doi: 10.3934/dcdss.2020340

Traveling waves in a nonlocal dispersal predator-prey model

School of Mathematics and Statistics, Lanzhou University, Gansu, Lanzhou 730000, People's Republic of China

* Corresponding author: Wan-Tong Li

Received  May 2019 Revised  October 2019 Published  April 2020

Fund Project: The second author is supported by NSF of China grant 11731005, 11671180 and the third author is supported by NSF of China grant 11601205

This paper is concerned with the traveling wave solutions for a class of predator-prey model with nonlocal dispersal. By adopting the truncation method, we use Schauder's fixed-point theorem to obtain the existence of traveling waves connecting the semi-trivial equilibrium to non-trivial leftover concentrations for $ c>c_{*} $, in which $ c_* $ is the minimal wave speed. Meanwhile, through the limiting approach and the delicate analysis, we establish the existence of traveling wave solutions with the critical speed. Finally, we show the nonexistence of traveling waves for $ 0<c<c_{*} $ by the characteristic equation corresponding to the linearization of original system at the semi-trivial equilibrium. Throughout the whole paper, we need to overcome the difficulties brought by the nonlocal dispersal and the non-preserving of system itself.

Citation: Yu-Xia Hao, Wan-Tong Li, Fei-Ying Yang. Traveling waves in a nonlocal dispersal predator-prey model. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020340
References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165, Amer. Math. Soc., Providence, Rhode Island, 2010. doi: 10.1090/surv/165.  Google Scholar

[2]

S. B. AiY. H. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differential Equations, 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[3]

M. AlfaroJ. Coville and G. Raoul, Bistable travelling waves for nonlocal reaction diffusion equations, Discrete Contin. Dyn. Syst., 34 (2014), 1775-1791.  doi: 10.3934/dcds.2014.34.1775.  Google Scholar

[4]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.  doi: 10.1137/0150099.  Google Scholar

[5]

P. W. BatesP. C. FifeX. F. Ren and X. F. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[6]

X. X. BaoW. T. Li and W. X. Shen, Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats, J. Differential Equations, 260 (2016), 8590-8637.  doi: 10.1016/j.jde.2016.02.032.  Google Scholar

[7]

X. X. BaoW.-T. Li and Z.-C. Wang, Time periodic traveling curved fronts in the periodic Lotka-Volterra competition-diffusion system, J. Dynam. Differential Equations, 29 (2017), 981-1016.  doi: 10.1007/s10884-015-9512-4.  Google Scholar

[8]

X. F. Chen, Existence, uniqueness and asymptotic stability of travelling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[9]

Y.-Y. ChenJ. S. Guo and F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 30 (2017), 2334-2359.  doi: 10.1088/1361-6544/aa6b0a.  Google Scholar

[10]

Y.-Y. ChenJ. S. Guo and C.-H. Yao, Traveling wave solutions for a continuous and discrete diffusive predator-prey model, J. Math. Anal. Appl., 445 (2017), 212-239.  doi: 10.1016/j.jmaa.2016.07.071.  Google Scholar

[11]

J. CovilleJ. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[12]

S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.  doi: 10.1007/BF00276112.  Google Scholar

[13]

S. R. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in $\mathbb{R}^4$, Trans. Amer. Math. Soc., 286 (1984), 557-594.  doi: 10.2307/1999810.  Google Scholar

[14]

S. R. Dunbar, Traveling waves in diffusive predator-prey equations: Periodic orbits and point-to-periodic heteroclinic orbits, SIAM J. Appl. Math., 46 (1986), 1057-1078.  doi: 10.1137/0146063.  Google Scholar

[15]

W. Ding and W. Z. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, J. Dynam. Differential Equations, 28 (2016), 1293-1308.  doi: 10.1007/s10884-015-9472-8.  Google Scholar

[16]

F. D. DongW. T. Li and J. B. Wang, Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application, Discrete Contin. Dyn. Syst., 37 (2017), 6291-6318.  doi: 10.3934/dcds.2017272.  Google Scholar

[17]

R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenice., 7 (1937), 355-369.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[18]

S.-C. Fu and J.-C. Tsai, Wave propagation in predator-prey systems, Nonlinearity, 28 (2015), 4389-4423.  doi: 10.1088/0951-7715/28/12/4389.  Google Scholar

[19]

C.-H. HsuC.-R. YangT.-H. Yang and T.-S. Yang, Existence of traveling wave solutions for diffusive predator-prey type systems, J. Differential Equations, 252 (2012), 3040-3075.  doi: 10.1016/j.jde.2011.11.008.  Google Scholar

[20]

Y. L. Huang and G. Lin, Traveling wave solutions in a diffusive system with two preys and one predator, J. Math. Anal. Appl., 418 (2014), 163-184.  doi: 10.1016/j.jmaa.2014.03.085.  Google Scholar

[21]

J. H. HuangG. Lu and S. G. Ruan, Existence of traveling wave solutions in a diffusive predator-prey model, J. Math. Biol., 46 (2003), 132-152.  doi: 10.1007/s00285-002-0171-9.  Google Scholar

[22]

K. Hong and P. X. Weng, Stability and traveling waves of a stage-structured predator-prey model with Holling type-Ⅱ functional response and harvesting, Nonlinear Anal. Real World Appl., 14 (2013), 83-103.  doi: 10.1016/j.nonrwa.2012.05.004.  Google Scholar

[23]

W. Z. Huang, Traveling wave solutions for a class of predator-prey systems, J. Dynam. Differential Equations, 24 (2012), 633-644.  doi: 10.1007/s10884-012-9255-4.  Google Scholar

[24]

A. N. KolmogorovI. G. Petrovskii and N. S. Piskunov, Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem, Byul. Mosk. Gos. Univ. Ser. A: Mat. Mekh., 1 (1937), 1-26.   Google Scholar

[25]

W.-T. LiY.-J. Sun and Z.-C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.  doi: 10.1016/j.nonrwa.2009.07.005.  Google Scholar

[26]

W.-T. Li and S.-L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-Ⅲ functional response, Chaos Solitons Fractals, 37 (2008), 476-486.  doi: 10.1016/j.chaos.2006.09.039.  Google Scholar

[27]

W.-T. Li and F.-Y. Yang, Traveling waves for a nonlocal dispersal SIR model with standard incidence, J. Integral Equations Appl., 26 (2014), 243-273.  doi: 10.1216/JIE-2014-26-2-243.  Google Scholar

[28]

X.-S. Li and G. Lin, Traveling wavefronts in nonlocal dispersal and cooperative Lotka-Volterra system with delays, Appl. Math. Comput., 204 (2008), 738-744.  doi: 10.1016/j.amc.2008.07.016.  Google Scholar

[29]

Y. LiW.-T. Li and F.-Y. Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 247 (2014), 723-740.  doi: 10.1016/j.amc.2014.09.072.  Google Scholar

[30]

G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal., 96 (2014), 47-58.  doi: 10.1016/j.na.2013.10.024.  Google Scholar

[31]

X. B. LinP. X. Weng and C. F. Wu, Traveling wave solutions for a predator-prey system with sigmoidal response function, J. Dynam. Differential Equations, 23 (2011), 903-921.  doi: 10.1007/s10884-011-9220-7.  Google Scholar

[32]

A. J. Lotka, Elements of Physicals Biology, Williams and Wilkins Company, Baltimore, 1925. Google Scholar

[33]

J. D. Murray, Mathematical Biology. I: An Introduction, 3$^rd$ edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002.  Google Scholar

[34]

S. X. PanW.-T. Li and G. Lin, Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.  doi: 10.1007/s00033-007-7005-y.  Google Scholar

[35]

J. A. Sherratt, Invasion generates periodic traveling waves (wavetrains) in predator-prey models with nonlocal dispersal, SIAM J. Appl. Math., 76 (2016), 293-313.  doi: 10.1137/15M1027991.  Google Scholar

[36]

V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 119 (1927), 12-13.  doi: 10.1038/119012b0.  Google Scholar

[37]

F.-Y. Yang and W.-T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131-1146.  doi: 10.1016/j.jmaa.2017.10.016.  Google Scholar

[38]

F.-Y. YangW.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal SIR epidemic model, Nonlinear Anal. Real World Appl., 23 (2015), 129-147.  doi: 10.1016/j.nonrwa.2014.12.001.  Google Scholar

[39]

F.-Y. YangY. LiW.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.  doi: 10.3934/dcdsb.2013.18.1969.  Google Scholar

[40]

G.-B. ZhangW.-T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Modelling, 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.  Google Scholar

[41]

G.-B. ZhangW.-T. Li and Z.-C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124.  doi: 10.1016/j.jde.2012.01.014.  Google Scholar

[42]

T. R. ZhangW. D. Wang and K. F. Wang, Minimal wave speed for a class of non-cooperative diffusion-reaction system, J. Differential Equations, 260 (2016), 2763-2791.  doi: 10.1016/j.jde.2015.10.017.  Google Scholar

show all references

References:
[1]

F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems, Mathematical Surveys and Monographs, 165, Amer. Math. Soc., Providence, Rhode Island, 2010. doi: 10.1090/surv/165.  Google Scholar

[2]

S. B. AiY. H. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differential Equations, 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[3]

M. AlfaroJ. Coville and G. Raoul, Bistable travelling waves for nonlocal reaction diffusion equations, Discrete Contin. Dyn. Syst., 34 (2014), 1775-1791.  doi: 10.3934/dcds.2014.34.1775.  Google Scholar

[4]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., 50 (1990), 1663-1688.  doi: 10.1137/0150099.  Google Scholar

[5]

P. W. BatesP. C. FifeX. F. Ren and X. F. Wang, Traveling waves in a convolution model for phase transitions, Arch. Rational Mech. Anal., 138 (1997), 105-136.  doi: 10.1007/s002050050037.  Google Scholar

[6]

X. X. BaoW. T. Li and W. X. Shen, Traveling wave solutions of Lotka-Volterra competition systems with nonlocal dispersal in periodic habitats, J. Differential Equations, 260 (2016), 8590-8637.  doi: 10.1016/j.jde.2016.02.032.  Google Scholar

[7]

X. X. BaoW.-T. Li and Z.-C. Wang, Time periodic traveling curved fronts in the periodic Lotka-Volterra competition-diffusion system, J. Dynam. Differential Equations, 29 (2017), 981-1016.  doi: 10.1007/s10884-015-9512-4.  Google Scholar

[8]

X. F. Chen, Existence, uniqueness and asymptotic stability of travelling waves in non-local evolution equations, Adv. Differential Equations, 2 (1997), 125-160.   Google Scholar

[9]

Y.-Y. ChenJ. S. Guo and F. Hamel, Traveling waves for a lattice dynamical system arising in a diffusive endemic model, Nonlinearity, 30 (2017), 2334-2359.  doi: 10.1088/1361-6544/aa6b0a.  Google Scholar

[10]

Y.-Y. ChenJ. S. Guo and C.-H. Yao, Traveling wave solutions for a continuous and discrete diffusive predator-prey model, J. Math. Anal. Appl., 445 (2017), 212-239.  doi: 10.1016/j.jmaa.2016.07.071.  Google Scholar

[11]

J. CovilleJ. Dávila and S. Martínez, Nonlocal anisotropic dispersal with monostable nonlinearity, J. Differential Equations, 244 (2008), 3080-3118.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[12]

S. R. Dunbar, Travelling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.  doi: 10.1007/BF00276112.  Google Scholar

[13]

S. R. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in $\mathbb{R}^4$, Trans. Amer. Math. Soc., 286 (1984), 557-594.  doi: 10.2307/1999810.  Google Scholar

[14]

S. R. Dunbar, Traveling waves in diffusive predator-prey equations: Periodic orbits and point-to-periodic heteroclinic orbits, SIAM J. Appl. Math., 46 (1986), 1057-1078.  doi: 10.1137/0146063.  Google Scholar

[15]

W. Ding and W. Z. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, J. Dynam. Differential Equations, 28 (2016), 1293-1308.  doi: 10.1007/s10884-015-9472-8.  Google Scholar

[16]

F. D. DongW. T. Li and J. B. Wang, Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application, Discrete Contin. Dyn. Syst., 37 (2017), 6291-6318.  doi: 10.3934/dcds.2017272.  Google Scholar

[17]

R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenice., 7 (1937), 355-369.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[18]

S.-C. Fu and J.-C. Tsai, Wave propagation in predator-prey systems, Nonlinearity, 28 (2015), 4389-4423.  doi: 10.1088/0951-7715/28/12/4389.  Google Scholar

[19]

C.-H. HsuC.-R. YangT.-H. Yang and T.-S. Yang, Existence of traveling wave solutions for diffusive predator-prey type systems, J. Differential Equations, 252 (2012), 3040-3075.  doi: 10.1016/j.jde.2011.11.008.  Google Scholar

[20]

Y. L. Huang and G. Lin, Traveling wave solutions in a diffusive system with two preys and one predator, J. Math. Anal. Appl., 418 (2014), 163-184.  doi: 10.1016/j.jmaa.2014.03.085.  Google Scholar

[21]

J. H. HuangG. Lu and S. G. Ruan, Existence of traveling wave solutions in a diffusive predator-prey model, J. Math. Biol., 46 (2003), 132-152.  doi: 10.1007/s00285-002-0171-9.  Google Scholar

[22]

K. Hong and P. X. Weng, Stability and traveling waves of a stage-structured predator-prey model with Holling type-Ⅱ functional response and harvesting, Nonlinear Anal. Real World Appl., 14 (2013), 83-103.  doi: 10.1016/j.nonrwa.2012.05.004.  Google Scholar

[23]

W. Z. Huang, Traveling wave solutions for a class of predator-prey systems, J. Dynam. Differential Equations, 24 (2012), 633-644.  doi: 10.1007/s10884-012-9255-4.  Google Scholar

[24]

A. N. KolmogorovI. G. Petrovskii and N. S. Piskunov, Study of a diffusion equation that is related to the growth of a quality of matter, and its application to a biological problem, Byul. Mosk. Gos. Univ. Ser. A: Mat. Mekh., 1 (1937), 1-26.   Google Scholar

[25]

W.-T. LiY.-J. Sun and Z.-C. Wang, Entire solutions in the Fisher-KPP equation with nonlocal dispersal, Nonlinear Anal. Real World Appl., 11 (2010), 2302-2313.  doi: 10.1016/j.nonrwa.2009.07.005.  Google Scholar

[26]

W.-T. Li and S.-L. Wu, Traveling waves in a diffusive predator-prey model with Holling type-Ⅲ functional response, Chaos Solitons Fractals, 37 (2008), 476-486.  doi: 10.1016/j.chaos.2006.09.039.  Google Scholar

[27]

W.-T. Li and F.-Y. Yang, Traveling waves for a nonlocal dispersal SIR model with standard incidence, J. Integral Equations Appl., 26 (2014), 243-273.  doi: 10.1216/JIE-2014-26-2-243.  Google Scholar

[28]

X.-S. Li and G. Lin, Traveling wavefronts in nonlocal dispersal and cooperative Lotka-Volterra system with delays, Appl. Math. Comput., 204 (2008), 738-744.  doi: 10.1016/j.amc.2008.07.016.  Google Scholar

[29]

Y. LiW.-T. Li and F.-Y. Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 247 (2014), 723-740.  doi: 10.1016/j.amc.2014.09.072.  Google Scholar

[30]

G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal., 96 (2014), 47-58.  doi: 10.1016/j.na.2013.10.024.  Google Scholar

[31]

X. B. LinP. X. Weng and C. F. Wu, Traveling wave solutions for a predator-prey system with sigmoidal response function, J. Dynam. Differential Equations, 23 (2011), 903-921.  doi: 10.1007/s10884-011-9220-7.  Google Scholar

[32]

A. J. Lotka, Elements of Physicals Biology, Williams and Wilkins Company, Baltimore, 1925. Google Scholar

[33]

J. D. Murray, Mathematical Biology. I: An Introduction, 3$^rd$ edition, Interdisciplinary Applied Mathematics, 17. Springer-Verlag, New York, 2002.  Google Scholar

[34]

S. X. PanW.-T. Li and G. Lin, Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications, Z. Angew. Math. Phys., 60 (2009), 377-392.  doi: 10.1007/s00033-007-7005-y.  Google Scholar

[35]

J. A. Sherratt, Invasion generates periodic traveling waves (wavetrains) in predator-prey models with nonlocal dispersal, SIAM J. Appl. Math., 76 (2016), 293-313.  doi: 10.1137/15M1027991.  Google Scholar

[36]

V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 119 (1927), 12-13.  doi: 10.1038/119012b0.  Google Scholar

[37]

F.-Y. Yang and W.-T. Li, Traveling waves in a nonlocal dispersal SIR model with critical wave speed, J. Math. Anal. Appl., 458 (2018), 1131-1146.  doi: 10.1016/j.jmaa.2017.10.016.  Google Scholar

[38]

F.-Y. YangW.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal SIR epidemic model, Nonlinear Anal. Real World Appl., 23 (2015), 129-147.  doi: 10.1016/j.nonrwa.2014.12.001.  Google Scholar

[39]

F.-Y. YangY. LiW.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.  doi: 10.3934/dcdsb.2013.18.1969.  Google Scholar

[40]

G.-B. ZhangW.-T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Modelling, 49 (2009), 1021-1029.  doi: 10.1016/j.mcm.2008.09.007.  Google Scholar

[41]

G.-B. ZhangW.-T. Li and Z.-C. Wang, Spreading speeds and traveling waves for nonlocal dispersal equations with degenerate monostable nonlinearity, J. Differential Equations, 252 (2012), 5096-5124.  doi: 10.1016/j.jde.2012.01.014.  Google Scholar

[42]

T. R. ZhangW. D. Wang and K. F. Wang, Minimal wave speed for a class of non-cooperative diffusion-reaction system, J. Differential Equations, 260 (2016), 2763-2791.  doi: 10.1016/j.jde.2015.10.017.  Google Scholar

[1]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[2]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020129

[3]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1483-1508. doi: 10.3934/cpaa.2019071

[4]

Yaying Dong, Shanbing Li, Yanling Li. Effects of dispersal for a predator-prey model in a heterogeneous environment. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2511-2528. doi: 10.3934/cpaa.2019114

[5]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[6]

Wan-Tong Li, Guo Lin, Cong Ma, Fei-Ying Yang. Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 467-484. doi: 10.3934/dcdsb.2014.19.467

[7]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[8]

Hongmei Cheng, Rong Yuan. Existence and stability of traveling waves for Leslie-Gower predator-prey system with nonlocal diffusion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5433-5454. doi: 10.3934/dcds.2017236

[9]

Christian Kuehn, Thilo Gross. Nonlocal generalized models of predator-prey systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 693-720. doi: 10.3934/dcdsb.2013.18.693

[10]

Xun Cao, Weihua Jiang. Double zero singularity and spatiotemporal patterns in a diffusive predator-prey model with nonlocal prey competition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020069

[11]

Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271

[12]

Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006

[13]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[14]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[15]

Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291

[16]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[17]

Kun Li, Jianhua Huang, Xiong Li. Traveling wave solutions in advection hyperbolic-parabolic system with nonlocal delay. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2091-2119. doi: 10.3934/dcdsb.2018227

[18]

Ronald Mickens, Kale Oyedeji. Traveling wave solutions to modified Burgers and diffusionless Fisher PDE's. Evolution Equations & Control Theory, 2019, 8 (1) : 139-147. doi: 10.3934/eect.2019008

[19]

Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807

[20]

Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265

2018 Impact Factor: 0.545

Article outline

[Back to Top]