doi: 10.3934/dcdss.2020340

Traveling waves in a nonlocal dispersal predator-prey model

School of Mathematics and Statistics, Lanzhou University, Gansu, Lanzhou 730000, People's Republic of China

* Corresponding author: Wan-Tong Li

Received  May 2019 Revised  October 2019 Published  April 2020

Fund Project: The second author is supported by NSF of China grant 11731005, 11671180 and the third author is supported by NSF of China grant 11601205

This paper is concerned with the traveling wave solutions for a class of predator-prey model with nonlocal dispersal. By adopting the truncation method, we use Schauder's fixed-point theorem to obtain the existence of traveling waves connecting the semi-trivial equilibrium to non-trivial leftover concentrations for $ c>c_{*} $, in which $ c_* $ is the minimal wave speed. Meanwhile, through the limiting approach and the delicate analysis, we establish the existence of traveling wave solutions with the critical speed. Finally, we show the nonexistence of traveling waves for $ 0<c<c_{*} $ by the characteristic equation corresponding to the linearization of original system at the semi-trivial equilibrium. Throughout the whole paper, we need to overcome the difficulties brought by the nonlocal dispersal and the non-preserving of system itself.

Citation: Yu-Xia Hao, Wan-Tong Li, Fei-Ying Yang. Traveling waves in a nonlocal dispersal predator-prey model. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020340
References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165, Amer. Math. Soc., Providence, Rhode Island, 2010. doi: 10.1090/surv/165.  Google Scholar

[2]

S. B. AiY. H. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differential Equations, 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[3]

M. AlfaroJ. Coville and G. Raoul, Bistable travelling waves for nonlocal reaction diffusion equations, Discrete Contin. Dyn. Syst., 34 (2014), 1775-1791.  doi: 10.3934/dcds.2014.34.1775.  Google Scholar

[4]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.  doi: 10.1137/0150099.  Google Scholar

[5]

P. W. BatesP. C. FifeX. F. Ren and X. F. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[6]

X. X. BaoW. T. Li and W. X. Shen, Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats, J. Differential Equations, 260 (2016), 8590-8637.  doi: 10.1016/j.jde.2016.02.032.  Google Scholar

[7]

X. X. BaoW.-T. Li and Z.-C. Wang, Time periodic traveling curved fronts in the periodic Lotka-Volterra competition-diffusion system, J. Dynam. Differential Equations, 29 (2017), 981-1016.  doi: 10.1007/s10884-015-9512-4.  Google Scholar

[8]

X. F. Chen, Existence, uniqueness and asymptotic stability of travelling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[9]

Y.-Y. ChenJ. S. Guo and F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 30 (2017), 2334-2359.  doi: 10.1088/1361-6544/aa6b0a.  Google Scholar

[10]

Y.-Y. ChenJ. S. Guo and C.-H. Yao, Traveling wave solutions for a continuous and discrete diffusive predator-prey model, J. Math. Anal. Appl., 445 (2017), 212-239.  doi: 10.1016/j.jmaa.2016.07.071.  Google Scholar

[11]

J. CovilleJ. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[12]

S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.  doi: 10.1007/BF00276112.  Google Scholar

[13]

S. R. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in $\mathbb{R}^4$, Trans. Amer. Math. Soc., 286 (1984), 557-594.  doi: 10.2307/1999810.  Google Scholar

[14]

S. R. Dunbar, Traveling waves in diffusive predator-prey equations: Periodic orbits and point-to-periodic heteroclinic orbits, SIAM J. Appl. Math., 46 (1986), 1057-1078.  doi: 10.1137/0146063.  Google Scholar

[15]

W. Ding and W. Z. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, J. Dynam. Differential Equations, 28 (2016), 1293-1308.  doi: 10.1007/s10884-015-9472-8.  Google Scholar

[16]

F. D. DongW. T. Li and J. B. Wang, Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application, Discrete Contin. Dyn. Syst., 37 (2017), 6291-6318.  doi: 10.3934/dcds.2017272.  Google Scholar

[17]

R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenice., 7 (1937), 355-369.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[18]

S.-C. Fu and J.-C. Tsai, Wave propagation in predator-prey systems, Nonlinearity, 28 (2015), 4389-4423.  doi: 10.1088/0951-7715/28/12/4389.  Google Scholar

[19]

C.-H. HsuC.-R. YangT.-H. Yang and T.-S. Yang, Existence of traveling wave solutions for diffusive predator-prey type systems, J. Differential Equations, 252 (2012), 3040-3075.  doi: 10.1016/j.jde.2011.11.008.  Google Scholar

[20]

Y. L. Huang and G. Lin, Traveling wave solutions in a diffusive system with two preys and one predator, J. Math. Anal. Appl., 418 (2014), 163-184.  doi: 10.1016/j.jmaa.2014.03.085.  Google Scholar

[21]

J. H. HuangG. Lu and S. G. Ruan, Existence of traveling wave solutions in a diffusive predator-prey model, J. Math. Biol., 46 (2003), 132-152.  doi: 10.1007/s00285-002-0171-9.  Google Scholar

[22]

K. Hong and P. X. Weng, Stability and traveling waves of a stage-structured predator-prey model with Holling type-Ⅱ functional response and harvesting, Nonlinear Anal. Real World Appl., 14 (2013), 83-103.  doi: 10.1016/j.nonrwa.2012.05.004.  Google Scholar

[23]

W. Z. Huang, Traveling wave solutions for a class of predator-prey systems, J. Dynam. Differential Equations, 24 (2012), 633-644.  doi: 10.1007/s10884-012-9255-4.  Google Scholar

[24]

A. N. KolmogorovI. G. Petrovskii and N. S. Piskunov, Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem, Byul. Mosk. Gos. Univ. Ser. A: Mat. Mekh., 1 (1937), 1-26.   Google Scholar

[25]

W.-T. LiY.-J. Sun and Z.-C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.  doi: 10.1016/j.nonrwa.2009.07.005.  Google Scholar

[26]

W.-T. Li and S.-L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-Ⅲ functional response, Chaos Solitons Fractals, 37 (2008), 476-486.  doi: 10.1016/j.chaos.2006.09.039.  Google Scholar

[27]

W.-T. Li and F.-Y. Yang, Traveling waves for a nonlocal dispersal SIR model with standard incidence, J. Integral Equations Appl., 26 (2014), 243-273.  doi: 10.1216/JIE-2014-26-2-243.  Google Scholar

[28]

X.-S. Li and G. Lin, Traveling wavefronts in nonlocal dispersal and cooperative Lotka-Volterra system with delays, Appl. Math. Comput., 204 (2008), 738-744.  doi: 10.1016/j.amc.2008.07.016.  Google Scholar

[29]

Y. LiW.-T. Li and F.-Y. Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 247 (2014), 723-740.  doi: 10.1016/j.amc.2014.09.072.  Google Scholar

[30]

G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal., 96 (2014), 47-58.  doi: 10.1016/j.na.2013.10.024.  Google Scholar

[31]

X. B. LinP. X. Weng and C. F. Wu, Traveling wave solutions for a predator-prey system with sigmoidal response function, J. Dynam. Differential Equations, 23 (2011), 903-921.  doi: 10.1007/s10884-011-9220-7.  Google Scholar

[32]

A. J. Lotka, Elements of Physicals Biology, Williams and Wilkins Company, Baltimore, 1925. Google Scholar

[33]

J. D. Murray, Mathematical Biology. I: An Introduction, 3$^rd$ edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002.  Google Scholar

[34]

S. X. PanW.-T. Li and G. Lin, Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.  doi: 10.1007/s00033-007-7005-y.  Google Scholar

[35]

J. A. Sherratt, Invasion generates periodic traveling waves (wavetrains) in predator-prey models with nonlocal dispersal, SIAM J. Appl. Math., 76 (2016), 293-313.  doi: 10.1137/15M1027991.  Google Scholar

[36]

V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 119 (1927), 12-13.  doi: 10.1038/119012b0.  Google Scholar

[37]

F.-Y. Yang and W.-T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131-1146.  doi: 10.1016/j.jmaa.2017.10.016.  Google Scholar

[38]

F.-Y. YangW.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal SIR epidemic model, Nonlinear Anal. Real World Appl., 23 (2015), 129-147.  doi: 10.1016/j.nonrwa.2014.12.001.  Google Scholar

[39]

F.-Y. YangY. LiW.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.  doi: 10.3934/dcdsb.2013.18.1969.  Google Scholar

[40]

G.-B. ZhangW.-T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Modelling, 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.  Google Scholar

[41]

G.-B. ZhangW.-T. Li and Z.-C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124.  doi: 10.1016/j.jde.2012.01.014.  Google Scholar

[42]

T. R. ZhangW. D. Wang and K. F. Wang, Minimal wave speed for a class of non-cooperative diffusion-reaction system, J. Differential Equations, 260 (2016), 2763-2791.  doi: 10.1016/j.jde.2015.10.017.  Google Scholar

show all references

References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165, Amer. Math. Soc., Providence, Rhode Island, 2010. doi: 10.1090/surv/165.  Google Scholar

[2]

S. B. AiY. H. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differential Equations, 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[3]

M. AlfaroJ. Coville and G. Raoul, Bistable travelling waves for nonlocal reaction diffusion equations, Discrete Contin. Dyn. Syst., 34 (2014), 1775-1791.  doi: 10.3934/dcds.2014.34.1775.  Google Scholar

[4]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.  doi: 10.1137/0150099.  Google Scholar

[5]

P. W. BatesP. C. FifeX. F. Ren and X. F. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[6]

X. X. BaoW. T. Li and W. X. Shen, Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats, J. Differential Equations, 260 (2016), 8590-8637.  doi: 10.1016/j.jde.2016.02.032.  Google Scholar

[7]

X. X. BaoW.-T. Li and Z.-C. Wang, Time periodic traveling curved fronts in the periodic Lotka-Volterra competition-diffusion system, J. Dynam. Differential Equations, 29 (2017), 981-1016.  doi: 10.1007/s10884-015-9512-4.  Google Scholar

[8]

X. F. Chen, Existence, uniqueness and asymptotic stability of travelling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[9]

Y.-Y. ChenJ. S. Guo and F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 30 (2017), 2334-2359.  doi: 10.1088/1361-6544/aa6b0a.  Google Scholar

[10]

Y.-Y. ChenJ. S. Guo and C.-H. Yao, Traveling wave solutions for a continuous and discrete diffusive predator-prey model, J. Math. Anal. Appl., 445 (2017), 212-239.  doi: 10.1016/j.jmaa.2016.07.071.  Google Scholar

[11]

J. CovilleJ. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[12]

S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.  doi: 10.1007/BF00276112.  Google Scholar

[13]

S. R. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in $\mathbb{R}^4$, Trans. Amer. Math. Soc., 286 (1984), 557-594.  doi: 10.2307/1999810.  Google Scholar

[14]

S. R. Dunbar, Traveling waves in diffusive predator-prey equations: Periodic orbits and point-to-periodic heteroclinic orbits, SIAM J. Appl. Math., 46 (1986), 1057-1078.  doi: 10.1137/0146063.  Google Scholar

[15]

W. Ding and W. Z. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, J. Dynam. Differential Equations, 28 (2016), 1293-1308.  doi: 10.1007/s10884-015-9472-8.  Google Scholar

[16]

F. D. DongW. T. Li and J. B. Wang, Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application, Discrete Contin. Dyn. Syst., 37 (2017), 6291-6318.  doi: 10.3934/dcds.2017272.  Google Scholar

[17]

R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenice., 7 (1937), 355-369.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[18]

S.-C. Fu and J.-C. Tsai, Wave propagation in predator-prey systems, Nonlinearity, 28 (2015), 4389-4423.  doi: 10.1088/0951-7715/28/12/4389.  Google Scholar

[19]

C.-H. HsuC.-R. YangT.-H. Yang and T.-S. Yang, Existence of traveling wave solutions for diffusive predator-prey type systems, J. Differential Equations, 252 (2012), 3040-3075.  doi: 10.1016/j.jde.2011.11.008.  Google Scholar

[20]

Y. L. Huang and G. Lin, Traveling wave solutions in a diffusive system with two preys and one predator, J. Math. Anal. Appl., 418 (2014), 163-184.  doi: 10.1016/j.jmaa.2014.03.085.  Google Scholar

[21]

J. H. HuangG. Lu and S. G. Ruan, Existence of traveling wave solutions in a diffusive predator-prey model, J. Math. Biol., 46 (2003), 132-152.  doi: 10.1007/s00285-002-0171-9.  Google Scholar

[22]

K. Hong and P. X. Weng, Stability and traveling waves of a stage-structured predator-prey model with Holling type-Ⅱ functional response and harvesting, Nonlinear Anal. Real World Appl., 14 (2013), 83-103.  doi: 10.1016/j.nonrwa.2012.05.004.  Google Scholar

[23]

W. Z. Huang, Traveling wave solutions for a class of predator-prey systems, J. Dynam. Differential Equations, 24 (2012), 633-644.  doi: 10.1007/s10884-012-9255-4.  Google Scholar

[24]

A. N. KolmogorovI. G. Petrovskii and N. S. Piskunov, Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem, Byul. Mosk. Gos. Univ. Ser. A: Mat. Mekh., 1 (1937), 1-26.   Google Scholar

[25]

W.-T. LiY.-J. Sun and Z.-C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.  doi: 10.1016/j.nonrwa.2009.07.005.  Google Scholar

[26]

W.-T. Li and S.-L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-Ⅲ functional response, Chaos Solitons Fractals, 37 (2008), 476-486.  doi: 10.1016/j.chaos.2006.09.039.  Google Scholar

[27]

W.-T. Li and F.-Y. Yang, Traveling waves for a nonlocal dispersal SIR model with standard incidence, J. Integral Equations Appl., 26 (2014), 243-273.  doi: 10.1216/JIE-2014-26-2-243.  Google Scholar

[28]

X.-S. Li and G. Lin, Traveling wavefronts in nonlocal dispersal and cooperative Lotka-Volterra system with delays, Appl. Math. Comput., 204 (2008), 738-744.  doi: 10.1016/j.amc.2008.07.016.  Google Scholar

[29]

Y. LiW.-T. Li and F.-Y. Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 247 (2014), 723-740.  doi: 10.1016/j.amc.2014.09.072.  Google Scholar

[30]

G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal., 96 (2014), 47-58.  doi: 10.1016/j.na.2013.10.024.  Google Scholar

[31]

X. B. LinP. X. Weng and C. F. Wu, Traveling wave solutions for a predator-prey system with sigmoidal response function, J. Dynam. Differential Equations, 23 (2011), 903-921.  doi: 10.1007/s10884-011-9220-7.  Google Scholar

[32]

A. J. Lotka, Elements of Physicals Biology, Williams and Wilkins Company, Baltimore, 1925. Google Scholar

[33]

J. D. Murray, Mathematical Biology. I: An Introduction, 3$^rd$ edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002.  Google Scholar

[34]

S. X. PanW.-T. Li and G. Lin, Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.  doi: 10.1007/s00033-007-7005-y.  Google Scholar

[35]

J. A. Sherratt, Invasion generates periodic traveling waves (wavetrains) in predator-prey models with nonlocal dispersal, SIAM J. Appl. Math., 76 (2016), 293-313.  doi: 10.1137/15M1027991.  Google Scholar

[36]

V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 119 (1927), 12-13.  doi: 10.1038/119012b0.  Google Scholar

[37]

F.-Y. Yang and W.-T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131-1146.  doi: 10.1016/j.jmaa.2017.10.016.  Google Scholar

[38]

F.-Y. YangW.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal SIR epidemic model, Nonlinear Anal. Real World Appl., 23 (2015), 129-147.  doi: 10.1016/j.nonrwa.2014.12.001.  Google Scholar

[39]

F.-Y. YangY. LiW.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.  doi: 10.3934/dcdsb.2013.18.1969.  Google Scholar

[40]

G.-B. ZhangW.-T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Modelling, 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.  Google Scholar

[41]

G.-B. ZhangW.-T. Li and Z.-C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124.  doi: 10.1016/j.jde.2012.01.014.  Google Scholar

[42]

T. R. ZhangW. D. Wang and K. F. Wang, Minimal wave speed for a class of non-cooperative diffusion-reaction system, J. Differential Equations, 260 (2016), 2763-2791.  doi: 10.1016/j.jde.2015.10.017.  Google Scholar

[1]

Yu Yang, Jinling Zhou, Cheng-Hsiung Hsu. Critical traveling wave solutions for a vaccination model with general incidence. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021087

[2]

Qian Cao, Yongli Cai, Yong Luo. Nonconstant positive solutions to the ratio-dependent predator-prey system with prey-taxis in one dimension. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021095

[3]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[4]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[5]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[6]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[7]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[8]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[9]

Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033

[10]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

[11]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[12]

Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058

[13]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[14]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[15]

Lara Abi Rizk, Jean-Baptiste Burie, Arnaud Ducrot. Asymptotic speed of spread for a nonlocal evolutionary-epidemic system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021064

[16]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[17]

Kun Hu, Yuanshi Wang. Dynamics of consumer-resource systems with consumer's dispersal between patches. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021077

[18]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

[19]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[20]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (83)
  • HTML views (414)
  • Cited by (0)

Other articles
by authors

[Back to Top]