-
Previous Article
Lipschitz stability in determination of coefficients in a two-dimensional Boussinesq system by arbitrary boundary observation
- DCDS-S Home
- This Issue
-
Next Article
A new application of the reproducing kernel method
New results for oscillation of fractional partial differential equations with damping term
1. | College of Mathematics and Statistics, Hengyang Normal University, Hengyang, Hunan 421002, P. R. China |
2. | Hunan Provincial Key Laboratory of Intelligent Information, Processing and Application, Hengyang, 421002, P. R. China |
In this paper, we study the oscillatory behavior of solutions of a class of damped fractional partial differential equations subject to Robin and Dirichlet boundary value conditions. By using integral averaging technique and Riccati type transformations, we obtain some new sufficient conditions for oscillation of all solutions of this kind of fractional differential equations with damping term. Our results essentially enrich the ones in the existing literature. Finally, we also give two specific examples to illustrate our main results.
References:
[1] |
S. Abbas, M. Benchohra and G. M. N'Guérékata, Topics in Fractional Differential Equations, Developments in Mathematics, 27. Springer, New York, 2012.
doi: 10.1007/978-1-4614-4036-9. |
[2] |
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, 3. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
doi: 10.1142/9789814355216. |
[3] |
C. C. Bernido and M. V. Carpio-Bernido, Analysis of Fractional Stochastic Processes: Advances and Applications, Conference Series, 36. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
doi: 10.1142/9257. |
[4] |
S. T. Chen, X. H. Tang and J. S. Yu,
Sign-changing ground state solutions for discrete nonlinear Schrodinger equations, J. Difference Equ. Appl., 25 (2019), 202-218.
doi: 10.1080/10236198.2018.1563601. |
[5] |
S. S. Chen and J. S. Yu,
Stability and bifurcation on predator-prey systems with nonlocal prey competition, Discrete and Continuous Dynamical Systems, 38 (2018), 43-62.
doi: 10.3934/dcds.2018002. |
[6] |
R. Courant and D. Hilbert, Methods of Mathematical Physics. II: Partial Differential Equations, Interscience Publishers, New York-London, 1962. |
[7] |
S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, Berlin, 2008. |
[8] |
K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-14574-2. |
[9] |
L. Erbe, B. G. Jia and Q. Q. Zhang,
Homoclinic solutions of discrete nonlinear systems via variational method, J. Appl.Anal. Comput., 9 (2019), 271-294.
doi: 10.11948/2019.271. |
[10] |
Z. M. Guo and J. S. Yu,
Existence of periodic and subharmonic solutions for second order superlinear difference equations, Sci. China Ser. A, 46 (2003), 506-515.
doi: 10.1007/BF02884022. |
[11] |
Z. M. Guo and J. S. Yu,
The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., 68 (2003), 419-430.
doi: 10.1112/S0024610703004563. |
[12] |
I. Györi and G. Ladas, Oscillation Theory of Delay Differntial Equations: with Applications, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991. |
[13] |
S. Harikrishnan, P. Prakash and J. J. Nieto,
Foreced oscillation of solutions of a nonlinear fractional partial differential equation, Appl. Math. Comput., 254 (2015), 14-19.
doi: 10.1016/j.amc.2014.12.074. |
[14] | J. H. Huang, L. Xin and T. L. Shen, Dynamics of Fractional Partial Differential Equations, Science Press, Beijing, 2017. Google Scholar |
[15] |
Y. X. Hui, G. H. Lin and Q. W. Sun,
Oscillation threshold for a mosquito population suppression model with time delay, Mathematical Biosciences and Engineering, 16 (2019), 7362-7374.
doi: 10.3934/mbe.2019367. |
[16] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. |
[17] |
W. N. Li,
On the forced oscillation of certain fractional partial differential equations, Appl. Math. Lett., 50 (2015), 5-9.
doi: 10.1016/j.aml.2015.05.016. |
[18] |
W. N. Li, Forced oscillation criteria for a class of fractional partial differential equations with damping term, Mathematical Problems in Engineering, 2015 (2015), 1-6.
doi: 10.1155/2015/410904. |
[19] |
W. N. Li, Oscillation of solutions for certain fractional partial differential equations, Advances in Difference Equations, 2016 (2016), 1-8.
doi: 10.1186/s13662-016-0756-z. |
[20] |
W. N. Li and W. H. Sheng,
Oscillation properties for solutions of a kind of partial fractional differential equations with damping term, J. Nonlinear Sci. Appl., 9 (2016), 1600-1608.
doi: 10.22436/jnsa.009.04.17. |
[21] |
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999. |
[22] |
P. Prakash, S. Harikrishnan, J. J. Nieto and J.-H. Kim, Oscillation of a time fractional partial differential equation, Electron. J. Qual. Theory Differ. Equ., 15 (2014), 1-10. |
[23] |
P. Prakash, S. Harikrishnan and M. Benchohra,
Oscillation of certain nonlinear fractional partial differential equation with damping term, Appl. Math. Lett., 43 (2015), 72-79.
doi: 10.1016/j.aml.2014.11.018. |
[24] |
A. Raheem and Md. Maqbul,
Oscillation criteria for impulsive partial fractional differential equations, Computers and Mathematics with Applications, 73 (2017), 1781-1788.
doi: 10.1016/j.camwa.2017.02.016. |
[25] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[26] |
X. H. Tang, X. Y. Lin and J. S. Yu,
Nontrivial solutions for Schrodinger equation with local super-quadratic conditions, J. Dyn. Diff. Equat., 31 (2019), 369-383.
doi: 10.1007/s10884-018-9662-2. |
[27] |
V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.
doi: 10.1007/978-3-642-14003-7.![]() ![]() |
[28] |
J. S. Yu,
Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168-3187.
doi: 10.1137/18M1204917. |
[29] |
J. S. Yu and B. Zheng,
Modeling Wolbachia infection in mosquito population via discrete dynamical model, J. Difference Equ. Appl., 25 (2019), 1549-1567.
doi: 10.1080/10236198.2019.1669578. |
[30] |
Q. Q. Zhang,
Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Communications on Pure and Applied Analysis, 18 (2019), 425-434.
doi: 10.3934/cpaa.2019021. |
[31] |
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Singapore, 2014. Google Scholar |
show all references
References:
[1] |
S. Abbas, M. Benchohra and G. M. N'Guérékata, Topics in Fractional Differential Equations, Developments in Mathematics, 27. Springer, New York, 2012.
doi: 10.1007/978-1-4614-4036-9. |
[2] |
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, 3. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012.
doi: 10.1142/9789814355216. |
[3] |
C. C. Bernido and M. V. Carpio-Bernido, Analysis of Fractional Stochastic Processes: Advances and Applications, Conference Series, 36. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.
doi: 10.1142/9257. |
[4] |
S. T. Chen, X. H. Tang and J. S. Yu,
Sign-changing ground state solutions for discrete nonlinear Schrodinger equations, J. Difference Equ. Appl., 25 (2019), 202-218.
doi: 10.1080/10236198.2018.1563601. |
[5] |
S. S. Chen and J. S. Yu,
Stability and bifurcation on predator-prey systems with nonlocal prey competition, Discrete and Continuous Dynamical Systems, 38 (2018), 43-62.
doi: 10.3934/dcds.2018002. |
[6] |
R. Courant and D. Hilbert, Methods of Mathematical Physics. II: Partial Differential Equations, Interscience Publishers, New York-London, 1962. |
[7] |
S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, Berlin, 2008. |
[8] |
K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010.
doi: 10.1007/978-3-642-14574-2. |
[9] |
L. Erbe, B. G. Jia and Q. Q. Zhang,
Homoclinic solutions of discrete nonlinear systems via variational method, J. Appl.Anal. Comput., 9 (2019), 271-294.
doi: 10.11948/2019.271. |
[10] |
Z. M. Guo and J. S. Yu,
Existence of periodic and subharmonic solutions for second order superlinear difference equations, Sci. China Ser. A, 46 (2003), 506-515.
doi: 10.1007/BF02884022. |
[11] |
Z. M. Guo and J. S. Yu,
The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., 68 (2003), 419-430.
doi: 10.1112/S0024610703004563. |
[12] |
I. Györi and G. Ladas, Oscillation Theory of Delay Differntial Equations: with Applications, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991. |
[13] |
S. Harikrishnan, P. Prakash and J. J. Nieto,
Foreced oscillation of solutions of a nonlinear fractional partial differential equation, Appl. Math. Comput., 254 (2015), 14-19.
doi: 10.1016/j.amc.2014.12.074. |
[14] | J. H. Huang, L. Xin and T. L. Shen, Dynamics of Fractional Partial Differential Equations, Science Press, Beijing, 2017. Google Scholar |
[15] |
Y. X. Hui, G. H. Lin and Q. W. Sun,
Oscillation threshold for a mosquito population suppression model with time delay, Mathematical Biosciences and Engineering, 16 (2019), 7362-7374.
doi: 10.3934/mbe.2019367. |
[16] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. |
[17] |
W. N. Li,
On the forced oscillation of certain fractional partial differential equations, Appl. Math. Lett., 50 (2015), 5-9.
doi: 10.1016/j.aml.2015.05.016. |
[18] |
W. N. Li, Forced oscillation criteria for a class of fractional partial differential equations with damping term, Mathematical Problems in Engineering, 2015 (2015), 1-6.
doi: 10.1155/2015/410904. |
[19] |
W. N. Li, Oscillation of solutions for certain fractional partial differential equations, Advances in Difference Equations, 2016 (2016), 1-8.
doi: 10.1186/s13662-016-0756-z. |
[20] |
W. N. Li and W. H. Sheng,
Oscillation properties for solutions of a kind of partial fractional differential equations with damping term, J. Nonlinear Sci. Appl., 9 (2016), 1600-1608.
doi: 10.22436/jnsa.009.04.17. |
[21] |
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999. |
[22] |
P. Prakash, S. Harikrishnan, J. J. Nieto and J.-H. Kim, Oscillation of a time fractional partial differential equation, Electron. J. Qual. Theory Differ. Equ., 15 (2014), 1-10. |
[23] |
P. Prakash, S. Harikrishnan and M. Benchohra,
Oscillation of certain nonlinear fractional partial differential equation with damping term, Appl. Math. Lett., 43 (2015), 72-79.
doi: 10.1016/j.aml.2014.11.018. |
[24] |
A. Raheem and Md. Maqbul,
Oscillation criteria for impulsive partial fractional differential equations, Computers and Mathematics with Applications, 73 (2017), 1781-1788.
doi: 10.1016/j.camwa.2017.02.016. |
[25] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993. |
[26] |
X. H. Tang, X. Y. Lin and J. S. Yu,
Nontrivial solutions for Schrodinger equation with local super-quadratic conditions, J. Dyn. Diff. Equat., 31 (2019), 369-383.
doi: 10.1007/s10884-018-9662-2. |
[27] |
V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.
doi: 10.1007/978-3-642-14003-7.![]() ![]() |
[28] |
J. S. Yu,
Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168-3187.
doi: 10.1137/18M1204917. |
[29] |
J. S. Yu and B. Zheng,
Modeling Wolbachia infection in mosquito population via discrete dynamical model, J. Difference Equ. Appl., 25 (2019), 1549-1567.
doi: 10.1080/10236198.2019.1669578. |
[30] |
Q. Q. Zhang,
Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Communications on Pure and Applied Analysis, 18 (2019), 425-434.
doi: 10.3934/cpaa.2019021. |
[31] |
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Singapore, 2014. Google Scholar |
[1] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[2] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[3] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[4] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
[5] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[6] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[7] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[8] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[9] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[10] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[11] |
Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265 |
[12] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[13] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[14] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[15] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
[16] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[17] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[18] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[19] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[20] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]