doi: 10.3934/dcdss.2020333

Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows

1. 

Department of Technical Mathematics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Karlovo Náměstí 13,121 35 Prague 2, Czech Republic

2. 

Institute of Mathematics, Czech Academy of Sciences, Žitná 25,115 67 Prague 1, Czech Republic

3. 

Mediterranean Institute of Oceanography - MIO, UM 110 USTV - AMU - CNRS/INSU 7294 - IRD 235, Université de Toulon, BP 20132 F-83957 La Garde cedex, France

4. 

Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University, Sokolovská 83,186 75 Prague 8, Czech Republic

* Corresponding author: Petr Knobloch

Received  January 2019 Revised  November 2019 Published  April 2020

The paper presents a numerical study of the efficiency of the newly proposed far-field boundary simulations of wall-bounded, stably stratified flows. The comparison of numerical solutions obtained on large and truncated computational domain demonstrates how the solution is affected by the adopted far-field conditions. The mathematical model is based on Boussinesq approximation for stably stratified viscous variable density incompressible fluid. The three-dimensional numerical simulations of the steady flow over an isolated hill were performed using a high-resolution compact finite difference code, with artificial compressibility method used for pressure computation. The mutual comparison of the full domain reference solution and the truncated domain solution is provided and the influence of the newly proposed far-field boundary condition is discussed.

Citation: Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020333
References:
[1]

T. Bodnár and L. Beneš, On some high resolution schemes for stably stratified fluid flows, Finite Volumes for Complex Applications VI, Problems & Perspectives, Volume 1, 2, Springer Proc. Math., Springer, Heidelberg, 4 (2011), 145-153. doi: 10.1007/978-3-642-20671-9_16.  Google Scholar

[2]

T. BodnárL. BenešP. Fraunié and K. Kozel, Application of compact finite-difference schemes to simulations of stably stratified fluid flows, Applied Mathematics and Computation, 219 (2012), 3336-3353.  doi: 10.1016/j.amc.2011.08.058.  Google Scholar

[3]

T. Bodnár and P. Fraunié, On the boundary conditions in the numerical simulation of stably stratified fluids flows, Topical Problems of Fluid Mechanics 2017, Institute of Thermomechanics CAS, Prague, (2017), 45-52. Google Scholar

[4]

T. Bodnár and P. Fraunié, Artificial far-field pressure boundary conditions for wall-bounded stratified flows, Topical Problems of Fluid Mechanics 2018, Institute of Thermomechanics CAS, Prague, (2018), 7-14. Google Scholar

[5]

T. Bodnár, P. Fraunié and H. Řezníček, Numerical tests of far-field boundary conditions for stably stratified stratified flows, Topical Problems of Fluid Mechanics 2019, Institute of Thermomechanics CAS, Prague, (2019), 1-8. Google Scholar

[6]

M. Braack and P. Mucha, Directional do-nothing condition for the Navier-Stokes equations, Journal of Computational Mathematics, 32 (2014), 507-521.  doi: 10.4208/jcm.1405-m4347.  Google Scholar

[7]

L. DingR. J. Calhoun and R. L. Street, Numerical simulation of strongly stratified flow over a three-dimensional hill, Boundary-Layer Meteorology, 107 (2003), 81-114.  doi: 10.1023/A:1021578315844.  Google Scholar

[8]

J. G. HeywoodR. Rannacher and S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, 22 (1996), 325-352.  doi: 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y.  Google Scholar

[9]

J. C. R. Hunt and W. H. Snyder, Experiments on stably and neutrally stratified flow over a model three-dimensional hill, Journal of Fluid Mechanics, 96 (1980), 671-704.  doi: 10.1017/S0022112080002303.  Google Scholar

[10]

P. MarchesielloJ. C. McWilliams and A. Shchepetkin, Open boundary conditions for long-term integration of regional oceanic models, Ocean Modelling, 3 (2001), 1-20.  doi: 10.1016/S1463-5003(00)00013-5.  Google Scholar

[11]

I. Orlanski, A simple boundary condition for unbounded hyperbolic flows, Journal of Computational Physics, 21 (1976), 251-269.  doi: 10.1016/0021-9991(76)90023-1.  Google Scholar

show all references

References:
[1]

T. Bodnár and L. Beneš, On some high resolution schemes for stably stratified fluid flows, Finite Volumes for Complex Applications VI, Problems & Perspectives, Volume 1, 2, Springer Proc. Math., Springer, Heidelberg, 4 (2011), 145-153. doi: 10.1007/978-3-642-20671-9_16.  Google Scholar

[2]

T. BodnárL. BenešP. Fraunié and K. Kozel, Application of compact finite-difference schemes to simulations of stably stratified fluid flows, Applied Mathematics and Computation, 219 (2012), 3336-3353.  doi: 10.1016/j.amc.2011.08.058.  Google Scholar

[3]

T. Bodnár and P. Fraunié, On the boundary conditions in the numerical simulation of stably stratified fluids flows, Topical Problems of Fluid Mechanics 2017, Institute of Thermomechanics CAS, Prague, (2017), 45-52. Google Scholar

[4]

T. Bodnár and P. Fraunié, Artificial far-field pressure boundary conditions for wall-bounded stratified flows, Topical Problems of Fluid Mechanics 2018, Institute of Thermomechanics CAS, Prague, (2018), 7-14. Google Scholar

[5]

T. Bodnár, P. Fraunié and H. Řezníček, Numerical tests of far-field boundary conditions for stably stratified stratified flows, Topical Problems of Fluid Mechanics 2019, Institute of Thermomechanics CAS, Prague, (2019), 1-8. Google Scholar

[6]

M. Braack and P. Mucha, Directional do-nothing condition for the Navier-Stokes equations, Journal of Computational Mathematics, 32 (2014), 507-521.  doi: 10.4208/jcm.1405-m4347.  Google Scholar

[7]

L. DingR. J. Calhoun and R. L. Street, Numerical simulation of strongly stratified flow over a three-dimensional hill, Boundary-Layer Meteorology, 107 (2003), 81-114.  doi: 10.1023/A:1021578315844.  Google Scholar

[8]

J. G. HeywoodR. Rannacher and S. Turek, Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, 22 (1996), 325-352.  doi: 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y.  Google Scholar

[9]

J. C. R. Hunt and W. H. Snyder, Experiments on stably and neutrally stratified flow over a model three-dimensional hill, Journal of Fluid Mechanics, 96 (1980), 671-704.  doi: 10.1017/S0022112080002303.  Google Scholar

[10]

P. MarchesielloJ. C. McWilliams and A. Shchepetkin, Open boundary conditions for long-term integration of regional oceanic models, Ocean Modelling, 3 (2001), 1-20.  doi: 10.1016/S1463-5003(00)00013-5.  Google Scholar

[11]

I. Orlanski, A simple boundary condition for unbounded hyperbolic flows, Journal of Computational Physics, 21 (1976), 251-269.  doi: 10.1016/0021-9991(76)90023-1.  Google Scholar

Figure 1.  Vertical velocity contours and flow streamlines in the plane of symmetry
Figure 2.  Vertical velocity isosurfaces
Figure 3.  Vertical velocity contours in the plane of symmetry - truncated solution
Figure 4.  Vertical velocity contours in the plane of symmetry - truncated domain - $ \frac{\partial p}{\partial n} = 0 $
Figure 5.  Contours of the transversal velocity component $ v $ and flow streamlines
Figure 6.  Contours of the vertical velocity component $ w $ and flow streamlines
Figure 7.  Isosurfaces of the transversal velocity component $ v $
Figure 8.  Isosurfaces of the vertical velocity component $ w $
Figure 9.  Computational domain and its extension
Figure 10.  Inlet velocity profile setup
Figure 11.  Contours of the transversal velocity component $ v $ - nondimensionalized $ \widetilde{v} = v/U_{*} $
Figure 12.  Contours of the vertical velocity component $ w $ - nondimensionalized $ \widetilde{w} = w/U_{*} $
Figure 13.  Isosurfaces of the transversal velocity component $ v $ - nondimensionalized $ \widetilde{v} = v/U_{*} $
Figure 14.  Isosurfaces of the vertical velocity component $ w $ - nondimensionalized $ \widetilde{w} = w/U_{*} $
Figure 15.  Pressure contours in the plane of symmetry
Figure 16.  Longitudinal velocity contours in the plane of symmetry
Figure 17.  Vertical velocity contours in the plane of symmetry
[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[3]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[4]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[5]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[6]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[7]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[8]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[9]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[10]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[11]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[15]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[16]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[17]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[18]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[19]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[20]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (42)
  • HTML views (306)
  • Cited by (0)

[Back to Top]