
-
Previous Article
From quasi-incompressible to semi-compressible fluids
- DCDS-S Home
- This Issue
-
Next Article
Mathematical model of diabetes and its complication involving fractional operator without singular kernal
Solution of contrast structure type for a reaction-diffusion equation with discontinuous reactive term
1. | School of Mathematical Sciences, East China Normal University, Shanghai 200000, P. R. China |
2. | School of Mathematical Sciences, East China Normal University, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, Shanghai 200000, P. R. China |
In this paper, we consider the Dirichlet boundary value problem for a singularly perturbed reaction-diffusion equation with discontinuous reactive term. We use the asymptotic analysis to construct the formal asymptotic approximation of the solution with internal and boundary layers. The internal layer is located in the vicinity of a curve of the discontinuous reactive term. By using sufficiently precise lower and upper solutions, we prove the existence of a periodic solution and estimate the accuracy of its asymptotic approximation.
References:
[1] |
F. M. Arscott, Periodic-parabolic boundary value problems and positivity, Bulletin of the London Mathematical Society, 24 (1991).
doi: 10.1112/blms/24.6.619. |
[2] |
C. De Coster, F. Obersnel and P. Omari,
A qualitative analysis, via lower and upper solutions, of first order periodic evolutionary equations with lack of uniqueness, Handbook of Differential Equations: Ordinary Differential Equations, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 3 (2006), 203-339.
doi: 10.1016/S1874-5725(06)80007-6. |
[3] |
Z. J. Du and Z. S. Feng,
Existence and asymptotic behaviors of traveling waves of a modified vector-disease model, Commun. Pure Appl. Anal., 17 (2018), 1899-1920.
doi: 10.3934/cpaa.2018090. |
[4] |
Z. J. Du, J. Li and X. W. Li,
The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach, J. Funct. Anal., 275 (2018), 988-1007.
doi: 10.1016/j.jfa.2018.05.005. |
[5] |
G. Hek,
Geometric singular perturbation theory in biological pratice, J. Math. Biol., 60 (2010), 347-386.
doi: 10.1007/s00285-009-0266-7. |
[6] |
N. T. Levashova, O. A. Nikolaeva and A. D. Pashkin, Simulation of the temperature distribution at the water-air interface using the theory of contrast structures, Vestnik Moskov. Univ. Ser. III Fiz. Astronom., (2015), 12–16. |
[7] |
N. T. Levashova, Y. V. Mukhartova and W. A. Davydova, Application of the theory of constract structures to the description of the wind velocity field in the space-inhomogeneous vegetable cover, Moscow University Physics Bulletin, 3 (2015), 3-10. Google Scholar |
[8] |
N. T. Levashova and O. A. Nikolaeva,
The heat equation solution near the interface between two media, Lomonosov Moscow State University, 24 (2017), 339-352.
doi: 10.18255/1818-1015-2017-3-339-352. |
[9] |
N. T. Levashova, N. N. Nefedov and A. O. Orlov,
Time-independent reaction-diffusion equation with a discontinuous reactive term, Computational Mathematics and Mathematical Physics, 57 (2017), 854-866.
doi: 10.1134/S0965542517050062. |
[10] |
N. T. Levashova, N. N. Nefedov, O. A. Nikolaeva, A. O. Orlov and A. A. Panin,
The solution with internal transition layer of the reaction-diffusion equation in case of discontinuous reactive and diffusive terms, Mathematical Methods in the Applied Sciences, 41 (2018), 9203-9217.
doi: 10.1002/mma.5134. |
[11] |
N. T. Levashova, N. N. Nefedov and A. O. Orlov,
Asymptotic stability of a stationary solution of a multidimensional reaction-diffusion equation with a discontinuous source, Comput. Math. Math. Phys., 59 (2019), 573-582.
doi: 10.1134/S0965542519040109. |
[12] |
E. A. Mikhailov, Wavefronts of the magnetic field in galaxies: Asymptotic and numerical approaches, Magnetohydrodynamics, 52 (2016), 117-125. Google Scholar |
[13] |
N. N. Nefedov and M. K. Ni,
Internal layers in the one-dimensional reaction-diffusion equation with a discontinuous reactive term, Computational Mathematics and Mathematical Physics, 55 (2015), 2001-2007.
doi: 10.1134/S096554251512012X. |
[14] |
N. N. Nefedov,
The method of differential inequalities for some singularly perturbed partial differential equations, Differential Equations, 31 (1995), 668-671.
|
[15] |
N. N. Nefedov and M. A. Davydova,
Contrast structures in multidimensional singularly perturbed reaction-diffusion-advection problems, Differential Equations, 48 (2012), 745-755.
doi: 10.1134/S0012266112050138. |
[16] |
N. N. Nefedov and M. A. Davydova,
Contrast structures in singularly perturbed quasilinear reaction-diffusion-advection equations, Differential Equations, 49 (2013), 688-706.
doi: 10.1134/S0012266113060049. |
[17] |
N. N. Nefedov,
An asymptotic method of differential inequalities for the investigation of periodic contrast structures: Existence, asymptotics and stability, Differential Equations, 36 (2000), 298-305.
doi: 10.1007/BF02754216. |
[18] |
A. Orlov, N. Levashova and T. Burbaev, The use of asymptotic methods for modelling of the carriers wave functions in the Si/SiGe heterostructures with quantum-confined layers, Journal of Physics: Conference Series, 586 (2014).
doi: 10.1088/1742-6596/586/1/012003. |
[19] |
A. O. Orlov, N. T. Levashova and N. N. Nefedov,
Solution of contrast structure type for a parabolic reaction-diffusion problem in a medium with discontinuous characteristics, Differential Equations, 54 (2018), 669-686.
doi: 10.1134/S0012266118050105. |
[20] |
C. V. Pao,
Periodic solutions of parabolic systems with nonlinear boundary conditions, Journal of Mathematical Analysis and Applications, 234 (1999), 695-716.
doi: 10.1006/jmaa.1999.6412. |
[21] |
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
![]() |
[22] |
S. I. Pohozaev,
On equations of the form $ \Delta u = f(x, u, Du)$, Mathematics of the USSR-Sbornik, 41 (1982), 269-280.
doi: 10.1070/SM1982v041n02ABEH002233. |
[23] |
V. N. Pavlenko and O. V. Ul'Yanova,
The method of upper and lower solutions for elliptic-type equations with discontinuous nonlinearities, Izv. Vyssh. Uchebn. Zaved. Mat., 42 (1998), 69-76.
|
[24] |
V. N. Pavlenko,
Strong solutions of periodic parabolic problems with discontinuous nonlinearities, Differential Equations, 52 (2016), 505-516.
doi: 10.1134/S0012266116040108. |
[25] |
Y. Pang, M. K. Ni, N. T. Levashova and O. A. Nikolaeva,
Internal layers for a singualrly perturbed second-order quasilinear differential equation with discontinuous right-hand side, Differential Equations, 53 (2017), 1567-1577.
doi: 10.1134/S0012266117120059. |
[26] |
Y. F. Pang, M. K. Ni and M. A. Davaydova,
Contrast structures in problems for a stationary equation of reaction-diffusion-advection type with discontinuous nonlinearity, Mathematical Notes, 104 (2018), 735-744.
doi: 10.4213/mzm11699. |
[27] |
Y. F. Pang, M. K. Ni and N. T. Levashova,
Internal layer for a system of singularly perturbed equations with discontinuous right-hand side, Differential Equations, 54 (2018), 1583-1594.
doi: 10.1134/S0012266118120054. |
[28] |
X. H. Shang and Z. J. Du,
Existence of traveling waves in a generalized nonlinear dispersive-dissipative equation, Math. Methods Appl. Sci., 39 (2016), 3035-3042.
doi: 10.1002/mma.3750. |
[29] |
A. B. Vasil'Yeva, Step-Like Contrasting Structures for a System of Singularly Perturbed Equations, 1994. Google Scholar |
[30] |
A. B. Vasil'Yeva and V. F. Butuzov, Asymptitic Expansions of Solutions to Singularly Perturbed Equations, 1973. Google Scholar |
[31] |
A. B. Vasil'eva, V. F. Butuzov and N. N. Nefedov,
Singularly perturbed problems with boundary and internal layers, Proceedings of the Steklov Institute of Mathematics, 268 (2010), 258-273.
doi: 10.1134/S0081543810010189. |
[32] |
V. T. Volkov and N. N. Nefëdov,
Development of the asymptotic method of differential inequalities for investigation of periodic constrast structures in reaction-diffusion equations, Computational Mathematics and Mathematical Physics, 46 (2006), 585-593.
doi: 10.1134/s0965542506040075. |
[33] |
V. T. Volkov and N. N. Nefëdov,
Periodic solutions with boundary layers of a singularly perturbed reaction-diffusion model, Computational Mathematics and Mathematical Physics, 34 (1994), 1133-1140.
|
[34] |
C. Wang and X. Zhang,
Stability loss delay and smoothness of the return map in slow-fast systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 788-822.
doi: 10.1137/17M1130010. |
[35] |
Y. Xu, Z. J. Du and L. Wei,
Geometric singular perturbation method to the existence and asymptotic behavior of traveling waves for a generalized burgers-kdv equation, Nolinear Dynamics, 83 (2016), 65-73.
doi: 10.1007/s11071-015-2309-5. |
show all references
References:
[1] |
F. M. Arscott, Periodic-parabolic boundary value problems and positivity, Bulletin of the London Mathematical Society, 24 (1991).
doi: 10.1112/blms/24.6.619. |
[2] |
C. De Coster, F. Obersnel and P. Omari,
A qualitative analysis, via lower and upper solutions, of first order periodic evolutionary equations with lack of uniqueness, Handbook of Differential Equations: Ordinary Differential Equations, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 3 (2006), 203-339.
doi: 10.1016/S1874-5725(06)80007-6. |
[3] |
Z. J. Du and Z. S. Feng,
Existence and asymptotic behaviors of traveling waves of a modified vector-disease model, Commun. Pure Appl. Anal., 17 (2018), 1899-1920.
doi: 10.3934/cpaa.2018090. |
[4] |
Z. J. Du, J. Li and X. W. Li,
The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach, J. Funct. Anal., 275 (2018), 988-1007.
doi: 10.1016/j.jfa.2018.05.005. |
[5] |
G. Hek,
Geometric singular perturbation theory in biological pratice, J. Math. Biol., 60 (2010), 347-386.
doi: 10.1007/s00285-009-0266-7. |
[6] |
N. T. Levashova, O. A. Nikolaeva and A. D. Pashkin, Simulation of the temperature distribution at the water-air interface using the theory of contrast structures, Vestnik Moskov. Univ. Ser. III Fiz. Astronom., (2015), 12–16. |
[7] |
N. T. Levashova, Y. V. Mukhartova and W. A. Davydova, Application of the theory of constract structures to the description of the wind velocity field in the space-inhomogeneous vegetable cover, Moscow University Physics Bulletin, 3 (2015), 3-10. Google Scholar |
[8] |
N. T. Levashova and O. A. Nikolaeva,
The heat equation solution near the interface between two media, Lomonosov Moscow State University, 24 (2017), 339-352.
doi: 10.18255/1818-1015-2017-3-339-352. |
[9] |
N. T. Levashova, N. N. Nefedov and A. O. Orlov,
Time-independent reaction-diffusion equation with a discontinuous reactive term, Computational Mathematics and Mathematical Physics, 57 (2017), 854-866.
doi: 10.1134/S0965542517050062. |
[10] |
N. T. Levashova, N. N. Nefedov, O. A. Nikolaeva, A. O. Orlov and A. A. Panin,
The solution with internal transition layer of the reaction-diffusion equation in case of discontinuous reactive and diffusive terms, Mathematical Methods in the Applied Sciences, 41 (2018), 9203-9217.
doi: 10.1002/mma.5134. |
[11] |
N. T. Levashova, N. N. Nefedov and A. O. Orlov,
Asymptotic stability of a stationary solution of a multidimensional reaction-diffusion equation with a discontinuous source, Comput. Math. Math. Phys., 59 (2019), 573-582.
doi: 10.1134/S0965542519040109. |
[12] |
E. A. Mikhailov, Wavefronts of the magnetic field in galaxies: Asymptotic and numerical approaches, Magnetohydrodynamics, 52 (2016), 117-125. Google Scholar |
[13] |
N. N. Nefedov and M. K. Ni,
Internal layers in the one-dimensional reaction-diffusion equation with a discontinuous reactive term, Computational Mathematics and Mathematical Physics, 55 (2015), 2001-2007.
doi: 10.1134/S096554251512012X. |
[14] |
N. N. Nefedov,
The method of differential inequalities for some singularly perturbed partial differential equations, Differential Equations, 31 (1995), 668-671.
|
[15] |
N. N. Nefedov and M. A. Davydova,
Contrast structures in multidimensional singularly perturbed reaction-diffusion-advection problems, Differential Equations, 48 (2012), 745-755.
doi: 10.1134/S0012266112050138. |
[16] |
N. N. Nefedov and M. A. Davydova,
Contrast structures in singularly perturbed quasilinear reaction-diffusion-advection equations, Differential Equations, 49 (2013), 688-706.
doi: 10.1134/S0012266113060049. |
[17] |
N. N. Nefedov,
An asymptotic method of differential inequalities for the investigation of periodic contrast structures: Existence, asymptotics and stability, Differential Equations, 36 (2000), 298-305.
doi: 10.1007/BF02754216. |
[18] |
A. Orlov, N. Levashova and T. Burbaev, The use of asymptotic methods for modelling of the carriers wave functions in the Si/SiGe heterostructures with quantum-confined layers, Journal of Physics: Conference Series, 586 (2014).
doi: 10.1088/1742-6596/586/1/012003. |
[19] |
A. O. Orlov, N. T. Levashova and N. N. Nefedov,
Solution of contrast structure type for a parabolic reaction-diffusion problem in a medium with discontinuous characteristics, Differential Equations, 54 (2018), 669-686.
doi: 10.1134/S0012266118050105. |
[20] |
C. V. Pao,
Periodic solutions of parabolic systems with nonlinear boundary conditions, Journal of Mathematical Analysis and Applications, 234 (1999), 695-716.
doi: 10.1006/jmaa.1999.6412. |
[21] |
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
![]() |
[22] |
S. I. Pohozaev,
On equations of the form $ \Delta u = f(x, u, Du)$, Mathematics of the USSR-Sbornik, 41 (1982), 269-280.
doi: 10.1070/SM1982v041n02ABEH002233. |
[23] |
V. N. Pavlenko and O. V. Ul'Yanova,
The method of upper and lower solutions for elliptic-type equations with discontinuous nonlinearities, Izv. Vyssh. Uchebn. Zaved. Mat., 42 (1998), 69-76.
|
[24] |
V. N. Pavlenko,
Strong solutions of periodic parabolic problems with discontinuous nonlinearities, Differential Equations, 52 (2016), 505-516.
doi: 10.1134/S0012266116040108. |
[25] |
Y. Pang, M. K. Ni, N. T. Levashova and O. A. Nikolaeva,
Internal layers for a singualrly perturbed second-order quasilinear differential equation with discontinuous right-hand side, Differential Equations, 53 (2017), 1567-1577.
doi: 10.1134/S0012266117120059. |
[26] |
Y. F. Pang, M. K. Ni and M. A. Davaydova,
Contrast structures in problems for a stationary equation of reaction-diffusion-advection type with discontinuous nonlinearity, Mathematical Notes, 104 (2018), 735-744.
doi: 10.4213/mzm11699. |
[27] |
Y. F. Pang, M. K. Ni and N. T. Levashova,
Internal layer for a system of singularly perturbed equations with discontinuous right-hand side, Differential Equations, 54 (2018), 1583-1594.
doi: 10.1134/S0012266118120054. |
[28] |
X. H. Shang and Z. J. Du,
Existence of traveling waves in a generalized nonlinear dispersive-dissipative equation, Math. Methods Appl. Sci., 39 (2016), 3035-3042.
doi: 10.1002/mma.3750. |
[29] |
A. B. Vasil'Yeva, Step-Like Contrasting Structures for a System of Singularly Perturbed Equations, 1994. Google Scholar |
[30] |
A. B. Vasil'Yeva and V. F. Butuzov, Asymptitic Expansions of Solutions to Singularly Perturbed Equations, 1973. Google Scholar |
[31] |
A. B. Vasil'eva, V. F. Butuzov and N. N. Nefedov,
Singularly perturbed problems with boundary and internal layers, Proceedings of the Steklov Institute of Mathematics, 268 (2010), 258-273.
doi: 10.1134/S0081543810010189. |
[32] |
V. T. Volkov and N. N. Nefëdov,
Development of the asymptotic method of differential inequalities for investigation of periodic constrast structures in reaction-diffusion equations, Computational Mathematics and Mathematical Physics, 46 (2006), 585-593.
doi: 10.1134/s0965542506040075. |
[33] |
V. T. Volkov and N. N. Nefëdov,
Periodic solutions with boundary layers of a singularly perturbed reaction-diffusion model, Computational Mathematics and Mathematical Physics, 34 (1994), 1133-1140.
|
[34] |
C. Wang and X. Zhang,
Stability loss delay and smoothness of the return map in slow-fast systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 788-822.
doi: 10.1137/17M1130010. |
[35] |
Y. Xu, Z. J. Du and L. Wei,
Geometric singular perturbation method to the existence and asymptotic behavior of traveling waves for a generalized burgers-kdv equation, Nolinear Dynamics, 83 (2016), 65-73.
doi: 10.1007/s11071-015-2309-5. |

[1] |
Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180 |
[2] |
Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021012 |
[3] |
Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 |
[4] |
Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020454 |
[5] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[6] |
Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021026 |
[7] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[8] |
Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332 |
[9] |
Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020371 |
[10] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[11] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[12] |
Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313 |
[13] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[14] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021010 |
[15] |
Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021006 |
[16] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[17] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[18] |
Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021007 |
[19] |
Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293 |
[20] |
Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020375 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]