• Previous Article
    Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian
  • DCDS-S Home
  • This Issue
  • Next Article
    Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves
doi: 10.3934/dcdss.2020335

Chaotic oscillations of linear hyperbolic PDE with variable coefficients and implicit boundary conditions

1. 

Department of Mathematics, South China University of Technology, Guangzhou, 510640, China

2. 

Department of Mathematics and Big Data, Foshan University, Foshan, 528000, China

* Corresponding author: Qigui Yang

Received  March 2019 Revised  November 2019 Published  April 2020

In this paper, the chaotic oscillations of the initial-boundary value problem of linear hyperbolic partial differential equation (PDE) with variable coefficients are investigated, where both ends of boundary conditions are nonlinear implicit boundary conditions (IBCs). It separately considers that IBCs can be expressed by general nonlinear boundary conditions (NBCs) and cannot be expressed by explicit boundary conditions (EBCs). Finally, numerical examples verify the effectiveness of theoretical prediction.

Citation: Qigui Yang, Qiaomin Xiang. Chaotic oscillations of linear hyperbolic PDE with variable coefficients and implicit boundary conditions. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020335
References:
[1]

G. ChenS.-B. Hsu and J. X. Zhou, Chaotic vibrations of the one-dimensional wave equation due to a self-excitation boundary condition. Ⅰ: Controlled hysteresis, Trans. Amer. Math. Soc., 350 (1998), 4265-4311.  doi: 10.1090/S0002-9947-98-02022-4.  Google Scholar

[2]

G. ChenS.-B. Hsu and J. X. Zhou, Chaotic vibrations of the one-dimensional wave equation due to a self-excitation boundary condition. Ⅱ: Energy injection, period doubling and homoclinic orbits, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 423-445.  doi: 10.1142/S0218127498000280.  Google Scholar

[3]

G. ChenS.-B. Hsu and J. X. Zhou, Chaotic vibrations of the one-dimensional wave equation due to a self-excitation boundary condition. Ⅲ: Natural hysteresis memory effects, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 447-470.  doi: 10.1142/S0218127498000292.  Google Scholar

[4]

G. ChenS.-B. Hsu and J. X. Zhou, Nonisotropic spatiotemporal chaotic vibration of the wave equation due to mixing energy transport and a van der Pol boundary condition, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 535-559.  doi: 10.1142/S0218127402004504.  Google Scholar

[5]

G. ChenT. W. Huang and Y. Huang, Chaotic behavior of interval maps and total variations of iterates, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 2161-2186.  doi: 10.1142/S0218127404010540.  Google Scholar

[6]

G. Chen, B. Sun and T. W. Huang, Chaotic oscillations of solutions of the Klein-Gordon equation due to inbalance of distributed and boundary energy flows, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014), 1430021, 19 pp. doi: 10.1142/S0218127414300213.  Google Scholar

[7]

X. P. Dai, Chaotic dynamics of continuous-time topological semiflow on Polish spaces, J. Differential Equations, 258 (2015), 2794-2805.  doi: 10.1016/j.jde.2014.12.027.  Google Scholar

[8]

M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Second edition, Pure and Applied Mathematics (Amsterdam), 60. Elsevier/Academic Press, Amsterdam, 2004. doi: 10.1016/C2009-0-61160-0.  Google Scholar

[9]

C.-C. Hu, Chaotic vibrations of the one-dimensional mixed wave system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 579-590.  doi: 10.1142/S0218127409023202.  Google Scholar

[10]

Y. Huang, Growth rates of total variations of snapshots of the 1D linear wave equation with composite nonlinear boundary reflection relations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1183-1195.  doi: 10.1142/S0218127403007138.  Google Scholar

[11]

Y. HuangJ. Luo and Z. L. Zhou, Rapid fluctuations of snapshots of one-dimensional linear wave equations with a van der Pol nonlinear boundary condition, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 567-580.  doi: 10.1142/S0218127405012223.  Google Scholar

[12]

L. L. Li, Y. L. Chen and Y. Huang, Nonisotropic spatiotemporal chaotic vibrations of the one-dimensional wave equation with a mixing transport term and general nonlinear boundary condition, J. Math. Phys., 51 (2010), 102703, 22 pp. doi: 10.1063/1.3486070.  Google Scholar

[13]

L. L. Li, Y. Huang, G. Chen and T. W. Huang, Chaotic oscillations of second order linear hyperbolic equations with nonlinear boundary conditions: A factorizable but noncommutative case, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 1530032, 20 pp. doi: 10.1142/S0218127415300323.  Google Scholar

[14]

L. L. LiT. W. Huang and X. Y. Huang, Chaotic oscillations of the 1D wave equation due to extreme imbalance of self-regulations, J. Math. Anal. Appl., 450 (2017), 1388-1400.  doi: 10.1016/j.jmaa.2017.01.095.  Google Scholar

[15] Y. C. Li, Chaos in Partial Differential Equations, Graduate Series in Analysis. International Press, omerville, MA, 2004.  doi: 10.1002/cnm.650.  Google Scholar
[16]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2$^nd$ edition, Texts in Applied Mathematics, 2. Springer-Verlag, New York, 2003. doi: 10.1063/1.4822950.  Google Scholar

[17]

Q. M. Xiang and Q. G. Yang, Nonisotropic chaotic oscillations of the wave equation due to the interaction of mixing transport term and superlinear boundary condition, J. Math. Anal. Appl., 462 (2018), 730-746.  doi: 10.1016/j.jmaa.2018.02.031.  Google Scholar

[18]

Q. M. Xiang and Q. G. Yang, Chaotic oscillations of a linear hyperbolic PDE with a general nonlinear boundary condition, J. Math. Anal. Appl., 472 (2019), 94-111.  doi: 10.1016/j.jmaa.2018.10.083.  Google Scholar

[19]

Q. G. Yang, G. R. Jiang and T. S. Zhou, Chaotification of linear impulsive differential systems with applications, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250297, 12 pp. doi: 10.1142/S0218127412502975.  Google Scholar

[20]

Q. G. Yang and Q. M. Xiang, Existence of chaotic oscillations in second-order linear hyperbolic PDEs with implicit boundary conditions, J. Math. Anal. Appl., 457 (2018), 751-775.  doi: 10.1016/j.jmaa.2017.08.018.  Google Scholar

[21]

Z. B. Yin and Q. G. Yang, Distributionally scrambled set for an annihilation operator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 1550178, 13 pp. doi: 10.1142/S0218127415501783.  Google Scholar

[22]

Z. B. Yin and Q. G. Yang, Generic distributional chaos and principal measure in linear dynamics, Ann. Pol. Math., 118 (2016), 71-94.  doi: 10.4064/ap3908-9-2016.  Google Scholar

[23]

Z. B. Yin and Q. G. Yang, Distributionally n-chaotic dynamics for linear operators, Rev. Mat. Complut., 31 (2018), 111-129.  doi: 10.1007/s13163-017-0226-5.  Google Scholar

[24]

Z. B. Yin and Q. G. Yang, Distributionally n-scrambled set for weighted shift operators, J. Dyn. Control Syst., 23 (2017), 693-708.  doi: 10.1007/s10883-017-9359-6.  Google Scholar

show all references

References:
[1]

G. ChenS.-B. Hsu and J. X. Zhou, Chaotic vibrations of the one-dimensional wave equation due to a self-excitation boundary condition. Ⅰ: Controlled hysteresis, Trans. Amer. Math. Soc., 350 (1998), 4265-4311.  doi: 10.1090/S0002-9947-98-02022-4.  Google Scholar

[2]

G. ChenS.-B. Hsu and J. X. Zhou, Chaotic vibrations of the one-dimensional wave equation due to a self-excitation boundary condition. Ⅱ: Energy injection, period doubling and homoclinic orbits, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 423-445.  doi: 10.1142/S0218127498000280.  Google Scholar

[3]

G. ChenS.-B. Hsu and J. X. Zhou, Chaotic vibrations of the one-dimensional wave equation due to a self-excitation boundary condition. Ⅲ: Natural hysteresis memory effects, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 447-470.  doi: 10.1142/S0218127498000292.  Google Scholar

[4]

G. ChenS.-B. Hsu and J. X. Zhou, Nonisotropic spatiotemporal chaotic vibration of the wave equation due to mixing energy transport and a van der Pol boundary condition, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 12 (2002), 535-559.  doi: 10.1142/S0218127402004504.  Google Scholar

[5]

G. ChenT. W. Huang and Y. Huang, Chaotic behavior of interval maps and total variations of iterates, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14 (2004), 2161-2186.  doi: 10.1142/S0218127404010540.  Google Scholar

[6]

G. Chen, B. Sun and T. W. Huang, Chaotic oscillations of solutions of the Klein-Gordon equation due to inbalance of distributed and boundary energy flows, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014), 1430021, 19 pp. doi: 10.1142/S0218127414300213.  Google Scholar

[7]

X. P. Dai, Chaotic dynamics of continuous-time topological semiflow on Polish spaces, J. Differential Equations, 258 (2015), 2794-2805.  doi: 10.1016/j.jde.2014.12.027.  Google Scholar

[8]

M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, Second edition, Pure and Applied Mathematics (Amsterdam), 60. Elsevier/Academic Press, Amsterdam, 2004. doi: 10.1016/C2009-0-61160-0.  Google Scholar

[9]

C.-C. Hu, Chaotic vibrations of the one-dimensional mixed wave system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009), 579-590.  doi: 10.1142/S0218127409023202.  Google Scholar

[10]

Y. Huang, Growth rates of total variations of snapshots of the 1D linear wave equation with composite nonlinear boundary reflection relations, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1183-1195.  doi: 10.1142/S0218127403007138.  Google Scholar

[11]

Y. HuangJ. Luo and Z. L. Zhou, Rapid fluctuations of snapshots of one-dimensional linear wave equations with a van der Pol nonlinear boundary condition, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 567-580.  doi: 10.1142/S0218127405012223.  Google Scholar

[12]

L. L. Li, Y. L. Chen and Y. Huang, Nonisotropic spatiotemporal chaotic vibrations of the one-dimensional wave equation with a mixing transport term and general nonlinear boundary condition, J. Math. Phys., 51 (2010), 102703, 22 pp. doi: 10.1063/1.3486070.  Google Scholar

[13]

L. L. Li, Y. Huang, G. Chen and T. W. Huang, Chaotic oscillations of second order linear hyperbolic equations with nonlinear boundary conditions: A factorizable but noncommutative case, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 1530032, 20 pp. doi: 10.1142/S0218127415300323.  Google Scholar

[14]

L. L. LiT. W. Huang and X. Y. Huang, Chaotic oscillations of the 1D wave equation due to extreme imbalance of self-regulations, J. Math. Anal. Appl., 450 (2017), 1388-1400.  doi: 10.1016/j.jmaa.2017.01.095.  Google Scholar

[15] Y. C. Li, Chaos in Partial Differential Equations, Graduate Series in Analysis. International Press, omerville, MA, 2004.  doi: 10.1002/cnm.650.  Google Scholar
[16]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2$^nd$ edition, Texts in Applied Mathematics, 2. Springer-Verlag, New York, 2003. doi: 10.1063/1.4822950.  Google Scholar

[17]

Q. M. Xiang and Q. G. Yang, Nonisotropic chaotic oscillations of the wave equation due to the interaction of mixing transport term and superlinear boundary condition, J. Math. Anal. Appl., 462 (2018), 730-746.  doi: 10.1016/j.jmaa.2018.02.031.  Google Scholar

[18]

Q. M. Xiang and Q. G. Yang, Chaotic oscillations of a linear hyperbolic PDE with a general nonlinear boundary condition, J. Math. Anal. Appl., 472 (2019), 94-111.  doi: 10.1016/j.jmaa.2018.10.083.  Google Scholar

[19]

Q. G. Yang, G. R. Jiang and T. S. Zhou, Chaotification of linear impulsive differential systems with applications, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250297, 12 pp. doi: 10.1142/S0218127412502975.  Google Scholar

[20]

Q. G. Yang and Q. M. Xiang, Existence of chaotic oscillations in second-order linear hyperbolic PDEs with implicit boundary conditions, J. Math. Anal. Appl., 457 (2018), 751-775.  doi: 10.1016/j.jmaa.2017.08.018.  Google Scholar

[21]

Z. B. Yin and Q. G. Yang, Distributionally scrambled set for an annihilation operator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25 (2015), 1550178, 13 pp. doi: 10.1142/S0218127415501783.  Google Scholar

[22]

Z. B. Yin and Q. G. Yang, Generic distributional chaos and principal measure in linear dynamics, Ann. Pol. Math., 118 (2016), 71-94.  doi: 10.4064/ap3908-9-2016.  Google Scholar

[23]

Z. B. Yin and Q. G. Yang, Distributionally n-chaotic dynamics for linear operators, Rev. Mat. Complut., 31 (2018), 111-129.  doi: 10.1007/s13163-017-0226-5.  Google Scholar

[24]

Z. B. Yin and Q. G. Yang, Distributionally n-scrambled set for weighted shift operators, J. Dyn. Control Syst., 23 (2017), 693-708.  doi: 10.1007/s10883-017-9359-6.  Google Scholar

Figure 1.  The spatiotemporal profiles of system (23) with $ (\alpha_1,\beta_1) = (0.1,1) $, $ (\alpha_2,\beta_2) = (0.5,1) $, $ x\in [0,1] $ and $ t\in [60,64] $: (a) $ w_{x}(x,t) $; (b) $ w_{t}(x,t) $.
Figure 2.  The spatiotemporal profiles of system (23) with $ \gamma_1 = 1.1\pi $ and $ \gamma_2 = 0.4\pi $, $ x\in [0,1] $ and $ t\in [60,64] $: (a) $ w_{x}(x,t) $; (b) $ w_{t}(x,t) $.
[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[3]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[4]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[5]

Masoud Rabbani, Nastaran Oladzad-Abbasabady, Niloofar Akbarian-Saravi. Ambulance routing in disaster response considering variable patient condition: NSGA-II and MOPSO algorithms. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021007

[6]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[7]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed bvp for the variable-viscosity compressible stokes pdes. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021009

[8]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[9]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, 2021, 20 (2) : 915-931. doi: 10.3934/cpaa.2020297

[10]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[11]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[12]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[13]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[14]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[15]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[16]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[17]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[18]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[19]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[20]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (51)
  • HTML views (338)
  • Cited by (0)

Other articles
by authors

[Back to Top]