-
Previous Article
Global attractor for a one dimensional weakly damped half-wave equation
- DCDS-S Home
- This Issue
-
Next Article
Synchronization analysis of drive-response multi-layer dynamical networks with additive couplings and stochastic perturbations
On the number of limit cycles of a quartic polynomial system
1. | Department of Mathematics, Shanghai Normal University, Shanghai, 200234, PR China |
2. | Department of Mathematics, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China |
In this paper, we consider a quartic polynomial differential system with multiple parameters, and obtain the existence and number of limit cycles with the help of the Melnikov function under perturbation of polynomials of degree $ n = 4 $.
References:
[1] |
R. Benterki and J. Llibre,
Centers and limit cycles of polynomial differential systems of degree 4 via averaging theory, Journal of Computational and Applied Mathematics, 313 (2017), 273-283.
doi: 10.1016/j.cam.2016.08.047. |
[2] |
L. S. Chen and M. S. Wang,
The relative position and the number of limit cycles of a quadratic differential system, Acta. Math. Sinica, 22 (1979), 751-758.
|
[3] |
M. A. Han and Y. Q. Xiong,
Limit cycle bifurcations in a class of near-Hamiltonian systems with multiple parameters, Chaos Solitons Fractals, 68 (2014), 20-29.
doi: 10.1016/j.chaos.2014.07.005. |
[4] |
J. Llibre, Y. P. Martínez and C. Valls,
Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 887-912.
doi: 10.3934/dcdsb.2018047. |
[5] |
J. Llibre, D. D. Novaes and M. A. Teixeira,
Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 27 (2014), 563-583.
doi: 10.1088/0951-7715/27/3/563. |
[6] |
S. L. Shi,
A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sinica, 23 (1980), 153-158.
|
[7] |
Y. Tian and P. Yu,
Bifurcation of small limit cycles in cubic integrable systems using higher-order analysis, J. Differential Equations, 264 (2018), 5950-5976.
doi: 10.1016/j.jde.2018.01.022. |
[8] |
P. Yu and M. A. Han, Four limit cycles from perturbing quadratic integrable systems by quadratic polynomials, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250254, 28 pp.
doi: 10.1142/S0218127412502549. |
[9] |
J. M. Yang, P. Yu and M. A. Han,
Limit cycle bifurcations near a double homoclinic loop with a nilpotent saddle of order $m$, Journal of Differential Equations, 266 (2019), 455-492.
doi: 10.1016/j.jde.2018.07.042. |
[10] |
P. Yu, M. Han and Y. Bai, Dynamiocs and bifurcation study on an extended Lorenz system, Journal of Nonlinear Modeling and Analysis, 1 (2019), 107-128. Google Scholar |
show all references
References:
[1] |
R. Benterki and J. Llibre,
Centers and limit cycles of polynomial differential systems of degree 4 via averaging theory, Journal of Computational and Applied Mathematics, 313 (2017), 273-283.
doi: 10.1016/j.cam.2016.08.047. |
[2] |
L. S. Chen and M. S. Wang,
The relative position and the number of limit cycles of a quadratic differential system, Acta. Math. Sinica, 22 (1979), 751-758.
|
[3] |
M. A. Han and Y. Q. Xiong,
Limit cycle bifurcations in a class of near-Hamiltonian systems with multiple parameters, Chaos Solitons Fractals, 68 (2014), 20-29.
doi: 10.1016/j.chaos.2014.07.005. |
[4] |
J. Llibre, Y. P. Martínez and C. Valls,
Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 887-912.
doi: 10.3934/dcdsb.2018047. |
[5] |
J. Llibre, D. D. Novaes and M. A. Teixeira,
Higher order averaging theory for finding periodic solutions via Brouwer degree, Nonlinearity, 27 (2014), 563-583.
doi: 10.1088/0951-7715/27/3/563. |
[6] |
S. L. Shi,
A concrete example of the existence of four limit cycles for plane quadratic systems, Sci. Sinica, 23 (1980), 153-158.
|
[7] |
Y. Tian and P. Yu,
Bifurcation of small limit cycles in cubic integrable systems using higher-order analysis, J. Differential Equations, 264 (2018), 5950-5976.
doi: 10.1016/j.jde.2018.01.022. |
[8] |
P. Yu and M. A. Han, Four limit cycles from perturbing quadratic integrable systems by quadratic polynomials, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 22 (2012), 1250254, 28 pp.
doi: 10.1142/S0218127412502549. |
[9] |
J. M. Yang, P. Yu and M. A. Han,
Limit cycle bifurcations near a double homoclinic loop with a nilpotent saddle of order $m$, Journal of Differential Equations, 266 (2019), 455-492.
doi: 10.1016/j.jde.2018.07.042. |
[10] |
P. Yu, M. Han and Y. Bai, Dynamiocs and bifurcation study on an extended Lorenz system, Journal of Nonlinear Modeling and Analysis, 1 (2019), 107-128. Google Scholar |
[1] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[2] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[3] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[4] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021011 |
[5] |
Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145 |
[6] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[7] |
Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010 |
[8] |
Yujuan Li, Huaifu Wang, Peipei Zhou, Guoshuang Zhang. Some properties of the cycle decomposition of WG-NLFSR. Advances in Mathematics of Communications, 2021, 15 (1) : 155-165. doi: 10.3934/amc.2020050 |
[9] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[10] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[11] |
Xinfu Chen, Huiqiang Jiang, Guoqing Liu. Boundary spike of the singular limit of an energy minimizing problem. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3253-3290. doi: 10.3934/dcds.2020124 |
[12] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[13] |
Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020443 |
[14] |
Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117 |
[15] |
Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014 |
[16] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[17] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[18] |
Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017 |
[19] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[20] |
Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, Emmanuel Thomé. New discrete logarithm computation for the medium prime case using the function field sieve. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020119 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]