doi: 10.3934/dcdss.2020333

Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows

1. 

Department of Technical Mathematics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Karlovo Náměstí 13,121 35 Prague 2, Czech Republic

2. 

Institute of Mathematics, Czech Academy of Sciences, Žitná 25,115 67 Prague 1, Czech Republic

3. 

Mediterranean Institute of Oceanography - MIO, UM 110 USTV - AMU - CNRS/INSU 7294 - IRD 235, Université de Toulon, BP 20132 F-83957 La Garde cedex, France

4. 

Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University, Sokolovská 83,186 75 Prague 8, Czech Republic

* Corresponding author: Petr Knobloch

Received  January 2019 Revised  November 2019 Published  April 2020

The paper presents a numerical study of the efficiency of the newly proposed far-field boundary simulations of wall-bounded, stably stratified flows. The comparison of numerical solutions obtained on large and truncated computational domain demonstrates how the solution is affected by the adopted far-field conditions. The mathematical model is based on Boussinesq approximation for stably stratified viscous variable density incompressible fluid. The three-dimensional numerical simulations of the steady flow over an isolated hill were performed using a high-resolution compact finite difference code, with artificial compressibility method used for pressure computation. The mutual comparison of the full domain reference solution and the truncated domain solution is provided and the influence of the newly proposed far-field boundary condition is discussed.

Citation: Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020333
References:
[1]

T. Bodnár and L. Beneš, On some high resolution schemes for stably stratified fluid flows, Finite Volumes for Complex Applications VI, Problems & Perspectives, Volume 1, 2, Springer Proc. Math., Springer, Heidelberg, 4 (2011), 145-153. doi: 10.1007/978-3-642-20671-9_16.  Google Scholar

[2]

T. BodnárL. BenešP. Fraunié and K. Kozel, Application of compact finite-difference schemes to simulations of stably stratified fluid flows, Applied Mathematics and Computation, 219 (2012), 3336-3353.  doi: 10.1016/j.amc.2011.08.058.  Google Scholar

[3]

T. Bodnár and P. Fraunié, On the boundary conditions in the numerical simulation of stably stratified fluids flows, Topical Problems of Fluid Mechanics 2017, Institute of Thermomechanics CAS, Prague, (2017), 45-52. Google Scholar

[4]

T. Bodnár and P. Fraunié, Artificial far-field pressure boundary conditions for wall-bounded stratified flows, Topical Problems of Fluid Mechanics 2018, Institute of Thermomechanics CAS, Prague, (2018), 7-14. Google Scholar

[5]

T. Bodnár, P. Fraunié and H. Řezníček, Numerical tests of far-field boundary conditions for stably stratified stratified flows, Topical Problems of Fluid Mechanics 2019, Institute of Thermomechanics CAS, Prague, (2019), 1-8. Google Scholar

[6]

M. Braack and P. Mucha, Directional do-nothing condition for the Navier-Stokes equations, Journal of Computational Mathematics, 32 (2014), 507-521.  doi: 10.4208/jcm.1405-m4347.  Google Scholar

[7]

L. DingR. J. Calhoun and R. L. Street, Numerical simulation of strongly stratified flow over a three-dimensional hill, Boundary-Layer Meteorology, 107 (2003), 81-114.  doi: 10.1023/A:1021578315844.  Google Scholar

[8]

J. G. HeywoodR. Rannacher and S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, 22 (1996), 325-352.  doi: 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y.  Google Scholar

[9]

J. C. R. Hunt and W. H. Snyder, Experiments on stably and neutrally stratified flow over a model three-dimensional hill, Journal of Fluid Mechanics, 96 (1980), 671-704.  doi: 10.1017/S0022112080002303.  Google Scholar

[10]

P. MarchesielloJ. C. McWilliams and A. Shchepetkin, Open boundary conditions for long-term integration of regional oceanic models, Ocean Modelling, 3 (2001), 1-20.  doi: 10.1016/S1463-5003(00)00013-5.  Google Scholar

[11]

I. Orlanski, A simple boundary condition for unbounded hyperbolic flows, Journal of Computational Physics, 21 (1976), 251-269.  doi: 10.1016/0021-9991(76)90023-1.  Google Scholar

show all references

References:
[1]

T. Bodnár and L. Beneš, On some high resolution schemes for stably stratified fluid flows, Finite Volumes for Complex Applications VI, Problems & Perspectives, Volume 1, 2, Springer Proc. Math., Springer, Heidelberg, 4 (2011), 145-153. doi: 10.1007/978-3-642-20671-9_16.  Google Scholar

[2]

T. BodnárL. BenešP. Fraunié and K. Kozel, Application of compact finite-difference schemes to simulations of stably stratified fluid flows, Applied Mathematics and Computation, 219 (2012), 3336-3353.  doi: 10.1016/j.amc.2011.08.058.  Google Scholar

[3]

T. Bodnár and P. Fraunié, On the boundary conditions in the numerical simulation of stably stratified fluids flows, Topical Problems of Fluid Mechanics 2017, Institute of Thermomechanics CAS, Prague, (2017), 45-52. Google Scholar

[4]

T. Bodnár and P. Fraunié, Artificial far-field pressure boundary conditions for wall-bounded stratified flows, Topical Problems of Fluid Mechanics 2018, Institute of Thermomechanics CAS, Prague, (2018), 7-14. Google Scholar

[5]

T. Bodnár, P. Fraunié and H. Řezníček, Numerical tests of far-field boundary conditions for stably stratified stratified flows, Topical Problems of Fluid Mechanics 2019, Institute of Thermomechanics CAS, Prague, (2019), 1-8. Google Scholar

[6]

M. Braack and P. Mucha, Directional do-nothing condition for the Navier-Stokes equations, Journal of Computational Mathematics, 32 (2014), 507-521.  doi: 10.4208/jcm.1405-m4347.  Google Scholar

[7]

L. DingR. J. Calhoun and R. L. Street, Numerical simulation of strongly stratified flow over a three-dimensional hill, Boundary-Layer Meteorology, 107 (2003), 81-114.  doi: 10.1023/A:1021578315844.  Google Scholar

[8]

J. G. HeywoodR. Rannacher and S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, 22 (1996), 325-352.  doi: 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y.  Google Scholar

[9]

J. C. R. Hunt and W. H. Snyder, Experiments on stably and neutrally stratified flow over a model three-dimensional hill, Journal of Fluid Mechanics, 96 (1980), 671-704.  doi: 10.1017/S0022112080002303.  Google Scholar

[10]

P. MarchesielloJ. C. McWilliams and A. Shchepetkin, Open boundary conditions for long-term integration of regional oceanic models, Ocean Modelling, 3 (2001), 1-20.  doi: 10.1016/S1463-5003(00)00013-5.  Google Scholar

[11]

I. Orlanski, A simple boundary condition for unbounded hyperbolic flows, Journal of Computational Physics, 21 (1976), 251-269.  doi: 10.1016/0021-9991(76)90023-1.  Google Scholar

Figure 1.  Vertical velocity contours and flow streamlines in the plane of symmetry
Figure 2.  Vertical velocity isosurfaces
Figure 3.  Vertical velocity contours in the plane of symmetry - truncated solution
Figure 4.  Vertical velocity contours in the plane of symmetry - truncated domain - $ \frac{\partial p}{\partial n} = 0 $
Figure 5.  Contours of the transversal velocity component $ v $ and flow streamlines
Figure 6.  Contours of the vertical velocity component $ w $ and flow streamlines
Figure 7.  Isosurfaces of the transversal velocity component $ v $
Figure 8.  Isosurfaces of the vertical velocity component $ w $
Figure 9.  Computational domain and its extension
Figure 10.  Inlet velocity profile setup
Figure 11.  Contours of the transversal velocity component $ v $ - nondimensionalized $ \widetilde{v} = v/U_{*} $
Figure 12.  Contours of the vertical velocity component $ w $ - nondimensionalized $ \widetilde{w} = w/U_{*} $
Figure 13.  Isosurfaces of the transversal velocity component $ v $ - nondimensionalized $ \widetilde{v} = v/U_{*} $
Figure 14.  Isosurfaces of the vertical velocity component $ w $ - nondimensionalized $ \widetilde{w} = w/U_{*} $
Figure 15.  Pressure contours in the plane of symmetry
Figure 16.  Longitudinal velocity contours in the plane of symmetry
Figure 17.  Vertical velocity contours in the plane of symmetry
[1]

Elena Kosygina. Brownian flow on a finite interval with jump boundary conditions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 867-880. doi: 10.3934/dcdsb.2006.6.867

[2]

Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic & Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151

[3]

Sheng Xu. Derivation of principal jump conditions for the immersed interface method in two-fluid flow simulation. Conference Publications, 2009, 2009 (Special) : 838-845. doi: 10.3934/proc.2009.2009.838

[4]

María Anguiano, Francisco Javier Suárez-Grau. Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks & Heterogeneous Media, 2019, 14 (2) : 289-316. doi: 10.3934/nhm.2019012

[5]

Pavlos Xanthopoulos, Georgios E. Zouraris. A linearly implicit finite difference method for a Klein-Gordon-Schrödinger system modeling electron-ion plasma waves. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 239-263. doi: 10.3934/dcdsb.2008.10.239

[6]

Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89

[7]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[8]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems & Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767

[9]

T. Tachim Medjo. On the Newton method in robust control of fluid flow. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1201-1222. doi: 10.3934/dcds.2003.9.1201

[10]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[11]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems & Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749

[12]

Junxiang Li, Yan Gao, Tao Dai, Chunming Ye, Qiang Su, Jiazhen Huo. Substitution secant/finite difference method to large sparse minimax problems. Journal of Industrial & Management Optimization, 2014, 10 (2) : 637-663. doi: 10.3934/jimo.2014.10.637

[13]

Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1

[14]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[15]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[16]

Christos Sourdis. Analysis of an irregular boundary layer behavior for the steady state flow of a Boussinesq fluid. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1039-1059. doi: 10.3934/dcds.2017043

[17]

Cheng-Zhong Xu, Gauthier Sallet. Multivariable boundary PI control and regulation of a fluid flow system. Mathematical Control & Related Fields, 2014, 4 (4) : 501-520. doi: 10.3934/mcrf.2014.4.501

[18]

Hiroko Morimoto. Survey on time periodic problem for fluid flow under inhomogeneous boundary condition. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 631-639. doi: 10.3934/dcdss.2012.5.631

[19]

Eduard Marušić-Paloka, Igor Pažanin. Reaction of the fluid flow on time-dependent boundary perturbation. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1227-1246. doi: 10.3934/cpaa.2019059

[20]

Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems & Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (34)
  • HTML views (217)
  • Cited by (0)

[Back to Top]