-
Previous Article
Weak sequential stability for a nonlinear model of nematic electrolytes
- DCDS-S Home
- This Issue
-
Next Article
Global Hopf bifurcation in networks with fast feedback cycles
Orthogonality of fluxes in general nonlinear reaction networks
1. | Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin, Germany |
2. | Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom |
We consider the chemical reaction networks and study currents in these systems. Reviewing recent decomposition of rate functionals from large deviation theory for Markov processes, we adapt these results for reaction networks. In particular, we state a suitable generalisation of orthogonality of forces in these systems, and derive an inequality that bounds the free energy loss and Fisher information by the rate functional.
References:
[1] |
S. Adams, N. Dirr, M. Peletier and J. Zimmer, Large deviations and gradient flows, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371 (2013), 17pp.
doi: 10.1098/rsta.2012.0341. |
[2] |
D. F. Anderson and T. G. Kurtz, Continuous time Markov chain models for chemical reaction networks, in Design and Analysis of Biomolecular Circuits, Springer, NY, 2011, 3–42.
doi: 10.1007/978-1-4419-6766-4_1. |
[3] |
L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim,
Macroscopic fluctuation theory, Rev. Modern Phys., 87 (2015), 593-636.
doi: 10.1103/RevModPhys.87.593. |
[4] |
B. Hilder, M. A. Peletier, U. Sharma and O. Tse,
An inequality connecting entropy distance, Fisher Information and large deviations, Stochastic Process. Appl., 130 (2020), 2596-2638.
doi: 10.1016/j.spa.2019.07.012. |
[5] |
M. Kaiser, R. L. Jack and J. Zimmer,
Canonical structure and orthogonality of forces and currents in irreversible Markov chains, J. Stat. Phys., 170 (2018), 1019-1050.
doi: 10.1007/s10955-018-1986-0. |
[6] |
T. G. Kurtz,
Solutions of ordinary differential equations as limits of pure jump Markov processes, J. Appl. Probability, 7 (1970), 49-58.
doi: 10.2307/3212147. |
[7] |
C. Maes, Frenetic bounds on the entropy production, Phys. Rev. Lett., 119 (2017).
doi: 10.1103/PhysRevLett.119.160601. |
[8] |
C. Maes and K. Netočný, Canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states, Europhys. Lett. EPL, 82 (2008), 6pp.
doi: 10.1209/0295-5075/82/30003. |
[9] |
A. Mielke, R. I. A. Patterson, M. A. Peletier and D. R. M. Renger,
Non-equilibrium thermodynamical principles for chemical reactions with mass-action kinetics, SIAM J. Appl. Math., 77 (2017), 1562-1585.
doi: 10.1137/16M1102240. |
[10] |
A. Mielke, M. A. Peletier and D. R. M. Renger,
On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion, Potential Anal., 41 (2014), 1293-1327.
doi: 10.1007/s11118-014-9418-5. |
[11] |
L. Onsager and S. Machlup,
Fluctuations and irreversible processes, Phys. Rev. (2), 91 (1953), 1505-1512.
doi: 10.1103/PhysRev.91.1505. |
[12] |
R. I. A. Patterson and D. R. M. Renger, Large deviations of jump process fluxes, Math. Phys. Anal. Geom., 22 (2019), 32pp.
doi: 10.1007/s11040-019-9318-4. |
[13] |
D. R. M. Renger,
Flux large deviations of independent and reacting particle systems, with implications for macroscopic fluctuation theory, J. Stat. Phys., 172 (2018), 1291-1326.
doi: 10.1007/s10955-018-2083-0. |
[14] |
D. R. M. Renger, Gradient and GENERIC systems in the space of fluxes, applied to reacting particle systems, Entropy, 20 (2018).
doi: 10.3390/e20080596. |
[15] |
J. Schnakenberg,
Network theory of microscopic and macroscopic behavior of master equation systems, Rev. Modern Phys., 48 (1976), 571-585.
doi: 10.1103/RevModPhys.48.571. |
show all references
References:
[1] |
S. Adams, N. Dirr, M. Peletier and J. Zimmer, Large deviations and gradient flows, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371 (2013), 17pp.
doi: 10.1098/rsta.2012.0341. |
[2] |
D. F. Anderson and T. G. Kurtz, Continuous time Markov chain models for chemical reaction networks, in Design and Analysis of Biomolecular Circuits, Springer, NY, 2011, 3–42.
doi: 10.1007/978-1-4419-6766-4_1. |
[3] |
L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim,
Macroscopic fluctuation theory, Rev. Modern Phys., 87 (2015), 593-636.
doi: 10.1103/RevModPhys.87.593. |
[4] |
B. Hilder, M. A. Peletier, U. Sharma and O. Tse,
An inequality connecting entropy distance, Fisher Information and large deviations, Stochastic Process. Appl., 130 (2020), 2596-2638.
doi: 10.1016/j.spa.2019.07.012. |
[5] |
M. Kaiser, R. L. Jack and J. Zimmer,
Canonical structure and orthogonality of forces and currents in irreversible Markov chains, J. Stat. Phys., 170 (2018), 1019-1050.
doi: 10.1007/s10955-018-1986-0. |
[6] |
T. G. Kurtz,
Solutions of ordinary differential equations as limits of pure jump Markov processes, J. Appl. Probability, 7 (1970), 49-58.
doi: 10.2307/3212147. |
[7] |
C. Maes, Frenetic bounds on the entropy production, Phys. Rev. Lett., 119 (2017).
doi: 10.1103/PhysRevLett.119.160601. |
[8] |
C. Maes and K. Netočný, Canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states, Europhys. Lett. EPL, 82 (2008), 6pp.
doi: 10.1209/0295-5075/82/30003. |
[9] |
A. Mielke, R. I. A. Patterson, M. A. Peletier and D. R. M. Renger,
Non-equilibrium thermodynamical principles for chemical reactions with mass-action kinetics, SIAM J. Appl. Math., 77 (2017), 1562-1585.
doi: 10.1137/16M1102240. |
[10] |
A. Mielke, M. A. Peletier and D. R. M. Renger,
On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion, Potential Anal., 41 (2014), 1293-1327.
doi: 10.1007/s11118-014-9418-5. |
[11] |
L. Onsager and S. Machlup,
Fluctuations and irreversible processes, Phys. Rev. (2), 91 (1953), 1505-1512.
doi: 10.1103/PhysRev.91.1505. |
[12] |
R. I. A. Patterson and D. R. M. Renger, Large deviations of jump process fluxes, Math. Phys. Anal. Geom., 22 (2019), 32pp.
doi: 10.1007/s11040-019-9318-4. |
[13] |
D. R. M. Renger,
Flux large deviations of independent and reacting particle systems, with implications for macroscopic fluctuation theory, J. Stat. Phys., 172 (2018), 1291-1326.
doi: 10.1007/s10955-018-2083-0. |
[14] |
D. R. M. Renger, Gradient and GENERIC systems in the space of fluxes, applied to reacting particle systems, Entropy, 20 (2018).
doi: 10.3390/e20080596. |
[15] |
J. Schnakenberg,
Network theory of microscopic and macroscopic behavior of master equation systems, Rev. Modern Phys., 48 (1976), 571-585.
doi: 10.1103/RevModPhys.48.571. |
[1] |
Congming Li, Eric S. Wright. Modeling chemical reactions in rivers: A three component reaction. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 377-384. doi: 10.3934/dcds.2001.7.373 |
[2] |
Arno F. Münster. Simulation of stationary chemical patterns and waves in ionic reactions. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 35-46. doi: 10.3934/dcdsb.2002.2.35 |
[3] |
Marzia Bisi, Maria Groppi, Giampiero Spiga. Flame structure from a kinetic model for chemical reactions. Kinetic and Related Models, 2010, 3 (1) : 17-34. doi: 10.3934/krm.2010.3.17 |
[4] |
Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic and Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153 |
[5] |
Miguel Abadi, Sandro Vaienti. Large deviations for short recurrence. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 729-747. doi: 10.3934/dcds.2008.21.729 |
[6] |
Wenxiong Chen, Congming Li, Eric S. Wright. On a nonlinear parabolic system-modeling chemical reactions in rivers. Communications on Pure and Applied Analysis, 2005, 4 (4) : 889-899. doi: 10.3934/cpaa.2005.4.889 |
[7] |
Julien Coatléven, Claudio Altafini. A kinetic mechanism inducing oscillations in simple chemical reactions networks. Mathematical Biosciences & Engineering, 2010, 7 (2) : 301-312. doi: 10.3934/mbe.2010.7.301 |
[8] |
Andrea Picco, Lamberto Rondoni. Boltzmann maps for networks of chemical reactions and the multi-stability problem. Networks and Heterogeneous Media, 2009, 4 (3) : 501-526. doi: 10.3934/nhm.2009.4.501 |
[9] |
Steinar Evje, Aksel Hiorth, Merete V. Madland, Reidar I. Korsnes. A mathematical model relevant for weakening of chalk reservoirs due to chemical reactions. Networks and Heterogeneous Media, 2009, 4 (4) : 755-788. doi: 10.3934/nhm.2009.4.755 |
[10] |
Dongmei Zheng, Ercai Chen, Jiahong Yang. On large deviations for amenable group actions. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7191-7206. doi: 10.3934/dcds.2016113 |
[11] |
Salah-Eldin A. Mohammed, Tusheng Zhang. Large deviations for stochastic systems with memory. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 881-893. doi: 10.3934/dcdsb.2006.6.881 |
[12] |
Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103 |
[13] |
Thomas Bogenschütz, Achim Doebler. Large deviations in expanding random dynamical systems. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 805-812. doi: 10.3934/dcds.1999.5.805 |
[14] |
Mathias Staudigl, Srinivas Arigapudi, William H. Sandholm. Large deviations and Stochastic stability in Population Games. Journal of Dynamics and Games, 2021 doi: 10.3934/jdg.2021021 |
[15] |
Renaud Leplaideur, Benoît Saussol. Large deviations for return times in non-rectangle sets for axiom a diffeomorphisms. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 327-344. doi: 10.3934/dcds.2008.22.327 |
[16] |
Artur O. Lopes, Rafael O. Ruggiero. Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1155-1174. doi: 10.3934/dcds.2011.29.1155 |
[17] |
Vesselin Petkov, Luchezar Stoyanov. Spectral estimates for Ruelle operators with two parameters and sharp large deviations. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6391-6417. doi: 10.3934/dcds.2019277 |
[18] |
Federico Bassetti, Lucia Ladelli. Large deviations for the solution of a Kac-type kinetic equation. Kinetic and Related Models, 2013, 6 (2) : 245-268. doi: 10.3934/krm.2013.6.245 |
[19] |
Alexander Veretennikov. On large deviations in the averaging principle for SDE's with a "full dependence,'' revisited. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 523-549. doi: 10.3934/dcdsb.2013.18.523 |
[20] |
Martino Bardi, Annalisa Cesaroni, Daria Ghilli. Large deviations for some fast stochastic volatility models by viscosity methods. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3965-3988. doi: 10.3934/dcds.2015.35.3965 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]