• Previous Article
    Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow
  • DCDS-S Home
  • This Issue
  • Next Article
    On the stability of sets for reaction–diffusion Cohen–Grossberg delayed neural networks
doi: 10.3934/dcdss.2020342

Higher order convergence for a class of set differential equations with initial conditions

College of Mathematics and Information Science, Hebei University, Baoding, Hebei 071002, China

* Corresponding author: Peiguang Wang

Received  July 2019 Revised  August 2019 Published  April 2020

Fund Project: The first author is supported by the National Natural Science Foundation of China (grant number 11771115, 11271106)

In this paper, we obtain some rapid convergence results for a class of set differential equations with initial conditions. By introducing the partial derivative of set valued function and the $ m $-hyperconvex/hyperconcave functions ($ m\ge 1 $), and using the comparison principle and quasilinearization, we derive two monotone iterative sequences of approximate solutions of such equations that involve the sum of two functions, and these approximate solutions converge uniformly to the unique solution with higher order.

Citation: Peiguang Wang, Xiran Wu, Huina Liu. Higher order convergence for a class of set differential equations with initial conditions. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020342
References:
[1]

U. Abbas and V. Lupulescu, Set functional differential equations, Commun. Appl. Nonlinear Anal., 18 (2011), 97-110.   Google Scholar

[2]

B. Ahmad, Stability of impulsive hybrid set valued differential equations with delay by perturbing Lyapunov functions, J. Appl. Anal., 14 (2008), 209-218.  doi: 10.1515/JAA.2008.209.  Google Scholar

[3]

T. G. Bhaskar and V. Lakshmikantham, Set differential equations and flow invariance, Applicable Analysis, 82 (2003), 357-368.  doi: 10.1080/0003681031000101529.  Google Scholar

[4]

T. G. Bhaskar and V. Lakshmikantham, Lyapunov stability for set differential equations, Dynamic Systems and Applications, 13 (2004), 1-10.   Google Scholar

[5]

T. G. Bhaskar and J. V. Devi, Nonuniform stability and boundedness criteria for set differential equations, Applicable Analysis, 84 (2005), 131-142.  doi: 10.1080/00036810410001724346.  Google Scholar

[6]

T. G. BhaskarV. Lakshmikantham and J. V. Devi, Nonlinear variation of parameters formula for set differential equations in a metric space, Nonlinear Analysis, 63 (2005), 735-744.  doi: 10.1016/j.na.2005.02.036.  Google Scholar

[7]

J. V. Devi, Basic results in impulsive set differential equations, Nonlinear Studies, 10 (2003), 259-272.   Google Scholar

[8]

J. V. Devi, Extremal solutions and continuous dependences for set differential equations involving causal operators with memory, Communications in Applied Analysis, 15 (2011), 113-124.   Google Scholar

[9]

J. V. Devi and A. S. Vatsala, Monotone iterative technique for impulsive set differential equations, Nonlinear Studies, 11 (2004), 639-658.   Google Scholar

[10]

J. V. Devi, Generalized monotone iterative technique for set differential equations involving causal operators with memory, Int. J. Adv. Eng. Sci. Appl. Math., 3 (2011), 74-83.  doi: 10.1007/s12572-011-0031-1.  Google Scholar

[11]

J. V. Devi and A. S. Vatsala, A study of set differential equations with delay, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 11 (2004), 287-300.   Google Scholar

[12]

J. V. Devi, Comparison theorems and existence results for set causal operators with memory, Nonlinear Studies, 18 (2011), 603-610.   Google Scholar

[13]

D. B. Dhaigudel and C. A. Naidu, Monotone iterative technique for periodic boundary value problem of set differential equations involving causal operators, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 24 (2017), 133-146.  doi: 10.1007/s10732-017-9360-y.  Google Scholar

[14]

G. N. GalanisaT. G. BhaskarV. Lakshmikantham and P. K. Palamides, Set value functions in Fréchet spaces: Continuity, Hukuhara differentiability and applications to set differential equations, Nonlinear Analysis, 61 (2005), 559-575.  doi: 10.1016/j.na.2005.01.004.  Google Scholar

[15]

S. H. Hong, Stability criteria for set dynamic equations on time scales, Comput. Math. Appl., 59 (2010), 3444-3457.  doi: 10.1016/j.camwa.2010.03.033.  Google Scholar

[16]

J. F JiangC. F. Li and H. T. Chen, Existence of solutions for set differential equations involving causal operator with memory in Banach space, J. Appl. Math. Comput., 41 (2013), 183-196.  doi: 10.1007/s12190-012-0604-6.  Google Scholar

[17]

R. N. MohapatraK. Vajravelu and Y. Yin, Extension of the method of quasilinearization and rapid convergence, Journal of Optimization Theory and Applications, 96 (1998), 667-682.  doi: 10.1023/A:1022620813436.  Google Scholar

[18]

G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Advanced Texts and Surveys in Pure and Applied Mathematics, 27. Pitman, Boston, MA, distributed by John Wiley & Sons, Inc., New York, 1985.  Google Scholar

[19]

V. Lakshmikantham and A. S. Vatsala, Generalized Quasilinearization for Nonlinear Problems, Mathematics and its Applications, 440. Kluwer Academic Publishers, Dordrecht, 1998. doi: 10.1007/978-1-4757-2874-3.  Google Scholar

[20]

V. Lakshmikantham, T. G. Bhaskar and J. V. Devi, Theory of Set Differential Equations in Metric Spaces, Cambridge Scientific Publishers, Cambridge, 2006.  Google Scholar

[21]

A. J. B. Lopes PintoF. S. De Blasi and F. Iervolino, Uniqueness and existence theorems for differential equations with compact convex-valued solutions, Boll. Un. Mat. Ital., 3 (1970), 47-54.   Google Scholar

[22]

V. Lupulescu, Successive approximations to solutions of set differential equations in Banach spaces, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15 (2008), 391-401.   Google Scholar

[23]

M. T. Malinowski, On set differential equations in Banach spaces - a second type Hukuhara differentiability approach, Appl. Math. Comput., 219 (2012), 289-305.  doi: 10.1016/j.amc.2012.06.019.  Google Scholar

[24]

M. T. Malinowski, Second type Hukuhara differentiable solutions to the delay set-valued differential equations, Appl. Math. Comput., 218 (2012), 9427-9437.  doi: 10.1016/j.amc.2012.03.027.  Google Scholar

[25]

F. A. McRae and J. V. Devi, Impulsive set differential equations with delay, Applicable Analysis, 8 (2005), 329-341.  doi: 10.1080/00036810410001731483.  Google Scholar

[26]

F. A. McRaeJ. V. Devi and Z. Drici, Existence result for periodic boundary value problem of set differential equations using monotone iterative technique, Communications in Applied Analysis, 19 (2015), 245-256.   Google Scholar

[27]

T. G. Melton and A. S. Vatsala, Generalized quasilinearization and higher order of convergence for first order initial value problems, Dynamic Systems and Applications, 15 (2006), 375-393.   Google Scholar

[28]

N. D. PhuL. T. Quang and N. V. Hoa, On the existence of extremal solutions for set differential equations, Journal of Advanced Research in Dynamical and Control Systems, 4 (2012), 18-28.   Google Scholar

[29]

L. T. QuangN. D. PhuN. V. Hoa and H. Vu, On maximal and minimal solutions for set integro-differential equations with feedback control, Nonlinear Studies, 20 (2013), 39-56.   Google Scholar

[30]

N. N. Tu and T. T. Tung, Stability of set differential equations and applications, Applicable Analysis, 71 (2009), 1526-1533.  doi: 10.1016/j.na.2008.12.045.  Google Scholar

[31]

P. G. Wang and W. Gao, Quasilinearization of an initial value problem for a set valued integro-differential equation, Comput. Math. Appl., 61 (2011), 2111-2115.  doi: 10.1016/j.camwa.2010.08.084.  Google Scholar

show all references

References:
[1]

U. Abbas and V. Lupulescu, Set functional differential equations, Commun. Appl. Nonlinear Anal., 18 (2011), 97-110.   Google Scholar

[2]

B. Ahmad, Stability of impulsive hybrid set valued differential equations with delay by perturbing Lyapunov functions, J. Appl. Anal., 14 (2008), 209-218.  doi: 10.1515/JAA.2008.209.  Google Scholar

[3]

T. G. Bhaskar and V. Lakshmikantham, Set differential equations and flow invariance, Applicable Analysis, 82 (2003), 357-368.  doi: 10.1080/0003681031000101529.  Google Scholar

[4]

T. G. Bhaskar and V. Lakshmikantham, Lyapunov stability for set differential equations, Dynamic Systems and Applications, 13 (2004), 1-10.   Google Scholar

[5]

T. G. Bhaskar and J. V. Devi, Nonuniform stability and boundedness criteria for set differential equations, Applicable Analysis, 84 (2005), 131-142.  doi: 10.1080/00036810410001724346.  Google Scholar

[6]

T. G. BhaskarV. Lakshmikantham and J. V. Devi, Nonlinear variation of parameters formula for set differential equations in a metric space, Nonlinear Analysis, 63 (2005), 735-744.  doi: 10.1016/j.na.2005.02.036.  Google Scholar

[7]

J. V. Devi, Basic results in impulsive set differential equations, Nonlinear Studies, 10 (2003), 259-272.   Google Scholar

[8]

J. V. Devi, Extremal solutions and continuous dependences for set differential equations involving causal operators with memory, Communications in Applied Analysis, 15 (2011), 113-124.   Google Scholar

[9]

J. V. Devi and A. S. Vatsala, Monotone iterative technique for impulsive set differential equations, Nonlinear Studies, 11 (2004), 639-658.   Google Scholar

[10]

J. V. Devi, Generalized monotone iterative technique for set differential equations involving causal operators with memory, Int. J. Adv. Eng. Sci. Appl. Math., 3 (2011), 74-83.  doi: 10.1007/s12572-011-0031-1.  Google Scholar

[11]

J. V. Devi and A. S. Vatsala, A study of set differential equations with delay, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 11 (2004), 287-300.   Google Scholar

[12]

J. V. Devi, Comparison theorems and existence results for set causal operators with memory, Nonlinear Studies, 18 (2011), 603-610.   Google Scholar

[13]

D. B. Dhaigudel and C. A. Naidu, Monotone iterative technique for periodic boundary value problem of set differential equations involving causal operators, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 24 (2017), 133-146.  doi: 10.1007/s10732-017-9360-y.  Google Scholar

[14]

G. N. GalanisaT. G. BhaskarV. Lakshmikantham and P. K. Palamides, Set value functions in Fréchet spaces: Continuity, Hukuhara differentiability and applications to set differential equations, Nonlinear Analysis, 61 (2005), 559-575.  doi: 10.1016/j.na.2005.01.004.  Google Scholar

[15]

S. H. Hong, Stability criteria for set dynamic equations on time scales, Comput. Math. Appl., 59 (2010), 3444-3457.  doi: 10.1016/j.camwa.2010.03.033.  Google Scholar

[16]

J. F JiangC. F. Li and H. T. Chen, Existence of solutions for set differential equations involving causal operator with memory in Banach space, J. Appl. Math. Comput., 41 (2013), 183-196.  doi: 10.1007/s12190-012-0604-6.  Google Scholar

[17]

R. N. MohapatraK. Vajravelu and Y. Yin, Extension of the method of quasilinearization and rapid convergence, Journal of Optimization Theory and Applications, 96 (1998), 667-682.  doi: 10.1023/A:1022620813436.  Google Scholar

[18]

G. S. Ladde, V. Lakshmikantham and A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Advanced Texts and Surveys in Pure and Applied Mathematics, 27. Pitman, Boston, MA, distributed by John Wiley & Sons, Inc., New York, 1985.  Google Scholar

[19]

V. Lakshmikantham and A. S. Vatsala, Generalized Quasilinearization for Nonlinear Problems, Mathematics and its Applications, 440. Kluwer Academic Publishers, Dordrecht, 1998. doi: 10.1007/978-1-4757-2874-3.  Google Scholar

[20]

V. Lakshmikantham, T. G. Bhaskar and J. V. Devi, Theory of Set Differential Equations in Metric Spaces, Cambridge Scientific Publishers, Cambridge, 2006.  Google Scholar

[21]

A. J. B. Lopes PintoF. S. De Blasi and F. Iervolino, Uniqueness and existence theorems for differential equations with compact convex-valued solutions, Boll. Un. Mat. Ital., 3 (1970), 47-54.   Google Scholar

[22]

V. Lupulescu, Successive approximations to solutions of set differential equations in Banach spaces, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 15 (2008), 391-401.   Google Scholar

[23]

M. T. Malinowski, On set differential equations in Banach spaces - a second type Hukuhara differentiability approach, Appl. Math. Comput., 219 (2012), 289-305.  doi: 10.1016/j.amc.2012.06.019.  Google Scholar

[24]

M. T. Malinowski, Second type Hukuhara differentiable solutions to the delay set-valued differential equations, Appl. Math. Comput., 218 (2012), 9427-9437.  doi: 10.1016/j.amc.2012.03.027.  Google Scholar

[25]

F. A. McRae and J. V. Devi, Impulsive set differential equations with delay, Applicable Analysis, 8 (2005), 329-341.  doi: 10.1080/00036810410001731483.  Google Scholar

[26]

F. A. McRaeJ. V. Devi and Z. Drici, Existence result for periodic boundary value problem of set differential equations using monotone iterative technique, Communications in Applied Analysis, 19 (2015), 245-256.   Google Scholar

[27]

T. G. Melton and A. S. Vatsala, Generalized quasilinearization and higher order of convergence for first order initial value problems, Dynamic Systems and Applications, 15 (2006), 375-393.   Google Scholar

[28]

N. D. PhuL. T. Quang and N. V. Hoa, On the existence of extremal solutions for set differential equations, Journal of Advanced Research in Dynamical and Control Systems, 4 (2012), 18-28.   Google Scholar

[29]

L. T. QuangN. D. PhuN. V. Hoa and H. Vu, On maximal and minimal solutions for set integro-differential equations with feedback control, Nonlinear Studies, 20 (2013), 39-56.   Google Scholar

[30]

N. N. Tu and T. T. Tung, Stability of set differential equations and applications, Applicable Analysis, 71 (2009), 1526-1533.  doi: 10.1016/j.na.2008.12.045.  Google Scholar

[31]

P. G. Wang and W. Gao, Quasilinearization of an initial value problem for a set valued integro-differential equation, Comput. Math. Appl., 61 (2011), 2111-2115.  doi: 10.1016/j.camwa.2010.08.084.  Google Scholar

[1]

Robert Baier, Thuy T. T. Le. Construction of the minimum time function for linear systems via higher-order set-valued methods. Mathematical Control & Related Fields, 2019, 9 (2) : 223-255. doi: 10.3934/mcrf.2019012

[2]

Ferenc Hartung. Parameter estimation by quasilinearization in differential equations with state-dependent delays. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1611-1631. doi: 10.3934/dcdsb.2013.18.1611

[3]

Yuan Guo, Xiaofei Gao, Desheng Li. Structure of the set of bounded solutions for a class of nonautonomous second order differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1607-1616. doi: 10.3934/cpaa.2010.9.1607

[4]

Baruch Cahlon. Sufficient conditions for oscillations of higher order neutral delay differential equations. Conference Publications, 1998, 1998 (Special) : 124-137. doi: 10.3934/proc.1998.1998.124

[5]

R.S. Dahiya, A. Zafer. Oscillation theorems of higher order neutral type differential equations. Conference Publications, 1998, 1998 (Special) : 203-219. doi: 10.3934/proc.1998.1998.203

[6]

Paul Eloe, Jaganmohan Jonnalagadda. Quasilinearization applied to boundary value problems at resonance for Riemann-Liouville fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2719-2734. doi: 10.3934/dcdss.2020220

[7]

Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595

[8]

Mohammed Al Horani, Angelo Favini. Inverse problems for singular differential-operator equations with higher order polar singularities. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2159-2168. doi: 10.3934/dcdsb.2014.19.2159

[9]

Yanfei Lu, Qingfei Yin, Hongyi Li, Hongli Sun, Yunlei Yang, Muzhou Hou. Solving higher order nonlinear ordinary differential equations with least squares support vector machines. Journal of Industrial & Management Optimization, 2020, 16 (3) : 1481-1502. doi: 10.3934/jimo.2019012

[10]

Yulin Zhao, Siming Zhu. Higher order Melnikov function for a quartic hamiltonian with cuspidal loop. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 995-1018. doi: 10.3934/dcds.2002.8.995

[11]

Giovanni Colombo, Thuy T. T. Le. Higher order discrete controllability and the approximation of the minimum time function. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4293-4322. doi: 10.3934/dcds.2015.35.4293

[12]

Weisheng Niu, Yao Xu. Convergence rates in homogenization of higher-order parabolic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4203-4229. doi: 10.3934/dcds.2018183

[13]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019115

[14]

Ioan Bucataru. A setting for higher order differential equation fields and higher order Lagrange and Finsler spaces. Journal of Geometric Mechanics, 2013, 5 (3) : 257-279. doi: 10.3934/jgm.2013.5.257

[15]

Dariusz Bugajewski, Piotr Kasprzak. On mappings of higher order and their applications to nonlinear equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 627-647. doi: 10.3934/cpaa.2012.11.627

[16]

Uwe an der Heiden, Mann-Lin Liang. Sharkovsky orderings of higher order difference equations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 599-614. doi: 10.3934/dcds.2004.11.599

[17]

Sun-Yung Alice Chang, Wenxiong Chen. A note on a class of higher order conformally covariant equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 275-281. doi: 10.3934/dcds.2001.7.275

[18]

Sandra Lucente. Large data solutions for semilinear higher order equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020247

[19]

Yihong Xu, Zhenhua Peng. Higher-order sensitivity analysis in set-valued optimization under Henig efficiency. Journal of Industrial & Management Optimization, 2017, 13 (1) : 313-327. doi: 10.3934/jimo.2016019

[20]

Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025

2019 Impact Factor: 1.233

Article outline

[Back to Top]