEMS), 18 (2016), 2107-2165.  doi: 10.4171/JEMS/639.  Google Scholar

[18]

A. Mielke and S. Zelik, On the vanishing-viscosity limit in parabolic systems with rate-independent dissipation terms, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13 (2014), 67-135.   Google Scholar

[19]

V. Recupero, $BV$solutions of rate independent variational inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (2011), 269-315.   Google Scholar

[20]

V. Recupero, Sweeping processes and rate independence, J. Convex Anal., 23 (2016), 921-946.   Google Scholar

[21]

R. RossiA. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 7 (2008), 97-169.   Google Scholar

[22]

V. Recupero and F. Santambrogio, Sweeping processes with prescribed behavior on jumps, Ann. Mat. Pura Appl., 197 (2018), 1311-1332.  doi: 10.1007/s10231-018-0726-z.  Google Scholar

[23]

M. Tvrdý, Regulated functions and the Perron-Stieltjes integral, Časopis Pěst. Mat., 114 (1989), 187–209.  Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.  Google Scholar

[2]

V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Mathematics and its Applications, 10. D. Reidel Publishing Co., Dordrecht, Editura Academiei Republicii Socialiste Romania, Bucharest, 1986.  Google Scholar

[3]

J. Dieudonné, Foundations of Modern Analysis. Enlarged and Corrected Printing, Pure and Applied Mathematics, Vol. 10-Ⅰ. Academic Press, New York-London, 1969.  Google Scholar

[4]

M. A. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity, J. Convex Anal., 13 (2006), 151-167.   Google Scholar

[5]

P. Krejčí and P. Laurençot, Generalized variational inequalities, J. Convex Anal., 9 (2002), 159-183.   Google Scholar

[6]

P. Krejčí and M. Liero, Rate independent Kurzweil processes, Appl. Math., 54 (2009), 117-145.  doi: 10.1007/s10492-009-0009-5.  Google Scholar

[7]

D. Knees, Convergence analysis of time-discretization schemes for rate-independent systems, ESAIM Control Optim. Calc. Var., 25 (2019), Art. 65, 38 pp. doi: 10.1051/cocv/2018048.  Google Scholar

[8]

P. Krejčí and V. Recupero, Comparing BV solutions of rate independent processes, J. Convex Anal., 21 (2014), 121-146.   Google Scholar

[9]

D. Knees and S. Thomas, Optimal Control of a Rate-Independent System Constrained to Parametrized Balanced Viscosity Solutions, University of Kassel, 2018, arXiv: 1810.12572. Google Scholar

[10]

G. Leoni, A First Course in Sobolev Spaces, Second edition, Graduate Studies in Mathematics, 181. American Mathematical Society, Providence, RI, 2017.  Google Scholar

[11]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differ. Equ., 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.  Google Scholar

[12]

J.-J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Differential Equations, 26 (1977), 347-374.  doi: 10.1016/0022-0396(77)90085-7.  Google Scholar

[13]

A. Mielke and T. Roubíček, Rate-Independent Systems. Theory and Application, Applied Mathematical Sciences, 193. Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[14]

A. MielkeR. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces, Discrete Contin. Dyn. Syst., 25 (2009), 585-615.  doi: 10.3934/dcds.2009.25.585.  Google Scholar

[15]

A. MielkeR. Rossi and G. Savaré, BV solutions and viscosity approximations of rate-independent systems, ESAIM Control Optim. Calc. Var., 18 (2012), 36-80.  doi: 10.1051/cocv/2010054.  Google Scholar

[16]

A. MielkeR. Rossi and G. Savaré, Variational convergence of gradient flows and rate-independent evolutions in metric spaces, Milan J. Math., 80 (2012), 381-410.  doi: 10.1007/s00032-012-0190-y.  Google Scholar

[17]

A. MielkeR. Rossi and G. Savaré, Balanced viscosity (BV) solutions to infinite-dimensional rate-independent systems, J. Eur. Math. Soc. (JEMS), 18 (2016), 2107-2165.  doi: 10.4171/JEMS/639.  Google Scholar

[18]

A. Mielke and S. Zelik, On the vanishing-viscosity limit in parabolic systems with rate-independent dissipation terms, Ann. Sc. Norm. Super. Pisa Cl. Sci., 13 (2014), 67-135.   Google Scholar

[19]

V. Recupero, $BV$solutions of rate independent variational inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci., 10 (2011), 269-315.   Google Scholar

[20]

V. Recupero, Sweeping processes and rate independence, J. Convex Anal., 23 (2016), 921-946.   Google Scholar

[21]

R. RossiA. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications, Ann. Sc. Norm. Super. Pisa, Cl. Sci., 7 (2008), 97-169.   Google Scholar

[22]

V. Recupero and F. Santambrogio, Sweeping processes with prescribed behavior on jumps, Ann. Mat. Pura Appl., 197 (2018), 1311-1332.  doi: 10.1007/s10231-018-0726-z.  Google Scholar

[23]

M. Tvrdý, Regulated functions and the Perron-Stieltjes integral, Časopis Pěst. Mat., 114 (1989), 187–209.  Google Scholar

[1]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[2]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[3]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[4]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[5]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[6]

Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029

[7]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[8]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[9]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[10]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[11]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[12]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[13]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[14]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[15]

Jon Aaronson, Dalia Terhesiu. Local limit theorems for suspended semiflows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6575-6609. doi: 10.3934/dcds.2020294

[16]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[17]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[18]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[19]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[20]

Raz Kupferman, Cy Maor. The emergence of torsion in the continuum limit of distributed edge-dislocations. Journal of Geometric Mechanics, 2015, 7 (3) : 361-387. doi: 10.3934/jgm.2015.7.361

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (69)
  • HTML views (307)
  • Cited by (0)

Other articles
by authors

[Back to Top]