doi: 10.3934/dcdss.2020341

Solution of contrast structure type for a reaction-diffusion equation with discontinuous reactive term

1. 

School of Mathematical Sciences, East China Normal University, Shanghai 200000, P. R. China

2. 

School of Mathematical Sciences, East China Normal University, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, Shanghai 200000, P. R. China

* Corresponding author: Mingkang Ni

Received  June 2019 Revised  October 2019 Published  April 2020

Fund Project: The second author is supported by the National Natural Science Foundation of China (No. 11871217) and the Science and Technology Commission of Shanghai Municipality (No. 18dz2271000)

In this paper, we consider the Dirichlet boundary value problem for a singularly perturbed reaction-diffusion equation with discontinuous reactive term. We use the asymptotic analysis to construct the formal asymptotic approximation of the solution with internal and boundary layers. The internal layer is located in the vicinity of a curve of the discontinuous reactive term. By using sufficiently precise lower and upper solutions, we prove the existence of a periodic solution and estimate the accuracy of its asymptotic approximation.

Citation: Xiao Wu, Mingkang Ni. Solution of contrast structure type for a reaction-diffusion equation with discontinuous reactive term. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020341
References:
[1]

F. M. Arscott, Periodic-parabolic boundary value problems and positivity, Bulletin of the London Mathematical Society, 24 (1991). doi: 10.1112/blms/24.6.619.  Google Scholar

[2]

C. De CosterF. Obersnel and P. Omari, A qualitative analysis, via lower and upper solutions, of first order periodic evolutionary equations with lack of uniqueness, Handbook of Differential Equations: Ordinary Differential Equations, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 3 (2006), 203-339.  doi: 10.1016/S1874-5725(06)80007-6.  Google Scholar

[3]

Z. J. Du and Z. S. Feng, Existence and asymptotic behaviors of traveling waves of a modified vector-disease model, Commun. Pure Appl. Anal., 17 (2018), 1899-1920.  doi: 10.3934/cpaa.2018090.  Google Scholar

[4]

Z. J. DuJ. Li and X. W. Li, The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach, J. Funct. Anal., 275 (2018), 988-1007.  doi: 10.1016/j.jfa.2018.05.005.  Google Scholar

[5]

G. Hek, Geometric singular perturbation theory in biological pratice, J. Math. Biol., 60 (2010), 347-386.  doi: 10.1007/s00285-009-0266-7.  Google Scholar

[6]

N. T. Levashova, O. A. Nikolaeva and A. D. Pashkin, Simulation of the temperature distribution at the water-air interface using the theory of contrast structures, Vestnik Moskov. Univ. Ser. III Fiz. Astronom., (2015), 12–16.  Google Scholar

[7]

N. T. LevashovaY. V. Mukhartova and W. A. Davydova, Application of the theory of constract structures to the description of the wind velocity field in the space-inhomogeneous vegetable cover, Moscow University Physics Bulletin, 3 (2015), 3-10.   Google Scholar

[8]

N. T. Levashova and O. A. Nikolaeva, The heat equation solution near the interface between two media, Lomonosov Moscow State University, 24 (2017), 339-352.  doi: 10.18255/1818-1015-2017-3-339-352.  Google Scholar

[9]

N. T. LevashovaN. N. Nefedov and A. O. Orlov, Time-independent reaction-diffusion equation with a discontinuous reactive term, Computational Mathematics and Mathematical Physics, 57 (2017), 854-866.  doi: 10.1134/S0965542517050062.  Google Scholar

[10]

N. T. LevashovaN. N. NefedovO. A. NikolaevaA. O. Orlov and A. A. Panin, The solution with internal transition layer of the reaction-diffusion equation in case of discontinuous reactive and diffusive terms, Mathematical Methods in the Applied Sciences, 41 (2018), 9203-9217.  doi: 10.1002/mma.5134.  Google Scholar

[11]

N. T. LevashovaN. N. Nefedov and A. O. Orlov, Asymptotic stability of a stationary solution of a multidimensional reaction-diffusion equation with a discontinuous source, Comput. Math. Math. Phys., 59 (2019), 573-582.  doi: 10.1134/S0965542519040109.  Google Scholar

[12]

E. A. Mikhailov, Wavefronts of the magnetic field in galaxies: Asymptotic and numerical approaches, Magnetohydrodynamics, 52 (2016), 117-125.   Google Scholar

[13]

N. N. Nefedov and M. K. Ni, Internal layers in the one-dimensional reaction-diffusion equation with a discontinuous reactive term, Computational Mathematics and Mathematical Physics, 55 (2015), 2001-2007.  doi: 10.1134/S096554251512012X.  Google Scholar

[14]

N. N. Nefedov, The method of differential inequalities for some singularly perturbed partial differential equations, Differential Equations, 31 (1995), 668-671.   Google Scholar

[15]

N. N. Nefedov and M. A. Davydova, Contrast structures in multidimensional singularly perturbed reaction-diffusion-advection problems, Differential Equations, 48 (2012), 745-755.  doi: 10.1134/S0012266112050138.  Google Scholar

[16]

N. N. Nefedov and M. A. Davydova, Contrast structures in singularly perturbed quasilinear reaction-diffusion-advection equations, Differential Equations, 49 (2013), 688-706.  doi: 10.1134/S0012266113060049.  Google Scholar

[17]

N. N. Nefedov, An asymptotic method of differential inequalities for the investigation of periodic contrast structures: Existence, asymptotics and stability, Differential Equations, 36 (2000), 298-305.  doi: 10.1007/BF02754216.  Google Scholar

[18]

A. Orlov, N. Levashova and T. Burbaev, The use of asymptotic methods for modelling of the carriers wave functions in the Si/SiGe heterostructures with quantum-confined layers, Journal of Physics: Conference Series, 586 (2014). doi: 10.1088/1742-6596/586/1/012003.  Google Scholar

[19]

A. O. OrlovN. T. Levashova and N. N. Nefedov, Solution of contrast structure type for a parabolic reaction-diffusion problem in a medium with discontinuous characteristics, Differential Equations, 54 (2018), 669-686.  doi: 10.1134/S0012266118050105.  Google Scholar

[20]

C. V. Pao, Periodic solutions of parabolic systems with nonlinear boundary conditions, Journal of Mathematical Analysis and Applications, 234 (1999), 695-716.  doi: 10.1006/jmaa.1999.6412.  Google Scholar

[21] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.   Google Scholar
[22]

S. I. Pohozaev, On equations of the form $ \Delta u = f(x, u, Du)$, Mathematics of the USSR-Sbornik, 41 (1982), 269-280.  doi: 10.1070/SM1982v041n02ABEH002233.  Google Scholar

[23]

V. N. Pavlenko and O. V. Ul'Yanova, The method of upper and lower solutions for elliptic-type equations with discontinuous nonlinearities, Izv. Vyssh. Uchebn. Zaved. Mat., 42 (1998), 69-76.   Google Scholar

[24]

V. N. Pavlenko, Strong solutions of periodic parabolic problems with discontinuous nonlinearities, Differential Equations, 52 (2016), 505-516.  doi: 10.1134/S0012266116040108.  Google Scholar

[25]

Y. PangM. K. NiN. T. Levashova and O. A. Nikolaeva, Internal layers for a singualrly perturbed second-order quasilinear differential equation with discontinuous right-hand side, Differential Equations, 53 (2017), 1567-1577.  doi: 10.1134/S0012266117120059.  Google Scholar

[26]

Y. F. PangM. K. Ni and M. A. Davaydova, Contrast structures in problems for a stationary equation of reaction-diffusion-advection type with discontinuous nonlinearity, Mathematical Notes, 104 (2018), 735-744.  doi: 10.4213/mzm11699.  Google Scholar

[27]

Y. F. PangM. K. Ni and N. T. Levashova, Internal layer for a system of singularly perturbed equations with discontinuous right-hand side, Differential Equations, 54 (2018), 1583-1594.  doi: 10.1134/S0012266118120054.  Google Scholar

[28]

X. H. Shang and Z. J. Du, Existence of traveling waves in a generalized nonlinear dispersive-dissipative equation, Math. Methods Appl. Sci., 39 (2016), 3035-3042.  doi: 10.1002/mma.3750.  Google Scholar

[29]

A. B. Vasil'Yeva, Step-Like Contrasting Structures for a System of Singularly Perturbed Equations, 1994. Google Scholar

[30]

A. B. Vasil'Yeva and V. F. Butuzov, Asymptitic Expansions of Solutions to Singularly Perturbed Equations, 1973. Google Scholar

[31]

A. B. Vasil'evaV. F. Butuzov and N. N. Nefedov, Singularly perturbed problems with boundary and internal layers, Proceedings of the Steklov Institute of Mathematics, 268 (2010), 258-273.  doi: 10.1134/S0081543810010189.  Google Scholar

[32]

V. T. Volkov and N. N. Nefëdov, Development of the asymptotic method of differential inequalities for investigation of periodic constrast structures in reaction-diffusion equations, Computational Mathematics and Mathematical Physics, 46 (2006), 585-593.  doi: 10.1134/s0965542506040075.  Google Scholar

[33]

V. T. Volkov and N. N. Nefëdov, Periodic solutions with boundary layers of a singularly perturbed reaction-diffusion model, Computational Mathematics and Mathematical Physics, 34 (1994), 1133-1140.   Google Scholar

[34]

C. Wang and X. Zhang, Stability loss delay and smoothness of the return map in slow-fast systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 788-822.  doi: 10.1137/17M1130010.  Google Scholar

[35]

Y. XuZ. J. Du and L. Wei, Geometric singular perturbation method to the existence and asymptotic behavior of traveling waves for a generalized burgers-kdv equation, Nolinear Dynamics, 83 (2016), 65-73.  doi: 10.1007/s11071-015-2309-5.  Google Scholar

show all references

References:
[1]

F. M. Arscott, Periodic-parabolic boundary value problems and positivity, Bulletin of the London Mathematical Society, 24 (1991). doi: 10.1112/blms/24.6.619.  Google Scholar

[2]

C. De CosterF. Obersnel and P. Omari, A qualitative analysis, via lower and upper solutions, of first order periodic evolutionary equations with lack of uniqueness, Handbook of Differential Equations: Ordinary Differential Equations, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 3 (2006), 203-339.  doi: 10.1016/S1874-5725(06)80007-6.  Google Scholar

[3]

Z. J. Du and Z. S. Feng, Existence and asymptotic behaviors of traveling waves of a modified vector-disease model, Commun. Pure Appl. Anal., 17 (2018), 1899-1920.  doi: 10.3934/cpaa.2018090.  Google Scholar

[4]

Z. J. DuJ. Li and X. W. Li, The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach, J. Funct. Anal., 275 (2018), 988-1007.  doi: 10.1016/j.jfa.2018.05.005.  Google Scholar

[5]

G. Hek, Geometric singular perturbation theory in biological pratice, J. Math. Biol., 60 (2010), 347-386.  doi: 10.1007/s00285-009-0266-7.  Google Scholar

[6]

N. T. Levashova, O. A. Nikolaeva and A. D. Pashkin, Simulation of the temperature distribution at the water-air interface using the theory of contrast structures, Vestnik Moskov. Univ. Ser. III Fiz. Astronom., (2015), 12–16.  Google Scholar

[7]

N. T. LevashovaY. V. Mukhartova and W. A. Davydova, Application of the theory of constract structures to the description of the wind velocity field in the space-inhomogeneous vegetable cover, Moscow University Physics Bulletin, 3 (2015), 3-10.   Google Scholar

[8]

N. T. Levashova and O. A. Nikolaeva, The heat equation solution near the interface between two media, Lomonosov Moscow State University, 24 (2017), 339-352.  doi: 10.18255/1818-1015-2017-3-339-352.  Google Scholar

[9]

N. T. LevashovaN. N. Nefedov and A. O. Orlov, Time-independent reaction-diffusion equation with a discontinuous reactive term, Computational Mathematics and Mathematical Physics, 57 (2017), 854-866.  doi: 10.1134/S0965542517050062.  Google Scholar

[10]

N. T. LevashovaN. N. NefedovO. A. NikolaevaA. O. Orlov and A. A. Panin, The solution with internal transition layer of the reaction-diffusion equation in case of discontinuous reactive and diffusive terms, Mathematical Methods in the Applied Sciences, 41 (2018), 9203-9217.  doi: 10.1002/mma.5134.  Google Scholar

[11]

N. T. LevashovaN. N. Nefedov and A. O. Orlov, Asymptotic stability of a stationary solution of a multidimensional reaction-diffusion equation with a discontinuous source, Comput. Math. Math. Phys., 59 (2019), 573-582.  doi: 10.1134/S0965542519040109.  Google Scholar

[12]

E. A. Mikhailov, Wavefronts of the magnetic field in galaxies: Asymptotic and numerical approaches, Magnetohydrodynamics, 52 (2016), 117-125.   Google Scholar

[13]

N. N. Nefedov and M. K. Ni, Internal layers in the one-dimensional reaction-diffusion equation with a discontinuous reactive term, Computational Mathematics and Mathematical Physics, 55 (2015), 2001-2007.  doi: 10.1134/S096554251512012X.  Google Scholar

[14]

N. N. Nefedov, The method of differential inequalities for some singularly perturbed partial differential equations, Differential Equations, 31 (1995), 668-671.   Google Scholar

[15]

N. N. Nefedov and M. A. Davydova, Contrast structures in multidimensional singularly perturbed reaction-diffusion-advection problems, Differential Equations, 48 (2012), 745-755.  doi: 10.1134/S0012266112050138.  Google Scholar

[16]

N. N. Nefedov and M. A. Davydova, Contrast structures in singularly perturbed quasilinear reaction-diffusion-advection equations, Differential Equations, 49 (2013), 688-706.  doi: 10.1134/S0012266113060049.  Google Scholar

[17]

N. N. Nefedov, An asymptotic method of differential inequalities for the investigation of periodic contrast structures: Existence, asymptotics and stability, Differential Equations, 36 (2000), 298-305.  doi: 10.1007/BF02754216.  Google Scholar

[18]

A. Orlov, N. Levashova and T. Burbaev, The use of asymptotic methods for modelling of the carriers wave functions in the Si/SiGe heterostructures with quantum-confined layers, Journal of Physics: Conference Series, 586 (2014). doi: 10.1088/1742-6596/586/1/012003.  Google Scholar

[19]

A. O. OrlovN. T. Levashova and N. N. Nefedov, Solution of contrast structure type for a parabolic reaction-diffusion problem in a medium with discontinuous characteristics, Differential Equations, 54 (2018), 669-686.  doi: 10.1134/S0012266118050105.  Google Scholar

[20]

C. V. Pao, Periodic solutions of parabolic systems with nonlinear boundary conditions, Journal of Mathematical Analysis and Applications, 234 (1999), 695-716.  doi: 10.1006/jmaa.1999.6412.  Google Scholar

[21] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.   Google Scholar
[22]

S. I. Pohozaev, On equations of the form $ \Delta u = f(x, u, Du)$, Mathematics of the USSR-Sbornik, 41 (1982), 269-280.  doi: 10.1070/SM1982v041n02ABEH002233.  Google Scholar

[23]

V. N. Pavlenko and O. V. Ul'Yanova, The method of upper and lower solutions for elliptic-type equations with discontinuous nonlinearities, Izv. Vyssh. Uchebn. Zaved. Mat., 42 (1998), 69-76.   Google Scholar

[24]

V. N. Pavlenko, Strong solutions of periodic parabolic problems with discontinuous nonlinearities, Differential Equations, 52 (2016), 505-516.  doi: 10.1134/S0012266116040108.  Google Scholar

[25]

Y. PangM. K. NiN. T. Levashova and O. A. Nikolaeva, Internal layers for a singualrly perturbed second-order quasilinear differential equation with discontinuous right-hand side, Differential Equations, 53 (2017), 1567-1577.  doi: 10.1134/S0012266117120059.  Google Scholar

[26]

Y. F. PangM. K. Ni and M. A. Davaydova, Contrast structures in problems for a stationary equation of reaction-diffusion-advection type with discontinuous nonlinearity, Mathematical Notes, 104 (2018), 735-744.  doi: 10.4213/mzm11699.  Google Scholar

[27]

Y. F. PangM. K. Ni and N. T. Levashova, Internal layer for a system of singularly perturbed equations with discontinuous right-hand side, Differential Equations, 54 (2018), 1583-1594.  doi: 10.1134/S0012266118120054.  Google Scholar

[28]

X. H. Shang and Z. J. Du, Existence of traveling waves in a generalized nonlinear dispersive-dissipative equation, Math. Methods Appl. Sci., 39 (2016), 3035-3042.  doi: 10.1002/mma.3750.  Google Scholar

[29]

A. B. Vasil'Yeva, Step-Like Contrasting Structures for a System of Singularly Perturbed Equations, 1994. Google Scholar

[30]

A. B. Vasil'Yeva and V. F. Butuzov, Asymptitic Expansions of Solutions to Singularly Perturbed Equations, 1973. Google Scholar

[31]

A. B. Vasil'evaV. F. Butuzov and N. N. Nefedov, Singularly perturbed problems with boundary and internal layers, Proceedings of the Steklov Institute of Mathematics, 268 (2010), 258-273.  doi: 10.1134/S0081543810010189.  Google Scholar

[32]

V. T. Volkov and N. N. Nefëdov, Development of the asymptotic method of differential inequalities for investigation of periodic constrast structures in reaction-diffusion equations, Computational Mathematics and Mathematical Physics, 46 (2006), 585-593.  doi: 10.1134/s0965542506040075.  Google Scholar

[33]

V. T. Volkov and N. N. Nefëdov, Periodic solutions with boundary layers of a singularly perturbed reaction-diffusion model, Computational Mathematics and Mathematical Physics, 34 (1994), 1133-1140.   Google Scholar

[34]

C. Wang and X. Zhang, Stability loss delay and smoothness of the return map in slow-fast systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 788-822.  doi: 10.1137/17M1130010.  Google Scholar

[35]

Y. XuZ. J. Du and L. Wei, Geometric singular perturbation method to the existence and asymptotic behavior of traveling waves for a generalized burgers-kdv equation, Nolinear Dynamics, 83 (2016), 65-73.  doi: 10.1007/s11071-015-2309-5.  Google Scholar

Figure 1.  the picture for the zero approximation $ U_{0}(x,t,\epsilon) $ for the solution $ u(x,t,\epsilon) $ of (50)
[1]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012

[2]

Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252

[3]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[4]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[5]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[6]

Pengyu Chen, Xuping Zhang, Zhitao Zhang. Asymptotic behavior of time periodic solutions for extended Fisher-Kolmogorov equations with delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021103

[7]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[8]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[9]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021069

[10]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[11]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[12]

Shixiong Wang, Longjiang Qu, Chao Li, Shaojing Fu, Hao Chen. Finding small solutions of the equation $ \mathit{{Bx-Ay = z}} $ and its applications to cryptanalysis of the RSA cryptosystem. Advances in Mathematics of Communications, 2021, 15 (3) : 441-469. doi: 10.3934/amc.2020076

[13]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[14]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[15]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[16]

Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034

[17]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[18]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[19]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[20]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]