January  2021, 14(1): 205-217. doi: 10.3934/dcdss.2020346

Orthogonality of fluxes in general nonlinear reaction networks

1. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin, Germany

2. 

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom

Dedicated, in gratitude, to Alex Mielke on the occasion of his 60th birthday

Received  July 2019 Revised  November 2019 Published  May 2020

We consider the chemical reaction networks and study currents in these systems. Reviewing recent decomposition of rate functionals from large deviation theory for Markov processes, we adapt these results for reaction networks. In particular, we state a suitable generalisation of orthogonality of forces in these systems, and derive an inequality that bounds the free energy loss and Fisher information by the rate functional.

Citation: D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346
References:
[1]

S. Adams, N. Dirr, M. Peletier and J. Zimmer, Large deviations and gradient flows, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371 (2013), 17pp. doi: 10.1098/rsta.2012.0341.  Google Scholar

[2]

D. F. Anderson and T. G. Kurtz, Continuous time Markov chain models for chemical reaction networks, in Design and Analysis of Biomolecular Circuits, Springer, NY, 2011, 3–42. doi: 10.1007/978-1-4419-6766-4_1.  Google Scholar

[3]

L. BertiniA. De SoleD. GabrielliG. Jona-Lasinio and C. Landim, Macroscopic fluctuation theory, Rev. Modern Phys., 87 (2015), 593-636.  doi: 10.1103/RevModPhys.87.593.  Google Scholar

[4]

B. HilderM. A. PeletierU. Sharma and O. Tse, An inequality connecting entropy distance, Fisher Information and large deviations, Stochastic Process. Appl., 130 (2020), 2596-2638.  doi: 10.1016/j.spa.2019.07.012.  Google Scholar

[5]

M. KaiserR. L. Jack and J. Zimmer, Canonical structure and orthogonality of forces and currents in irreversible Markov chains, J. Stat. Phys., 170 (2018), 1019-1050.  doi: 10.1007/s10955-018-1986-0.  Google Scholar

[6]

T. G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes, J. Appl. Probability, 7 (1970), 49-58.  doi: 10.2307/3212147.  Google Scholar

[7]

C. Maes, Frenetic bounds on the entropy production, Phys. Rev. Lett., 119 (2017). doi: 10.1103/PhysRevLett.119.160601.  Google Scholar

[8]

C. Maes and K. Netočný, Canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states, Europhys. Lett. EPL, 82 (2008), 6pp. doi: 10.1209/0295-5075/82/30003.  Google Scholar

[9]

A. MielkeR. I. A. PattersonM. A. Peletier and D. R. M. Renger, Non-equilibrium thermodynamical principles for chemical reactions with mass-action kinetics, SIAM J. Appl. Math., 77 (2017), 1562-1585.  doi: 10.1137/16M1102240.  Google Scholar

[10]

A. MielkeM. A. Peletier and D. R. M. Renger, On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion, Potential Anal., 41 (2014), 1293-1327.  doi: 10.1007/s11118-014-9418-5.  Google Scholar

[11]

L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. (2), 91 (1953), 1505-1512.  doi: 10.1103/PhysRev.91.1505.  Google Scholar

[12]

R. I. A. Patterson and D. R. M. Renger, Large deviations of jump process fluxes, Math. Phys. Anal. Geom., 22 (2019), 32pp. doi: 10.1007/s11040-019-9318-4.  Google Scholar

[13]

D. R. M. Renger, Flux large deviations of independent and reacting particle systems, with implications for macroscopic fluctuation theory, J. Stat. Phys., 172 (2018), 1291-1326.  doi: 10.1007/s10955-018-2083-0.  Google Scholar

[14]

D. R. M. Renger, Gradient and GENERIC systems in the space of fluxes, applied to reacting particle systems, Entropy, 20 (2018). doi: 10.3390/e20080596.  Google Scholar

[15]

J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems, Rev. Modern Phys., 48 (1976), 571-585.  doi: 10.1103/RevModPhys.48.571.  Google Scholar

show all references

References:
[1]

S. Adams, N. Dirr, M. Peletier and J. Zimmer, Large deviations and gradient flows, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371 (2013), 17pp. doi: 10.1098/rsta.2012.0341.  Google Scholar

[2]

D. F. Anderson and T. G. Kurtz, Continuous time Markov chain models for chemical reaction networks, in Design and Analysis of Biomolecular Circuits, Springer, NY, 2011, 3–42. doi: 10.1007/978-1-4419-6766-4_1.  Google Scholar

[3]

L. BertiniA. De SoleD. GabrielliG. Jona-Lasinio and C. Landim, Macroscopic fluctuation theory, Rev. Modern Phys., 87 (2015), 593-636.  doi: 10.1103/RevModPhys.87.593.  Google Scholar

[4]

B. HilderM. A. PeletierU. Sharma and O. Tse, An inequality connecting entropy distance, Fisher Information and large deviations, Stochastic Process. Appl., 130 (2020), 2596-2638.  doi: 10.1016/j.spa.2019.07.012.  Google Scholar

[5]

M. KaiserR. L. Jack and J. Zimmer, Canonical structure and orthogonality of forces and currents in irreversible Markov chains, J. Stat. Phys., 170 (2018), 1019-1050.  doi: 10.1007/s10955-018-1986-0.  Google Scholar

[6]

T. G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes, J. Appl. Probability, 7 (1970), 49-58.  doi: 10.2307/3212147.  Google Scholar

[7]

C. Maes, Frenetic bounds on the entropy production, Phys. Rev. Lett., 119 (2017). doi: 10.1103/PhysRevLett.119.160601.  Google Scholar

[8]

C. Maes and K. Netočný, Canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states, Europhys. Lett. EPL, 82 (2008), 6pp. doi: 10.1209/0295-5075/82/30003.  Google Scholar

[9]

A. MielkeR. I. A. PattersonM. A. Peletier and D. R. M. Renger, Non-equilibrium thermodynamical principles for chemical reactions with mass-action kinetics, SIAM J. Appl. Math., 77 (2017), 1562-1585.  doi: 10.1137/16M1102240.  Google Scholar

[10]

A. MielkeM. A. Peletier and D. R. M. Renger, On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion, Potential Anal., 41 (2014), 1293-1327.  doi: 10.1007/s11118-014-9418-5.  Google Scholar

[11]

L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. (2), 91 (1953), 1505-1512.  doi: 10.1103/PhysRev.91.1505.  Google Scholar

[12]

R. I. A. Patterson and D. R. M. Renger, Large deviations of jump process fluxes, Math. Phys. Anal. Geom., 22 (2019), 32pp. doi: 10.1007/s11040-019-9318-4.  Google Scholar

[13]

D. R. M. Renger, Flux large deviations of independent and reacting particle systems, with implications for macroscopic fluctuation theory, J. Stat. Phys., 172 (2018), 1291-1326.  doi: 10.1007/s10955-018-2083-0.  Google Scholar

[14]

D. R. M. Renger, Gradient and GENERIC systems in the space of fluxes, applied to reacting particle systems, Entropy, 20 (2018). doi: 10.3390/e20080596.  Google Scholar

[15]

J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems, Rev. Modern Phys., 48 (1976), 571-585.  doi: 10.1103/RevModPhys.48.571.  Google Scholar

[1]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[2]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[3]

Andreu Ferré Moragues. Properties of multicorrelation sequences and large returns under some ergodicity assumptions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020386

[4]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[5]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[6]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[7]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[8]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[9]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[10]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[11]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[12]

Yukio Kan-On. On the limiting system in the Shigesada, Kawasaki and Teramoto model with large cross-diffusion rates. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3561-3570. doi: 10.3934/dcds.2020161

[13]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[14]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[15]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[16]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, 2021, 20 (2) : 559-582. doi: 10.3934/cpaa.2020281

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (65)
  • HTML views (283)
  • Cited by (1)

Other articles
by authors

[Back to Top]