doi: 10.3934/dcdss.2020340

Traveling waves in a nonlocal dispersal predator-prey model

School of Mathematics and Statistics, Lanzhou University, Gansu, Lanzhou 730000, People's Republic of China

* Corresponding author: Wan-Tong Li

Received  May 2019 Revised  October 2019 Published  April 2020

Fund Project: The second author is supported by NSF of China grant 11731005, 11671180 and the third author is supported by NSF of China grant 11601205

This paper is concerned with the traveling wave solutions for a class of predator-prey model with nonlocal dispersal. By adopting the truncation method, we use Schauder's fixed-point theorem to obtain the existence of traveling waves connecting the semi-trivial equilibrium to non-trivial leftover concentrations for $ c>c_{*} $, in which $ c_* $ is the minimal wave speed. Meanwhile, through the limiting approach and the delicate analysis, we establish the existence of traveling wave solutions with the critical speed. Finally, we show the nonexistence of traveling waves for $ 0<c<c_{*} $ by the characteristic equation corresponding to the linearization of original system at the semi-trivial equilibrium. Throughout the whole paper, we need to overcome the difficulties brought by the nonlocal dispersal and the non-preserving of system itself.

Citation: Yu-Xia Hao, Wan-Tong Li, Fei-Ying Yang. Traveling waves in a nonlocal dispersal predator-prey model. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020340
References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165, Amer. Math. Soc., Providence, Rhode Island, 2010. doi: 10.1090/surv/165.  Google Scholar

[2]

S. B. AiY. H. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differential Equations, 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[3]

M. AlfaroJ. Coville and G. Raoul, Bistable travelling waves for nonlocal reaction diffusion equations, Discrete Contin. Dyn. Syst., 34 (2014), 1775-1791.  doi: 10.3934/dcds.2014.34.1775.  Google Scholar

[4]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.  doi: 10.1137/0150099.  Google Scholar

[5]

P. W. BatesP. C. FifeX. F. Ren and X. F. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[6]

X. X. BaoW. T. Li and W. X. Shen, Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats, J. Differential Equations, 260 (2016), 8590-8637.  doi: 10.1016/j.jde.2016.02.032.  Google Scholar

[7]

X. X. BaoW.-T. Li and Z.-C. Wang, Time periodic traveling curved fronts in the periodic Lotka-Volterra competition-diffusion system, J. Dynam. Differential Equations, 29 (2017), 981-1016.  doi: 10.1007/s10884-015-9512-4.  Google Scholar

[8]

X. F. Chen, Existence, uniqueness and asymptotic stability of travelling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[9]

Y.-Y. ChenJ. S. Guo and F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 30 (2017), 2334-2359.  doi: 10.1088/1361-6544/aa6b0a.  Google Scholar

[10]

Y.-Y. ChenJ. S. Guo and C.-H. Yao, Traveling wave solutions for a continuous and discrete diffusive predator-prey model, J. Math. Anal. Appl., 445 (2017), 212-239.  doi: 10.1016/j.jmaa.2016.07.071.  Google Scholar

[11]

J. CovilleJ. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[12]

S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.  doi: 10.1007/BF00276112.  Google Scholar

[13]

S. R. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in $\mathbb{R}^4$, Trans. Amer. Math. Soc., 286 (1984), 557-594.  doi: 10.2307/1999810.  Google Scholar

[14]

S. R. Dunbar, Traveling waves in diffusive predator-prey equations: Periodic orbits and point-to-periodic heteroclinic orbits, SIAM J. Appl. Math., 46 (1986), 1057-1078.  doi: 10.1137/0146063.  Google Scholar

[15]

W. Ding and W. Z. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, J. Dynam. Differential Equations, 28 (2016), 1293-1308.  doi: 10.1007/s10884-015-9472-8.  Google Scholar

[16]

F. D. DongW. T. Li and J. B. Wang, Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application, Discrete Contin. Dyn. Syst., 37 (2017), 6291-6318.  doi: 10.3934/dcds.2017272.  Google Scholar

[17]

R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenice., 7 (1937), 355-369.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[18]

S.-C. Fu and J.-C. Tsai, Wave propagation in predator-prey systems, Nonlinearity, 28 (2015), 4389-4423.  doi: 10.1088/0951-7715/28/12/4389.  Google Scholar

[19]

C.-H. HsuC.-R. YangT.-H. Yang and T.-S. Yang, Existence of traveling wave solutions for diffusive predator-prey type systems, J. Differential Equations, 252 (2012), 3040-3075.  doi: 10.1016/j.jde.2011.11.008.  Google Scholar

[20]

Y. L. Huang and G. Lin, Traveling wave solutions in a diffusive system with two preys and one predator, J. Math. Anal. Appl., 418 (2014), 163-184.  doi: 10.1016/j.jmaa.2014.03.085.  Google Scholar

[21]

J. H. HuangG. Lu and S. G. Ruan, Existence of traveling wave solutions in a diffusive predator-prey model, J. Math. Biol., 46 (2003), 132-152.  doi: 10.1007/s00285-002-0171-9.  Google Scholar

[22]

K. Hong and P. X. Weng, Stability and traveling waves of a stage-structured predator-prey model with Holling type-Ⅱ functional response and harvesting, Nonlinear Anal. Real World Appl., 14 (2013), 83-103.  doi: 10.1016/j.nonrwa.2012.05.004.  Google Scholar

[23]

W. Z. Huang, Traveling wave solutions for a class of predator-prey systems, J. Dynam. Differential Equations, 24 (2012), 633-644.  doi: 10.1007/s10884-012-9255-4.  Google Scholar

[24]

A. N. KolmogorovI. G. Petrovskii and N. S. Piskunov, Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem, Byul. Mosk. Gos. Univ. Ser. A: Mat. Mekh., 1 (1937), 1-26.   Google Scholar

[25]

W.-T. LiY.-J. Sun and Z.-C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.  doi: 10.1016/j.nonrwa.2009.07.005.  Google Scholar

[26]

W.-T. Li and S.-L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-Ⅲ functional response, Chaos Solitons Fractals, 37 (2008), 476-486.  doi: 10.1016/j.chaos.2006.09.039.  Google Scholar

[27]

W.-T. Li and F.-Y. Yang, Traveling waves for a nonlocal dispersal SIR model with standard incidence, J. Integral Equations Appl., 26 (2014), 243-273.  doi: 10.1216/JIE-2014-26-2-243.  Google Scholar

[28]

X.-S. Li and G. Lin, Traveling wavefronts in nonlocal dispersal and cooperative Lotka-Volterra system with delays, Appl. Math. Comput., 204 (2008), 738-744.  doi: 10.1016/j.amc.2008.07.016.  Google Scholar

[29]

Y. LiW.-T. Li and F.-Y. Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 247 (2014), 723-740.  doi: 10.1016/j.amc.2014.09.072.  Google Scholar

[30]

G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal., 96 (2014), 47-58.  doi: 10.1016/j.na.2013.10.024.  Google Scholar

[31]

X. B. LinP. X. Weng and C. F. Wu, Traveling wave solutions for a predator-prey system with sigmoidal response function, J. Dynam. Differential Equations, 23 (2011), 903-921.  doi: 10.1007/s10884-011-9220-7.  Google Scholar

[32]

A. J. Lotka, Elements of Physicals Biology, Williams and Wilkins Company, Baltimore, 1925. Google Scholar

[33]

J. D. Murray, Mathematical Biology. I: An Introduction, 3$^rd$ edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002.  Google Scholar

[34]

S. X. PanW.-T. Li and G. Lin, Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.  doi: 10.1007/s00033-007-7005-y.  Google Scholar

[35]

J. A. Sherratt, Invasion generates periodic traveling waves (wavetrains) in predator-prey models with nonlocal dispersal, SIAM J. Appl. Math., 76 (2016), 293-313.  doi: 10.1137/15M1027991.  Google Scholar

[36]

V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 119 (1927), 12-13.  doi: 10.1038/119012b0.  Google Scholar

[37]

F.-Y. Yang and W.-T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131-1146.  doi: 10.1016/j.jmaa.2017.10.016.  Google Scholar

[38]

F.-Y. YangW.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal SIR epidemic model, Nonlinear Anal. Real World Appl., 23 (2015), 129-147.  doi: 10.1016/j.nonrwa.2014.12.001.  Google Scholar

[39]

F.-Y. YangY. LiW.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.  doi: 10.3934/dcdsb.2013.18.1969.  Google Scholar

[40]

G.-B. ZhangW.-T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Modelling, 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.  Google Scholar

[41]

G.-B. ZhangW.-T. Li and Z.-C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124.  doi: 10.1016/j.jde.2012.01.014.  Google Scholar

[42]

T. R. ZhangW. D. Wang and K. F. Wang, Minimal wave speed for a class of non-cooperative diffusion-reaction system, J. Differential Equations, 260 (2016), 2763-2791.  doi: 10.1016/j.jde.2015.10.017.  Google Scholar

show all references

References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165, Amer. Math. Soc., Providence, Rhode Island, 2010. doi: 10.1090/surv/165.  Google Scholar

[2]

S. B. AiY. H. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differential Equations, 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[3]

M. AlfaroJ. Coville and G. Raoul, Bistable travelling waves for nonlocal reaction diffusion equations, Discrete Contin. Dyn. Syst., 34 (2014), 1775-1791.  doi: 10.3934/dcds.2014.34.1775.  Google Scholar

[4]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.  doi: 10.1137/0150099.  Google Scholar

[5]

P. W. BatesP. C. FifeX. F. Ren and X. F. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[6]

X. X. BaoW. T. Li and W. X. Shen, Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats, J. Differential Equations, 260 (2016), 8590-8637.  doi: 10.1016/j.jde.2016.02.032.  Google Scholar

[7]

X. X. BaoW.-T. Li and Z.-C. Wang, Time periodic traveling curved fronts in the periodic Lotka-Volterra competition-diffusion system, J. Dynam. Differential Equations, 29 (2017), 981-1016.  doi: 10.1007/s10884-015-9512-4.  Google Scholar

[8]

X. F. Chen, Existence, uniqueness and asymptotic stability of travelling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[9]

Y.-Y. ChenJ. S. Guo and F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 30 (2017), 2334-2359.  doi: 10.1088/1361-6544/aa6b0a.  Google Scholar

[10]

Y.-Y. ChenJ. S. Guo and C.-H. Yao, Traveling wave solutions for a continuous and discrete diffusive predator-prey model, J. Math. Anal. Appl., 445 (2017), 212-239.  doi: 10.1016/j.jmaa.2016.07.071.  Google Scholar

[11]

J. CovilleJ. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[12]

S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.  doi: 10.1007/BF00276112.  Google Scholar

[13]

S. R. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in $\mathbb{R}^4$, Trans. Amer. Math. Soc., 286 (1984), 557-594.  doi: 10.2307/1999810.  Google Scholar

[14]

S. R. Dunbar, Traveling waves in diffusive predator-prey equations: Periodic orbits and point-to-periodic heteroclinic orbits, SIAM J. Appl. Math., 46 (1986), 1057-1078.  doi: 10.1137/0146063.  Google Scholar

[15]

W. Ding and W. Z. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, J. Dynam. Differential Equations, 28 (2016), 1293-1308.  doi: 10.1007/s10884-015-9472-8.  Google Scholar

[16]

F. D. DongW. T. Li and J. B. Wang, Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application, Discrete Contin. Dyn. Syst., 37 (2017), 6291-6318.  doi: 10.3934/dcds.2017272.  Google Scholar

[17]

R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenice., 7 (1937), 355-369.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[18]

S.-C. Fu and J.-C. Tsai, Wave propagation in predator-prey systems, Nonlinearity, 28 (2015), 4389-4423.  doi: 10.1088/0951-7715/28/12/4389.  Google Scholar

[19]

C.-H. HsuC.-R. YangT.-H. Yang and T.-S. Yang, Existence of traveling wave solutions for diffusive predator-prey type systems, J. Differential Equations, 252 (2012), 3040-3075.  doi: 10.1016/j.jde.2011.11.008.  Google Scholar

[20]

Y. L. Huang and G. Lin, Traveling wave solutions in a diffusive system with two preys and one predator, J. Math. Anal. Appl., 418 (2014), 163-184.  doi: 10.1016/j.jmaa.2014.03.085.  Google Scholar

[21]

J. H. HuangG. Lu and S. G. Ruan, Existence of traveling wave solutions in a diffusive predator-prey model, J. Math. Biol., 46 (2003), 132-152.  doi: 10.1007/s00285-002-0171-9.  Google Scholar

[22]

K. Hong and P. X. Weng, Stability and traveling waves of a stage-structured predator-prey model with Holling type-Ⅱ functional response and harvesting, Nonlinear Anal. Real World Appl., 14 (2013), 83-103.  doi: 10.1016/j.nonrwa.2012.05.004.  Google Scholar

[23]

W. Z. Huang, Traveling wave solutions for a class of predator-prey systems, J. Dynam. Differential Equations, 24 (2012), 633-644.  doi: 10.1007/s10884-012-9255-4.  Google Scholar

[24]

A. N. KolmogorovI. G. Petrovskii and N. S. Piskunov, Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem, Byul. Mosk. Gos. Univ. Ser. A: Mat. Mekh., 1 (1937), 1-26.   Google Scholar

[25]

W.-T. LiY.-J. Sun and Z.-C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.  doi: 10.1016/j.nonrwa.2009.07.005.  Google Scholar

[26]

W.-T. Li and S.-L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-Ⅲ functional response, Chaos Solitons Fractals, 37 (2008), 476-486.  doi: 10.1016/j.chaos.2006.09.039.  Google Scholar

[27]

W.-T. Li and F.-Y. Yang, Traveling waves for a nonlocal dispersal SIR model with standard incidence, J. Integral Equations Appl., 26 (2014), 243-273.  doi: 10.1216/JIE-2014-26-2-243.  Google Scholar

[28]

X.-S. Li and G. Lin, Traveling wavefronts in nonlocal dispersal and cooperative Lotka-Volterra system with delays, Appl. Math. Comput., 204 (2008), 738-744.  doi: 10.1016/j.amc.2008.07.016.  Google Scholar

[29]

Y. LiW.-T. Li and F.-Y. Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 247 (2014), 723-740.  doi: 10.1016/j.amc.2014.09.072.  Google Scholar

[30]

G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal., 96 (2014), 47-58.  doi: 10.1016/j.na.2013.10.024.  Google Scholar

[31]

X. B. LinP. X. Weng and C. F. Wu, Traveling wave solutions for a predator-prey system with sigmoidal response function, J. Dynam. Differential Equations, 23 (2011), 903-921.  doi: 10.1007/s10884-011-9220-7.  Google Scholar

[32]

A. J. Lotka, Elements of Physicals Biology, Williams and Wilkins Company, Baltimore, 1925. Google Scholar

[33]

J. D. Murray, Mathematical Biology. I: An Introduction, 3$^rd$ edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002.  Google Scholar

[34]

S. X. PanW.-T. Li and G. Lin, Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.  doi: 10.1007/s00033-007-7005-y.  Google Scholar

[35]

J. A. Sherratt, Invasion generates periodic traveling waves (wavetrains) in predator-prey models with nonlocal dispersal, SIAM J. Appl. Math., 76 (2016), 293-313.  doi: 10.1137/15M1027991.  Google Scholar

[36]

V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 119 (1927), 12-13.  doi: 10.1038/119012b0.  Google Scholar

[37]

F.-Y. Yang and W.-T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131-1146.  doi: 10.1016/j.jmaa.2017.10.016.  Google Scholar

[38]

F.-Y. YangW.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal SIR epidemic model, Nonlinear Anal. Real World Appl., 23 (2015), 129-147.  doi: 10.1016/j.nonrwa.2014.12.001.  Google Scholar

[39]

F.-Y. YangY. LiW.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.  doi: 10.3934/dcdsb.2013.18.1969.  Google Scholar

[40]

G.-B. ZhangW.-T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Modelling, 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.  Google Scholar

[41]

G.-B. ZhangW.-T. Li and Z.-C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124.  doi: 10.1016/j.jde.2012.01.014.  Google Scholar

[42]

T. R. ZhangW. D. Wang and K. F. Wang, Minimal wave speed for a class of non-cooperative diffusion-reaction system, J. Differential Equations, 260 (2016), 2763-2791.  doi: 10.1016/j.jde.2015.10.017.  Google Scholar

[1]

Ching-Hui Wang, Sheng-Chen Fu. Traveling wave solutions to diffusive Holling-Tanner predator-prey models. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021007

[2]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[3]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[4]

Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148

[5]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[6]

Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387

[7]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[8]

Jinfeng Wang, Sainan Wu, Junping Shi. Pattern formation in diffusive predator-prey systems with predator-taxis and prey-taxis. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1273-1289. doi: 10.3934/dcdsb.2020162

[9]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[10]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[11]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[12]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[13]

Fang-Di Dong, Wan-Tong Li, Shi-Liang Wu, Li Zhang. Entire solutions originating from monotone fronts for nonlocal dispersal equations with bistable nonlinearity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1031-1060. doi: 10.3934/dcdsb.2020152

[14]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293

[15]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[16]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020404

[17]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[18]

Yiwen Tao, Jingli Ren. The stability and bifurcation of homogeneous diffusive predator–prey systems with spatio–temporal delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021038

[19]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[20]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (66)
  • HTML views (326)
  • Cited by (0)

Other articles
by authors

[Back to Top]