
-
Previous Article
Traveling wave solution for a diffusive simple epidemic model with a free boundary
- DCDS-S Home
- This Issue
-
Next Article
Reflection of a self-propelling rigid disk from a boundary
Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction
a. | Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13,120 00 Prague, Czech Republic |
b. | Department of Heat Engineering and Environment Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland |
In this article, we deal with the numerical immersed boundary-lattice Boltzmann method for simulation of the fluid-structure interaction problems in 2D. We consider the interaction of incompressible, Newtonian fluid in an isothermal system with an elastic fiber, which represents an immersed body boundary. First, a short introduction to the lattice Boltzmann and immersed boundary method is presented and the combination of these two methods is briefly discussed. Then, the choice of the smooth approximation of the Dirac delta function and the discretization of the immersed body is discussed. One of the significant drawbacks of immersed boundary method is the penetrative flow through the immersed impermeable boundary. The effect of the immersed body boundary discretization is investigated using two benchmark problems, where an elastic fiber is deformed. The results indicate that the restrictions placed on the discretization in literature are not necessary.
References:
[1] | F. Bashforth and J. C. Adams, An attempt to test the theories of capillary action: By comparing the theoretical and measured forms of drops of fluid, Cambridge University Press, 1883. Google Scholar |
[2] |
S. R. Blair and Y. W. Kwon, Modeling of fluid–structure interaction using lattice Boltzmann and finite element methods, J. Pressure Vessel Technol., 137 (2015), 9pp.
doi: 10.1115/1.4027866. |
[3] |
S. Chikatamarla, S. Ansumali and I. Karlin, Entropic lattice Boltzmann models for hydrodynamics in three dimensions, Phys. Rev. Lett., 97 (2006), 4pp.
doi: 10.1103/PhysRevLett.97.010201. |
[4] |
B. S. H. Connell and D. K. P. Yue,
Flapping dynamics of a flag in a uniform stream, J. Fluid Mech., 581 (2007), 33-67.
doi: 10.1017/S0022112007005307. |
[5] |
D. d'Humières, Generalized lattice-Boltzmann equations, Prog. Astronautics Aeronautics, 159 (1994).
doi: 10.2514/5.9781600866319.0450.0458. |
[6] |
R. Fučík, P. Eichler, R. Straka, P. Pauš, J. Klinkovský and T. Oberhuber,
On optimal node spacing for immersed boundary lattice Boltzmann method in 2D and 3D, Comput. Math. Appl., 77 (2019), 1144-1162.
doi: 10.1016/j.camwa.2018.10.045. |
[7] |
M. Geier, A. Greiner and J. G. Korvink, Cascaded digital lattice Boltzmann automata for high Reynolds number flow, Phys. Rev. E, 73 (2006).
doi: 10.1103/PhysRevE.73.066705. |
[8] |
M. Geier, M. Schönherr, A. Pasquili and M. Krafczyk,
The cumulant lattice Boltzmann equation in three dimensions: Theory and validation, Comput. Math. Appl., 70 (2015), 507-547.
doi: 10.1016/j.camwa.2015.05.001. |
[9] |
Z. Guo and C. Shu, Lattice Boltzmann Method and its Applications in Engineering, Advances in Computational Fluid Dynamics, 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.
doi: 10.1142/8806. |
[10] |
B. Kallemov, A. P. S. Bhalla, B. E. Griffith and A. Donev,
An immersed boundary method for rigid bodies, Commun. Appl. Math. Comput. Sci., 11 (2016), 79-141.
doi: 10.2140/camcos.2016.11.79. |
[11] |
I. Karlin, F. Bösch and S. Chikatamarla, Gibbs' principle for the lattice-kinetic theory of fluid dynamics, Phys. Rev. E, 90 (2014).
doi: 10.1103/PhysRevE.90.031302. |
[12] |
Y. Kim and C. S. Peskin, Penalty immersed boundary method for an elastic boundary with mass, Phys. Fluids, 19 (2007).
doi: 10.1063/1.2734674. |
[13] |
T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Orest and E. Viggen, The Lattice Boltzmann Method: Principles and Practice, Graduate Texts in Physics, Springer, Cham, 2017.
doi: 10.1007/978-3-319-44649-3. |
[14] |
T. Krüger, F. Varnik and D. Raabe,
Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method, Comput. Math. Appl., 61 (2011), 3485-3505.
doi: 10.1016/j.camwa.2010.03.057. |
[15] |
H. Lewy, K. Friedrichs and R. Courant,
Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100 (1928), 32-74.
doi: 10.1007/BF01448839. |
[16] |
C. S. Peskin,
The immersed boundary method, Acta Numer., 11 (2002), 479-517.
doi: 10.1017/S0962492902000077. |
[17] |
K. N. Premnath and S. Banerjee, Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.036702. |
[18] |
K. V. Sharman, R. Straka and F. W. Tavares,
New Cascaded Thermal Lattice Boltzmann Method for simulations of advection-diffusion and convective heat transfer, Internat. J. Thermal Sciences, 118 (2017), 259-277.
doi: 10.1016/j.ijthermalsci.2017.04.020. |
[19] |
M. C. Sukop and D. J. Thorne Jr., Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, Springer, Berlin, Heidelberg, 2006.
doi: 10.1007/978-3-540-27982-2. |
[20] |
K. Taira and T. Colonius,
The immersed boundary method: A projection approach, J. Comput. Phys., 225 (2007), 2118-2137.
doi: 10.1016/j.jcp.2007.03.005. |
[21] |
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[22] |
F.-B. Tian, H. Luo, L. Zhu, J. C. Liao and X.-Y. Lu,
An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments, J. Comput. Phys., 230 (2011), 7266-7283.
doi: 10.1016/j.jcp.2011.05.028. |
[23] |
J. Tölke,
Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA, Comput. Visualization Science, 13 (2010), 29-39.
doi: 10.1007/s00791-008-0120-2. |
[24] |
V. S. Vladimirov, Methods of the Theory of Generalized Functions, Analytical Methods and Special Functions, 6, Taylor & Francis, London, 2002. |
[25] |
X. Yang, X. Zhang, Z. Li and G.-W. He,
A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations, J. Comput. Phys., 228 (2009), 7821-7836.
doi: 10.1016/j.jcp.2009.07.023. |
[26] |
Z.-Q. Zhang, G. R. Liu and B. C. Khoo,
Immersed smoothed finite element method for two dimensional fluid-structure interaction problems, Internat. J. Numer. Methods Engrg., 90 (2012), 1292-1320.
doi: 10.1002/nme.4299. |
show all references
References:
[1] | F. Bashforth and J. C. Adams, An attempt to test the theories of capillary action: By comparing the theoretical and measured forms of drops of fluid, Cambridge University Press, 1883. Google Scholar |
[2] |
S. R. Blair and Y. W. Kwon, Modeling of fluid–structure interaction using lattice Boltzmann and finite element methods, J. Pressure Vessel Technol., 137 (2015), 9pp.
doi: 10.1115/1.4027866. |
[3] |
S. Chikatamarla, S. Ansumali and I. Karlin, Entropic lattice Boltzmann models for hydrodynamics in three dimensions, Phys. Rev. Lett., 97 (2006), 4pp.
doi: 10.1103/PhysRevLett.97.010201. |
[4] |
B. S. H. Connell and D. K. P. Yue,
Flapping dynamics of a flag in a uniform stream, J. Fluid Mech., 581 (2007), 33-67.
doi: 10.1017/S0022112007005307. |
[5] |
D. d'Humières, Generalized lattice-Boltzmann equations, Prog. Astronautics Aeronautics, 159 (1994).
doi: 10.2514/5.9781600866319.0450.0458. |
[6] |
R. Fučík, P. Eichler, R. Straka, P. Pauš, J. Klinkovský and T. Oberhuber,
On optimal node spacing for immersed boundary lattice Boltzmann method in 2D and 3D, Comput. Math. Appl., 77 (2019), 1144-1162.
doi: 10.1016/j.camwa.2018.10.045. |
[7] |
M. Geier, A. Greiner and J. G. Korvink, Cascaded digital lattice Boltzmann automata for high Reynolds number flow, Phys. Rev. E, 73 (2006).
doi: 10.1103/PhysRevE.73.066705. |
[8] |
M. Geier, M. Schönherr, A. Pasquili and M. Krafczyk,
The cumulant lattice Boltzmann equation in three dimensions: Theory and validation, Comput. Math. Appl., 70 (2015), 507-547.
doi: 10.1016/j.camwa.2015.05.001. |
[9] |
Z. Guo and C. Shu, Lattice Boltzmann Method and its Applications in Engineering, Advances in Computational Fluid Dynamics, 3, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013.
doi: 10.1142/8806. |
[10] |
B. Kallemov, A. P. S. Bhalla, B. E. Griffith and A. Donev,
An immersed boundary method for rigid bodies, Commun. Appl. Math. Comput. Sci., 11 (2016), 79-141.
doi: 10.2140/camcos.2016.11.79. |
[11] |
I. Karlin, F. Bösch and S. Chikatamarla, Gibbs' principle for the lattice-kinetic theory of fluid dynamics, Phys. Rev. E, 90 (2014).
doi: 10.1103/PhysRevE.90.031302. |
[12] |
Y. Kim and C. S. Peskin, Penalty immersed boundary method for an elastic boundary with mass, Phys. Fluids, 19 (2007).
doi: 10.1063/1.2734674. |
[13] |
T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Orest and E. Viggen, The Lattice Boltzmann Method: Principles and Practice, Graduate Texts in Physics, Springer, Cham, 2017.
doi: 10.1007/978-3-319-44649-3. |
[14] |
T. Krüger, F. Varnik and D. Raabe,
Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method, Comput. Math. Appl., 61 (2011), 3485-3505.
doi: 10.1016/j.camwa.2010.03.057. |
[15] |
H. Lewy, K. Friedrichs and R. Courant,
Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100 (1928), 32-74.
doi: 10.1007/BF01448839. |
[16] |
C. S. Peskin,
The immersed boundary method, Acta Numer., 11 (2002), 479-517.
doi: 10.1017/S0962492902000077. |
[17] |
K. N. Premnath and S. Banerjee, Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments, Phys. Rev. E, 80 (2009).
doi: 10.1103/PhysRevE.80.036702. |
[18] |
K. V. Sharman, R. Straka and F. W. Tavares,
New Cascaded Thermal Lattice Boltzmann Method for simulations of advection-diffusion and convective heat transfer, Internat. J. Thermal Sciences, 118 (2017), 259-277.
doi: 10.1016/j.ijthermalsci.2017.04.020. |
[19] |
M. C. Sukop and D. J. Thorne Jr., Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, Springer, Berlin, Heidelberg, 2006.
doi: 10.1007/978-3-540-27982-2. |
[20] |
K. Taira and T. Colonius,
The immersed boundary method: A projection approach, J. Comput. Phys., 225 (2007), 2118-2137.
doi: 10.1016/j.jcp.2007.03.005. |
[21] |
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. |
[22] |
F.-B. Tian, H. Luo, L. Zhu, J. C. Liao and X.-Y. Lu,
An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments, J. Comput. Phys., 230 (2011), 7266-7283.
doi: 10.1016/j.jcp.2011.05.028. |
[23] |
J. Tölke,
Implementation of a Lattice Boltzmann kernel using the Compute Unified Device Architecture developed by nVIDIA, Comput. Visualization Science, 13 (2010), 29-39.
doi: 10.1007/s00791-008-0120-2. |
[24] |
V. S. Vladimirov, Methods of the Theory of Generalized Functions, Analytical Methods and Special Functions, 6, Taylor & Francis, London, 2002. |
[25] |
X. Yang, X. Zhang, Z. Li and G.-W. He,
A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations, J. Comput. Phys., 228 (2009), 7821-7836.
doi: 10.1016/j.jcp.2009.07.023. |
[26] |
Z.-Q. Zhang, G. R. Liu and B. C. Khoo,
Immersed smoothed finite element method for two dimensional fluid-structure interaction problems, Internat. J. Numer. Methods Engrg., 90 (2012), 1292-1320.
doi: 10.1002/nme.4299. |










[1] |
Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021018 |
[2] |
Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078 |
[3] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[4] |
Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021003 |
[5] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[6] |
Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020178 |
[7] |
Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013 |
[8] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020180 |
[9] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[10] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[11] |
Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007 |
[12] |
François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221 |
[13] |
Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076 |
[14] |
Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020462 |
[15] |
Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250 |
[16] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[17] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[18] |
Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139 |
[19] |
C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control & Optimization, 2020 doi: 10.3934/naco.2020058 |
[20] |
Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045 |
2019 Impact Factor: 1.233
Tools
Article outline
Figures and Tables
[Back to Top]