\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

New results for oscillation of fractional partial differential equations with damping term

  • * Corresponding author: Zhenguo Luo

    * Corresponding author: Zhenguo Luo 
The authors are supported by Hunan Provincial Natural Science Foundation of China (2019JJ40004, 2018JJ2006), the Project Supported by Scientific Research Fund of Hunan Provincial Education Department (17A030, 16A031), the Project of "Double First-Class" Applied Characteristic Discipline in Hunan Province (Xiangjiaotong[2018]469), the Project of Hunan Provincial Key Laboratory (2016TP1020) and the Open Fund Project of Hunan Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang Normal University (IIPA18K05), the training target of the young backbone teachers in Hunan colleges and Universities ([2015]361)
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper, we study the oscillatory behavior of solutions of a class of damped fractional partial differential equations subject to Robin and Dirichlet boundary value conditions. By using integral averaging technique and Riccati type transformations, we obtain some new sufficient conditions for oscillation of all solutions of this kind of fractional differential equations with damping term. Our results essentially enrich the ones in the existing literature. Finally, we also give two specific examples to illustrate our main results.

    Mathematics Subject Classification: Primary: 35B05, 35R11; Secondary: 26A33.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] S. Abbas, M. Benchohra and G. M. N'Guérékata, Topics in Fractional Differential Equations, Developments in Mathematics, 27. Springer, New York, 2012. doi: 10.1007/978-1-4614-4036-9.
    [2] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus. Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, 3. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. doi: 10.1142/9789814355216.
    [3] C. C. Bernido and M. V. Carpio-Bernido, Analysis of Fractional Stochastic Processes: Advances and Applications, Conference Series, 36. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015. doi: 10.1142/9257.
    [4] S. T. ChenX. H. Tang and J. S. Yu, Sign-changing ground state solutions for discrete nonlinear Schrodinger equations, J. Difference Equ. Appl., 25 (2019), 202-218.  doi: 10.1080/10236198.2018.1563601.
    [5] S. S. Chen and J. S. Yu, Stability and bifurcation on predator-prey systems with nonlocal prey competition, Discrete and Continuous Dynamical Systems, 38 (2018), 43-62.  doi: 10.3934/dcds.2018002.
    [6] R. Courant and D. Hilbert, Methods of Mathematical Physics. II: Partial Differential Equations, Interscience Publishers, New York-London, 1962.
    [7] S. Das, Functional Fractional Calculus for System Identification and Controls, Springer, Berlin, 2008.
    [8] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, 2004. Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-14574-2.
    [9] L. ErbeB. G. Jia and Q. Q. Zhang, Homoclinic solutions of discrete nonlinear systems via variational method, J. Appl.Anal. Comput., 9 (2019), 271-294.  doi: 10.11948/2019.271.
    [10] Z. M. Guo and J. S. Yu, Existence of periodic and subharmonic solutions for second order superlinear difference equations, Sci. China Ser. A, 46 (2003), 506-515.  doi: 10.1007/BF02884022.
    [11] Z. M. Guo and J. S. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., 68 (2003), 419-430.  doi: 10.1112/S0024610703004563.
    [12] I. Györi and G. Ladas, Oscillation Theory of Delay Differntial Equations: with Applications, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991.
    [13] S. HarikrishnanP. Prakash and J. J. Nieto, Foreced oscillation of solutions of a nonlinear fractional partial differential equation, Appl. Math. Comput., 254 (2015), 14-19.  doi: 10.1016/j.amc.2014.12.074.
    [14] J. H. HuangL. Xin and  T. L. ShenDynamics of Fractional Partial Differential Equations, Science Press, Beijing, 2017. 
    [15] Y. X. HuiG. H. Lin and Q. W. Sun, Oscillation threshold for a mosquito population suppression model with time delay, Mathematical Biosciences and Engineering, 16 (2019), 7362-7374.  doi: 10.3934/mbe.2019367.
    [16] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.
    [17] W. N. Li, On the forced oscillation of certain fractional partial differential equations, Appl. Math. Lett., 50 (2015), 5-9.  doi: 10.1016/j.aml.2015.05.016.
    [18] W. N. Li, Forced oscillation criteria for a class of fractional partial differential equations with damping term, Mathematical Problems in Engineering, 2015 (2015), 1-6. doi: 10.1155/2015/410904.
    [19] W. N. Li, Oscillation of solutions for certain fractional partial differential equations, Advances in Difference Equations, 2016 (2016), 1-8. doi: 10.1186/s13662-016-0756-z.
    [20] W. N. Li and W. H. Sheng, Oscillation properties for solutions of a kind of partial fractional differential equations with damping term, J. Nonlinear Sci. Appl., 9 (2016), 1600-1608.  doi: 10.22436/jnsa.009.04.17.
    [21] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.
    [22] P. Prakash, S. Harikrishnan, J. J. Nieto and J.-H. Kim, Oscillation of a time fractional partial differential equation, Electron. J. Qual. Theory Differ. Equ., 15 (2014), 1-10.
    [23] P. PrakashS. Harikrishnan and M. Benchohra, Oscillation of certain nonlinear fractional partial differential equation with damping term, Appl. Math. Lett., 43 (2015), 72-79.  doi: 10.1016/j.aml.2014.11.018.
    [24] A. Raheem and Md. Maqbul, Oscillation criteria for impulsive partial fractional differential equations, Computers and Mathematics with Applications, 73 (2017), 1781-1788.  doi: 10.1016/j.camwa.2017.02.016.
    [25] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science Publishers, Yverdon, 1993.
    [26] X. H. TangX. Y. Lin and J. S. Yu, Nontrivial solutions for Schrodinger equation with local super-quadratic conditions, J. Dyn. Diff. Equat., 31 (2019), 369-383.  doi: 10.1007/s10884-018-9662-2.
    [27] V. E. TarasovFractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.  doi: 10.1007/978-3-642-14003-7.
    [28] J. S. Yu, Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78 (2018), 3168-3187.  doi: 10.1137/18M1204917.
    [29] J. S. Yu and B. Zheng, Modeling Wolbachia infection in mosquito population via discrete dynamical model, J. Difference Equ. Appl., 25 (2019), 1549-1567.  doi: 10.1080/10236198.2019.1669578.
    [30] Q. Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions, Communications on Pure and Applied Analysis, 18 (2019), 425-434.  doi: 10.3934/cpaa.2019021.
    [31] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific Publishing Co. Pte. Ltd., Singapore, 2014.
  • 加载中
SHARE

Article Metrics

HTML views(865) PDF downloads(410) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return