• Previous Article
    $ \mathcal{H}_{\infty} $ control for fuzzy markovian jump systems based on sampled-data control method
  • DCDS-S Home
  • This Issue
  • Next Article
    Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows
doi: 10.3934/dcdss.2020335

Chaotic oscillations of linear hyperbolic PDE with variable coefficients and implicit boundary conditions

1. 

Department of Mathematics, South China University of Technology, Guangzhou, 510640, China

2. 

Department of Mathematics and Big Data, Foshan University, Foshan, 528000, China

* Corresponding author: Qigui Yang

Received  March 2019 Revised  November 2019 Published  April 2020

In this paper, the chaotic oscillations of the initial-boundary value problem of linear hyperbolic partial differential equation (PDE) with variable coefficients are investigated, where both ends of boundary conditions are nonlinear implicit boundary conditions (IBCs). It separately considers that IBCs can be expressed by general nonlinear boundary conditions (NBCs) and cannot be expressed by explicit boundary conditions (EBCs). Finally, numerical examples verify the effectiveness of theoretical prediction.

Citation: Qigui Yang, Qiaomin Xiang. Chaotic oscillations of linear hyperbolic PDE with variable coefficients and implicit boundary conditions. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020335
References:
[1]

G. ChenS.-B. Hsu and J. X. Zhou, Chaotic vibrations of the one-dimensional wave equation due to a self-excitation boundary condition. Ⅰ: Controlled hysteresis, Trans. Amer. Math. Soc., 350 (1998), 4265-4311.  doi: 10.1090/S0002-9947-98-02022-4.  Google Scholar

[2]

G. ChenS.-B. Hsu and J. X. Zhou, Chaotic vibrations of the one-dimensional wave equation due to a self-excitation boundary condition. Ⅱ: Energy injection, period doubling and homoclinic orbits, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 423-445.  doi: 10.1142/S0218127498000280.  Google Scholar

[3]

G. ChenS.-B. Hsu and J. X. Zhou, Chaotic vibrations of the one-dimensional wave equation due to a self-excitation boundary condition. Ⅲ: Natural hysteresis memory effects, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 447-470.  doi: 10.1142/S0218127498000292.  Google Scholar

[4]

G. ChenS.-B. Hsu and J. X. Zhou, Nonisotropic spatiotemporal chaotic vibration of the wave equation due to mixing energy transport and a van der Pol boundary condition, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 535-559.  doi: 10.1142/S0218127402004504.  Google Scholar

[5]

G. ChenT. W. Huang and Y. Huang, Chaotic behavior of interval maps and total variations of iterates, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 2161-2186.  doi: 10.1142/S0218127404010540.  Google Scholar

[6]

G. Chen, B. Sun and T. W. Huang, Chaotic oscillations of solutions of the Klein-Gordon equation due to inbalance of distributed and boundary energy flows, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014), 1430021, 19 pp. doi: 10.1142/S0218127414300213.  Google Scholar

[7]

X. P. Dai, Chaotic dynamics of continuous-time topological semiflow on Polish spaces, J. Differential Equations, 258 (2015), 2794-2805.  doi: 10.1016/j.jde.2014.12.027.  Google Scholar

[8]

M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Second edition, Pure and Applied Mathematics (Amsterdam), 60. Elsevier/Academic Press, Amsterdam, 2004. doi: 10.1016/C2009-0-61160-0.  Google Scholar

[9]

C.-C. Hu, Chaotic vibrations of the one-dimensional mixed wave system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 579-590.  doi: 10.1142/S0218127409023202.  Google Scholar

[10]

Y. Huang, Growth rates of total variations of snapshots of the 1D linear wave equation with composite nonlinear boundary reflection relations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1183-1195.  doi: 10.1142/S0218127403007138.  Google Scholar

[11]

Y. HuangJ. Luo and Z. L. Zhou, Rapid fluctuations of snapshots of one-dimensional linear wave equations with a van der Pol nonlinear boundary condition, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 567-580.  doi: 10.1142/S0218127405012223.  Google Scholar

[12]

L. L. Li, Y. L. Chen and Y. Huang, Nonisotropic spatiotemporal chaotic vibrations of the one-dimensional wave equation with a mixing transport term and general nonlinear boundary condition, J. Math. Phys., 51 (2010), 102703, 22 pp. doi: 10.1063/1.3486070.  Google Scholar

[13]

L. L. Li, Y. Huang, G. Chen and T. W. Huang, Chaotic oscillations of second order linear hyperbolic equations with nonlinear boundary conditions: A factorizable but noncommutative case, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 1530032, 20 pp. doi: 10.1142/S0218127415300323.  Google Scholar

[14]

L. L. LiT. W. Huang and X. Y. Huang, Chaotic oscillations of the 1D wave equation due to extreme imbalance of self-regulations, J. Math. Anal. Appl., 450 (2017), 1388-1400.  doi: 10.1016/j.jmaa.2017.01.095.  Google Scholar

[15] Y. C. Li, Chaos in Partial Differential Equations, Graduate Series in Analysis. International Press, omerville, MA, 2004.  doi: 10.1002/cnm.650.  Google Scholar
[16]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2$^nd$ edition, Texts in Applied Mathematics, 2. Springer-Verlag, New York, 2003. doi: 10.1063/1.4822950.  Google Scholar

[17]

Q. M. Xiang and Q. G. Yang, Nonisotropic chaotic oscillations of the wave equation due to the interaction of mixing transport term and superlinear boundary condition, J. Math. Anal. Appl., 462 (2018), 730-746.  doi: 10.1016/j.jmaa.2018.02.031.  Google Scholar

[18]

Q. M. Xiang and Q. G. Yang, Chaotic oscillations of a linear hyperbolic PDE with a general nonlinear boundary condition, J. Math. Anal. Appl., 472 (2019), 94-111.  doi: 10.1016/j.jmaa.2018.10.083.  Google Scholar

[19]

Q. G. Yang, G. R. Jiang and T. S. Zhou, Chaotification of linear impulsive differential systems with applications, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250297, 12 pp. doi: 10.1142/S0218127412502975.  Google Scholar

[20]

Q. G. Yang and Q. M. Xiang, Existence of chaotic oscillations in second-order linear hyperbolic PDEs with implicit boundary conditions, J. Math. Anal. Appl., 457 (2018), 751-775.  doi: 10.1016/j.jmaa.2017.08.018.  Google Scholar

[21]

Z. B. Yin and Q. G. Yang, Distributionally scrambled set for an annihilation operator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 1550178, 13 pp. doi: 10.1142/S0218127415501783.  Google Scholar

[22]

Z. B. Yin and Q. G. Yang, Generic distributional chaos and principal measure in linear dynamics, Ann. Pol. Math., 118 (2016), 71-94.  doi: 10.4064/ap3908-9-2016.  Google Scholar

[23]

Z. B. Yin and Q. G. Yang, Distributionally n-chaotic dynamics for linear operators, Rev. Mat. Complut., 31 (2018), 111-129.  doi: 10.1007/s13163-017-0226-5.  Google Scholar

[24]

Z. B. Yin and Q. G. Yang, Distributionally n-scrambled set for weighted shift operators, J. Dyn. Control Syst., 23 (2017), 693-708.  doi: 10.1007/s10883-017-9359-6.  Google Scholar

show all references

References:
[1]

G. ChenS.-B. Hsu and J. X. Zhou, Chaotic vibrations of the one-dimensional wave equation due to a self-excitation boundary condition. Ⅰ: Controlled hysteresis, Trans. Amer. Math. Soc., 350 (1998), 4265-4311.  doi: 10.1090/S0002-9947-98-02022-4.  Google Scholar

[2]

G. ChenS.-B. Hsu and J. X. Zhou, Chaotic vibrations of the one-dimensional wave equation due to a self-excitation boundary condition. Ⅱ: Energy injection, period doubling and homoclinic orbits, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 423-445.  doi: 10.1142/S0218127498000280.  Google Scholar

[3]

G. ChenS.-B. Hsu and J. X. Zhou, Chaotic vibrations of the one-dimensional wave equation due to a self-excitation boundary condition. Ⅲ: Natural hysteresis memory effects, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 447-470.  doi: 10.1142/S0218127498000292.  Google Scholar

[4]

G. ChenS.-B. Hsu and J. X. Zhou, Nonisotropic spatiotemporal chaotic vibration of the wave equation due to mixing energy transport and a van der Pol boundary condition, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 535-559.  doi: 10.1142/S0218127402004504.  Google Scholar

[5]

G. ChenT. W. Huang and Y. Huang, Chaotic behavior of interval maps and total variations of iterates, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 2161-2186.  doi: 10.1142/S0218127404010540.  Google Scholar

[6]

G. Chen, B. Sun and T. W. Huang, Chaotic oscillations of solutions of the Klein-Gordon equation due to inbalance of distributed and boundary energy flows, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014), 1430021, 19 pp. doi: 10.1142/S0218127414300213.  Google Scholar

[7]

X. P. Dai, Chaotic dynamics of continuous-time topological semiflow on Polish spaces, J. Differential Equations, 258 (2015), 2794-2805.  doi: 10.1016/j.jde.2014.12.027.  Google Scholar

[8]

M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Second edition, Pure and Applied Mathematics (Amsterdam), 60. Elsevier/Academic Press, Amsterdam, 2004. doi: 10.1016/C2009-0-61160-0.  Google Scholar

[9]

C.-C. Hu, Chaotic vibrations of the one-dimensional mixed wave system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 579-590.  doi: 10.1142/S0218127409023202.  Google Scholar

[10]

Y. Huang, Growth rates of total variations of snapshots of the 1D linear wave equation with composite nonlinear boundary reflection relations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1183-1195.  doi: 10.1142/S0218127403007138.  Google Scholar

[11]

Y. HuangJ. Luo and Z. L. Zhou, Rapid fluctuations of snapshots of one-dimensional linear wave equations with a van der Pol nonlinear boundary condition, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 567-580.  doi: 10.1142/S0218127405012223.  Google Scholar

[12]

L. L. Li, Y. L. Chen and Y. Huang, Nonisotropic spatiotemporal chaotic vibrations of the one-dimensional wave equation with a mixing transport term and general nonlinear boundary condition, J. Math. Phys., 51 (2010), 102703, 22 pp. doi: 10.1063/1.3486070.  Google Scholar

[13]

L. L. Li, Y. Huang, G. Chen and T. W. Huang, Chaotic oscillations of second order linear hyperbolic equations with nonlinear boundary conditions: A factorizable but noncommutative case, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 1530032, 20 pp. doi: 10.1142/S0218127415300323.  Google Scholar

[14]

L. L. LiT. W. Huang and X. Y. Huang, Chaotic oscillations of the 1D wave equation due to extreme imbalance of self-regulations, J. Math. Anal. Appl., 450 (2017), 1388-1400.  doi: 10.1016/j.jmaa.2017.01.095.  Google Scholar

[15] Y. C. Li, Chaos in Partial Differential Equations, Graduate Series in Analysis. International Press, omerville, MA, 2004.  doi: 10.1002/cnm.650.  Google Scholar
[16]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2$^nd$ edition, Texts in Applied Mathematics, 2. Springer-Verlag, New York, 2003. doi: 10.1063/1.4822950.  Google Scholar

[17]

Q. M. Xiang and Q. G. Yang, Nonisotropic chaotic oscillations of the wave equation due to the interaction of mixing transport term and superlinear boundary condition, J. Math. Anal. Appl., 462 (2018), 730-746.  doi: 10.1016/j.jmaa.2018.02.031.  Google Scholar

[18]

Q. M. Xiang and Q. G. Yang, Chaotic oscillations of a linear hyperbolic PDE with a general nonlinear boundary condition, J. Math. Anal. Appl., 472 (2019), 94-111.  doi: 10.1016/j.jmaa.2018.10.083.  Google Scholar

[19]

Q. G. Yang, G. R. Jiang and T. S. Zhou, Chaotification of linear impulsive differential systems with applications, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250297, 12 pp. doi: 10.1142/S0218127412502975.  Google Scholar

[20]

Q. G. Yang and Q. M. Xiang, Existence of chaotic oscillations in second-order linear hyperbolic PDEs with implicit boundary conditions, J. Math. Anal. Appl., 457 (2018), 751-775.  doi: 10.1016/j.jmaa.2017.08.018.  Google Scholar

[21]

Z. B. Yin and Q. G. Yang, Distributionally scrambled set for an annihilation operator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 1550178, 13 pp. doi: 10.1142/S0218127415501783.  Google Scholar

[22]

Z. B. Yin and Q. G. Yang, Generic distributional chaos and principal measure in linear dynamics, Ann. Pol. Math., 118 (2016), 71-94.  doi: 10.4064/ap3908-9-2016.  Google Scholar

[23]

Z. B. Yin and Q. G. Yang, Distributionally n-chaotic dynamics for linear operators, Rev. Mat. Complut., 31 (2018), 111-129.  doi: 10.1007/s13163-017-0226-5.  Google Scholar

[24]

Z. B. Yin and Q. G. Yang, Distributionally n-scrambled set for weighted shift operators, J. Dyn. Control Syst., 23 (2017), 693-708.  doi: 10.1007/s10883-017-9359-6.  Google Scholar

Figure 1.  The spatiotemporal profiles of system (23) with $ (\alpha_1,\beta_1) = (0.1,1) $, $ (\alpha_2,\beta_2) = (0.5,1) $, $ x\in [0,1] $ and $ t\in [60,64] $: (a) $ w_{x}(x,t) $; (b) $ w_{t}(x,t) $.
Figure 2.  The spatiotemporal profiles of system (23) with $ \gamma_1 = 1.1\pi $ and $ \gamma_2 = 0.4\pi $, $ x\in [0,1] $ and $ t\in [60,64] $: (a) $ w_{x}(x,t) $; (b) $ w_{t}(x,t) $.
[1]

R.G. Duran, J.I. Etcheverry, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 497-506. doi: 10.3934/dcds.1998.4.497

[2]

Jesús Ildefonso Díaz, L. Tello. On a climate model with a dynamic nonlinear diffusive boundary condition. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 253-262. doi: 10.3934/dcdss.2008.1.253

[3]

Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2005, 4 (4) : 861-869. doi: 10.3934/cpaa.2005.4.861

[4]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[5]

Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285

[6]

Shijin Deng, Linglong Du, Shih-Hsien Yu. Nonlinear stability of Broadwell model with Maxwell diffuse boundary condition. Kinetic & Related Models, 2013, 6 (4) : 865-882. doi: 10.3934/krm.2013.6.865

[7]

Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$-Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 623-636. doi: 10.3934/dcdsb.2011.16.623

[8]

Patrick Winkert. Multiplicity results for a class of elliptic problems with nonlinear boundary condition. Communications on Pure & Applied Analysis, 2013, 12 (2) : 785-802. doi: 10.3934/cpaa.2013.12.785

[9]

G. Acosta, Julián Fernández Bonder, P. Groisman, J.D. Rossi. Numerical approximation of a parabolic problem with a nonlinear boundary condition in several space dimensions. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 279-294. doi: 10.3934/dcdsb.2002.2.279

[10]

Kazuhiro Ishige, Ryuichi Sato. Heat equation with a nonlinear boundary condition and uniformly local $L^r$ spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2627-2652. doi: 10.3934/dcds.2016.36.2627

[11]

Larissa V. Fardigola. Transformation operators in controllability problems for the wave equations with variable coefficients on a half-axis controlled by the Dirichlet boundary condition. Mathematical Control & Related Fields, 2015, 5 (1) : 31-53. doi: 10.3934/mcrf.2015.5.31

[12]

Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075

[13]

Jiayue Zheng, Shangbin Cui. Bifurcation analysis of a tumor-model free boundary problem with a nonlinear boundary condition. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4397-4410. doi: 10.3934/dcdsb.2020103

[14]

Samia Challal, Abdeslem Lyaghfouri. The heterogeneous dam problem with leaky boundary condition. Communications on Pure & Applied Analysis, 2011, 10 (1) : 93-125. doi: 10.3934/cpaa.2011.10.93

[15]

H. Beirão da Veiga. Vorticity and regularity for flows under the Navier boundary condition. Communications on Pure & Applied Analysis, 2006, 5 (4) : 907-918. doi: 10.3934/cpaa.2006.5.907

[16]

Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013

[17]

Wenzhen Gan, Peng Zhou. A revisit to the diffusive logistic model with free boundary condition. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 837-847. doi: 10.3934/dcdsb.2016.21.837

[18]

Jean-François Coulombel, Frédéric Lagoutière. The Neumann numerical boundary condition for transport equations. Kinetic & Related Models, 2020, 13 (1) : 1-32. doi: 10.3934/krm.2020001

[19]

Raffaela Capitanelli. Robin boundary condition on scale irregular fractals. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1221-1234. doi: 10.3934/cpaa.2010.9.1221

[20]

Kei Fong Lam, Hao Wu. Convergence to equilibrium for a bulk–surface Allen–Cahn system coupled through a nonlinear Robin boundary condition. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1847-1878. doi: 10.3934/dcds.2020096

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (41)
  • HTML views (253)
  • Cited by (0)

Other articles
by authors

[Back to Top]