-
Previous Article
Lipschitz stability in determination of coefficients in a two-dimensional Boussinesq system by arbitrary boundary observation
- DCDS-S Home
- This Issue
-
Next Article
A new application of the reproducing kernel method
New results for oscillation of fractional partial differential equations with damping term
1. | College of Mathematics and Statistics, Hengyang Normal University, Hengyang, Hunan 421002, P. R. China |
2. | Hunan Provincial Key Laboratory of Intelligent Information, Processing and Application, Hengyang, 421002, P. R. China |
In this paper, we study the oscillatory behavior of solutions of a class of damped fractional partial differential equations subject to Robin and Dirichlet boundary value conditions. By using integral averaging technique and Riccati type transformations, we obtain some new sufficient conditions for oscillation of all solutions of this kind of fractional differential equations with damping term. Our results essentially enrich the ones in the existing literature. Finally, we also give two specific examples to illustrate our main results.
References:
[1] |
S. Abbas, M. Benchohra and G. M. N'Guérékata, Topics in Fractional Differential Equations, Developments in Mathematics, 27. Springer, New York, 2012.
doi: 10.1007/978-1-4614-4036-9. |
[2] |
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, 3. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
doi: 10.1142/9789814355216. |
[3] |
C. C. Bernido and M. V. Carpio-Bernido, Analysis of Fractional Stochastic Processes: Advances and Applications, Conference Series, 36. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
doi: 10.1142/9257. |
[4] |
S. T. Chen, X. H. Tang and J. S. Yu,
Sign-changing ground state solutions for discrete nonlinear Schrodinger equations, J. Difference Equ. Appl., 25 (2019), 202-218.
doi: 10.1080/10236198.2018.1563601. |
[5] |
S. S. Chen and J. S. Yu,
Stability and bifurcation on predator-prey systems with nonlocal prey competition, Discrete and Continuous Dynamical Systems, 38 (2018), 43-62.
doi: 10.3934/dcds.2018002. |
[6] |
R. Courant and D. Hilbert, Methods of Mathematical Physics. II: Partial Differential Equations, Interscience Publishers, New York-London, 1962. |
[7] |
S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, Berlin, 2008. |
[8] |
K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-14574-2. |
[9] |
L. Erbe, B. G. Jia and Q. Q. Zhang,
Homoclinic solutions of discrete nonlinear systems via variational method, J. Appl.Anal. Comput., 9 (2019), 271-294.
doi: 10.11948/2019.271. |
[10] |
Z. M. Guo and J. S. Yu,
Existence of periodic and subharmonic solutions for second order superlinear difference equations, Sci. China Ser. A, 46 (2003), 506-515.
doi: 10.1007/BF02884022. |
[11] |
Z. M. Guo and J. S. Yu,
The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., 68 (2003), 419-430.
doi: 10.1112/S0024610703004563. |
[12] |
I. Györi and G. Ladas, Oscillation Theory of Delay Differntial Equations: with Applications, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991. |
[13] |
S. Harikrishnan, P. Prakash and J. J. Nieto,
Foreced oscillation of solutions of a nonlinear fractional partial differential equation, Appl. Math. Comput., 254 (2015), 14-19.
doi: 10.1016/j.amc.2014.12.074. |
[14] | J. H. Huang, L. Xin and T. L. Shen, Dynamics of Fractional Partial Differential Equations, Science Press, Beijing, 2017. Google Scholar |
[15] |
Y. X. Hui, G. H. Lin and Q. W. Sun,
Oscillation threshold for a mosquito population suppression model with time delay, Mathematical Biosciences and Engineering, 16 (2019), 7362-7374.
doi: 10.3934/mbe.2019367. |
[16] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. |
[17] |
W. N. Li,
On the forced oscillation of certain fractional partial differential equations, Appl. Math. Lett., 50 (2015), 5-9.
doi: 10.1016/j.aml.2015.05.016. |
[18] |
W. N. Li, Forced oscillation criteria for a class of fractional partial differential equations with damping term, Mathematical Problems in Engineering, 2015 (2015), 1-6.
doi: 10.1155/2015/410904. |
[19] |
W. N. Li, Oscillation of solutions for certain fractional partial differential equations, Advances in Difference Equations, 2016 (2016), 1-8.
doi: 10.1186/s13662-016-0756-z. |
[20] |
W. N. Li and W. H. Sheng,
Oscillation properties for solutions of a kind of partial fractional differential equations with damping term, J. Nonlinear Sci. Appl., 9 (2016), 1600-1608.
doi: 10.22436/jnsa.009.04.17. |
[21] |
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999. |
[22] |
P. Prakash, S. Harikrishnan, J. J. Nieto and J.-H. Kim, Oscillation of a time fractional partial differential equation, Electron. J. Qual. Theory Differ. Equ., 15 (2014), 1-10. |
[23] |
P. Prakash, S. Harikrishnan and M. Benchohra,
Oscillation of certain nonlinear fractional partial differential equation with damping term, Appl. Math. Lett., 43 (2015), 72-79.
doi: 10.1016/j.aml.2014.11.018. |
[24] |
A. Raheem and Md. Maqbul,
Oscillation criteria for impulsive partial fractional differential equations, Computers and Mathematics with Applications, 73 (2017), 1781-1788.
doi: 10.1016/j.camwa.2017.02.016. |
[25] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[26] |
X. H. Tang, X. Y. Lin and J. S. Yu,
Nontrivial solutions for Schrodinger equation with local super-quadratic conditions, J. Dyn. Diff. Equat., 31 (2019), 369-383.
doi: 10.1007/s10884-018-9662-2. |
[27] |
V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.
doi: 10.1007/978-3-642-14003-7.![]() ![]() |
[28] |
J. S. Yu,
Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168-3187.
doi: 10.1137/18M1204917. |
[29] |
J. S. Yu and B. Zheng,
Modeling Wolbachia infection in mosquito population via discrete dynamical model, J. Difference Equ. Appl., 25 (2019), 1549-1567.
doi: 10.1080/10236198.2019.1669578. |
[30] |
Q. Q. Zhang,
Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Communications on Pure and Applied Analysis, 18 (2019), 425-434.
doi: 10.3934/cpaa.2019021. |
[31] |
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Singapore, 2014. Google Scholar |
show all references
References:
[1] |
S. Abbas, M. Benchohra and G. M. N'Guérékata, Topics in Fractional Differential Equations, Developments in Mathematics, 27. Springer, New York, 2012.
doi: 10.1007/978-1-4614-4036-9. |
[2] |
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, 3. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
doi: 10.1142/9789814355216. |
[3] |
C. C. Bernido and M. V. Carpio-Bernido, Analysis of Fractional Stochastic Processes: Advances and Applications, Conference Series, 36. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
doi: 10.1142/9257. |
[4] |
S. T. Chen, X. H. Tang and J. S. Yu,
Sign-changing ground state solutions for discrete nonlinear Schrodinger equations, J. Difference Equ. Appl., 25 (2019), 202-218.
doi: 10.1080/10236198.2018.1563601. |
[5] |
S. S. Chen and J. S. Yu,
Stability and bifurcation on predator-prey systems with nonlocal prey competition, Discrete and Continuous Dynamical Systems, 38 (2018), 43-62.
doi: 10.3934/dcds.2018002. |
[6] |
R. Courant and D. Hilbert, Methods of Mathematical Physics. II: Partial Differential Equations, Interscience Publishers, New York-London, 1962. |
[7] |
S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, Berlin, 2008. |
[8] |
K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-14574-2. |
[9] |
L. Erbe, B. G. Jia and Q. Q. Zhang,
Homoclinic solutions of discrete nonlinear systems via variational method, J. Appl.Anal. Comput., 9 (2019), 271-294.
doi: 10.11948/2019.271. |
[10] |
Z. M. Guo and J. S. Yu,
Existence of periodic and subharmonic solutions for second order superlinear difference equations, Sci. China Ser. A, 46 (2003), 506-515.
doi: 10.1007/BF02884022. |
[11] |
Z. M. Guo and J. S. Yu,
The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., 68 (2003), 419-430.
doi: 10.1112/S0024610703004563. |
[12] |
I. Györi and G. Ladas, Oscillation Theory of Delay Differntial Equations: with Applications, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991. |
[13] |
S. Harikrishnan, P. Prakash and J. J. Nieto,
Foreced oscillation of solutions of a nonlinear fractional partial differential equation, Appl. Math. Comput., 254 (2015), 14-19.
doi: 10.1016/j.amc.2014.12.074. |
[14] | J. H. Huang, L. Xin and T. L. Shen, Dynamics of Fractional Partial Differential Equations, Science Press, Beijing, 2017. Google Scholar |
[15] |
Y. X. Hui, G. H. Lin and Q. W. Sun,
Oscillation threshold for a mosquito population suppression model with time delay, Mathematical Biosciences and Engineering, 16 (2019), 7362-7374.
doi: 10.3934/mbe.2019367. |
[16] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. |
[17] |
W. N. Li,
On the forced oscillation of certain fractional partial differential equations, Appl. Math. Lett., 50 (2015), 5-9.
doi: 10.1016/j.aml.2015.05.016. |
[18] |
W. N. Li, Forced oscillation criteria for a class of fractional partial differential equations with damping term, Mathematical Problems in Engineering, 2015 (2015), 1-6.
doi: 10.1155/2015/410904. |
[19] |
W. N. Li, Oscillation of solutions for certain fractional partial differential equations, Advances in Difference Equations, 2016 (2016), 1-8.
doi: 10.1186/s13662-016-0756-z. |
[20] |
W. N. Li and W. H. Sheng,
Oscillation properties for solutions of a kind of partial fractional differential equations with damping term, J. Nonlinear Sci. Appl., 9 (2016), 1600-1608.
doi: 10.22436/jnsa.009.04.17. |
[21] |
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999. |
[22] |
P. Prakash, S. Harikrishnan, J. J. Nieto and J.-H. Kim, Oscillation of a time fractional partial differential equation, Electron. J. Qual. Theory Differ. Equ., 15 (2014), 1-10. |
[23] |
P. Prakash, S. Harikrishnan and M. Benchohra,
Oscillation of certain nonlinear fractional partial differential equation with damping term, Appl. Math. Lett., 43 (2015), 72-79.
doi: 10.1016/j.aml.2014.11.018. |
[24] |
A. Raheem and Md. Maqbul,
Oscillation criteria for impulsive partial fractional differential equations, Computers and Mathematics with Applications, 73 (2017), 1781-1788.
doi: 10.1016/j.camwa.2017.02.016. |
[25] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[26] |
X. H. Tang, X. Y. Lin and J. S. Yu,
Nontrivial solutions for Schrodinger equation with local super-quadratic conditions, J. Dyn. Diff. Equat., 31 (2019), 369-383.
doi: 10.1007/s10884-018-9662-2. |
[27] |
V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.
doi: 10.1007/978-3-642-14003-7.![]() ![]() |
[28] |
J. S. Yu,
Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168-3187.
doi: 10.1137/18M1204917. |
[29] |
J. S. Yu and B. Zheng,
Modeling Wolbachia infection in mosquito population via discrete dynamical model, J. Difference Equ. Appl., 25 (2019), 1549-1567.
doi: 10.1080/10236198.2019.1669578. |
[30] |
Q. Q. Zhang,
Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Communications on Pure and Applied Analysis, 18 (2019), 425-434.
doi: 10.3934/cpaa.2019021. |
[31] |
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Singapore, 2014. Google Scholar |
[1] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[2] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[3] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[4] |
Dariusz Idczak. A Gronwall lemma for functions of two variables and its application to partial differential equations of fractional order. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021019 |
[5] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[6] |
Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021025 |
[7] |
Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034 |
[8] |
Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 |
[9] |
Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021020 |
[10] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[11] |
Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021032 |
[12] |
Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021016 |
[13] |
Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045 |
[14] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[15] |
Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033 |
[16] |
Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021049 |
[17] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[18] |
Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018 |
[19] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[20] |
Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021073 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]