• Previous Article
    Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties
  • DCDS-S Home
  • This Issue
  • Next Article
    Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions
February  2021, 14(2): 653-676. doi: 10.3934/dcdss.2020353

A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions

1. 

Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Congo Brazzaville

2. 

Laboratoire de Mathématiques et Applications, Université de Poitiers, CNRS, F-86073 Poitiers, France

* Corresponding author: Morgan Pierre

Dedicated to Michel Pierre on the occasion of his 70th birthday

Received  October 2019 Revised  January 2020 Published  May 2020

We propose a time semi-discrete scheme for the Caginalp phase-field system with singular potentials and dynamic boundary conditions. The scheme is based on a time splitting which decouples the equations and on a convex splitting of the energy associated to the problem. The scheme is unconditionally uniquely solvable and the energy is nonincreasing if the time step is small enough. The discrete solution is shown to converge to the energy solution of the problem as the time step tends to $ 0 $. The proof involves a multivalued operator and a monotonicity argument. This approach allows us to compute numerically singular solutions to the problem.

Citation: Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353
References:
[1]

P. F. AntoniettiM. GrasselliS. Stangalino and M. Verani, Discontinuous Galerkin approximation of linear parabolic problems with dynamic boundary conditions, J. Sci. Comput., 66 (2016), 1260-1280.  doi: 10.1007/s10915-015-0063-y.  Google Scholar

[2]

H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984.  Google Scholar

[3]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976.  Google Scholar

[4]

S. Bartels and R. Müller, Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential, Numer. Math., 119 (2011), 409-435.  doi: 10.1007/s00211-011-0389-9.  Google Scholar

[5]

N. Batangouna and M. Pierre, Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system, Commun. Pure Appl. Anal., 17 (2018), 1-19.  doi: 10.3934/cpaa.2018001.  Google Scholar

[6]

F. Boyer and F. Nabet, A DDFV method for a Cahn-Hilliard/Stokes phase field model with dynamic boundary conditions, ESAIM Math. Model. Numer. Anal., 51 (2017), 1691-1731.  doi: 10.1051/m2an/2016073.  Google Scholar

[7]

H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.  Google Scholar

[8]

H. Brezis, Analyse Fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.  Google Scholar

[9]

G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.  doi: 10.1007/BF00254827.  Google Scholar

[10]

W. Chen, C. Wang, X. Wang and S. M. Wise, Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential, J. Comput. Phys. X, 3 (2019). doi: 10.1016/j.jcpx.2019.100031.  Google Scholar

[11]

L. CherfilsH. Fakih and A. Miranville, Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting, Inverse Probl. Imaging, 9 (2015), 105-125.  doi: 10.3934/ipi.2015.9.105.  Google Scholar

[12]

L. CherfilsH. Fakih and A. Miranville, On the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation with logarithmic nonlinear terms, SIAM J. Imaging Sci., 8 (2015), 1123-1140.  doi: 10.1137/140985627.  Google Scholar

[13]

L. CherfilsS. Gatti and A. Miranville, Corrigendum to: "Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials", J. Math. Anal. Appl., 348 (2008), 1029-1030.  doi: 10.1016/j.jmaa.2008.07.058.  Google Scholar

[14]

L. Cherfils, S. Gatti and A. Miranville, Finite dimensional attractors for the Caginalp system with singular potentials and dynamic boundary conditions, Bull. Transilv. Univ. Braşov Ser. III, 2 (2009), 25–34.  Google Scholar

[15]

L. CherfilsS. Gatti and A. Miranville, Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 11 (2012), 2261-2290.  doi: 10.3934/cpaa.2012.11.2261.  Google Scholar

[16]

L. Cherfils and A. Miranville, Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl., 17 (2007), 107-129.   Google Scholar

[17]

L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 54 (2009), 89-115.  doi: 10.1007/s10492-009-0008-6.  Google Scholar

[18]

L. CherfilsA. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596.  doi: 10.1007/s00032-011-0165-4.  Google Scholar

[19]

L. Cherfils and M. Petcu, A numerical analysis of the Cahn-Hilliard equation with non-permeable walls, Numer. Math., 128 (2014), 517-549.  doi: 10.1007/s00211-014-0618-0.  Google Scholar

[20]

L. CherfilsM. Petcu and M. Pierre, A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 27 (2010), 1511-1533.  doi: 10.3934/dcds.2010.27.1511.  Google Scholar

[21]

M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), 39-65.  doi: 10.1007/BF01385847.  Google Scholar

[22]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Applied Mathematics, 28, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999. doi: 10.1137/1.9781611971088.  Google Scholar

[23]

H. P. FischerP. Maass and W. Dieterich, Novel surface modes in spinodal decomposition, Phys. Rev. Lett., 79 (1997), 893-896.  doi: 10.1103/PhysRevLett.79.893.  Google Scholar

[24]

H. P. FischerP. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows, Europhys. Lett., 42 (1998), 49-54.   Google Scholar

[25]

H. P. FischerJ. ReinhardW. DieterichJ.-F. GouyetP. MaassA. Majhofer and D. Reinel, Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall, J. Chem. Phys., 108 (1998), 3028-3037.  doi: 10.1063/1.475690.  Google Scholar

[26]

T. FukaoS. Yoshikawa and S. Wada, Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case, Commun. Pure Appl. Anal., 16 (2017), 1915-1938.  doi: 10.3934/cpaa.2017093.  Google Scholar

[27]

M. GrasselliA. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98.  doi: 10.3934/dcds.2010.28.67.  Google Scholar

[28]

M. GrasselliH. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential, Z. Anal. Anwend., 25 (2006), 51-72.  doi: 10.4171/ZAA/1277.  Google Scholar

[29]

F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[30]

H. IsraelA. Miranville and M. Petcu, Numerical analysis of a Cahn-Hilliard type equation with dynamic boundary conditions, Ric. Mat., 64 (2015), 25-50.  doi: 10.1007/s11587-014-0187-7.  Google Scholar

[31]

B. Kovács and C. Lubich, Numerical analysis of parabolic problems with dynamic boundary conditions, IMA J. Numer. Anal., 37 (2017), 1-39.  doi: 10.1093/imanum/drw015.  Google Scholar

[32]

J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar

[33]

A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Mathematics, 2 (2017), 479-544.  doi: 10.3934/Math.2017.2.479.  Google Scholar

[34]

A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 275-310.  doi: 10.3934/dcds.2010.28.275.  Google Scholar

[35]

D. Mugnolo and S. Romanelli, Dirichlet forms for general Wentzell boundary conditions, analytic semigroups, and cosine operator functions, Electron. J. Differential Equations, 2006 (2006), 1-20.   Google Scholar

[36]

F. Nabet, Convergence of a finite-volume scheme for the Cahn-Hilliard equation with dynamic boundary conditions, IMA J. Numer. Anal., 36 (2016), 1898-1942.  doi: 10.1093/imanum/drv057.  Google Scholar

[37]

M. Pierre and M. Pierre, Global existence via a multivalued operator for an Allen-Cahn-Gurtin equation, Discrete Contin. Dyn. Syst., 33 (2013), 5347-5377.  doi: 10.3934/dcds.2013.33.5347.  Google Scholar

[38]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65–96. doi: 10.1007/BF01762360.  Google Scholar

[39]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam, 1984. doi: 10.1090/chel/343.  Google Scholar

show all references

References:
[1]

P. F. AntoniettiM. GrasselliS. Stangalino and M. Verani, Discontinuous Galerkin approximation of linear parabolic problems with dynamic boundary conditions, J. Sci. Comput., 66 (2016), 1260-1280.  doi: 10.1007/s10915-015-0063-y.  Google Scholar

[2]

H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984.  Google Scholar

[3]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976.  Google Scholar

[4]

S. Bartels and R. Müller, Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential, Numer. Math., 119 (2011), 409-435.  doi: 10.1007/s00211-011-0389-9.  Google Scholar

[5]

N. Batangouna and M. Pierre, Convergence of exponential attractors for a time splitting approximation of the Caginalp phase-field system, Commun. Pure Appl. Anal., 17 (2018), 1-19.  doi: 10.3934/cpaa.2018001.  Google Scholar

[6]

F. Boyer and F. Nabet, A DDFV method for a Cahn-Hilliard/Stokes phase field model with dynamic boundary conditions, ESAIM Math. Model. Numer. Anal., 51 (2017), 1691-1731.  doi: 10.1051/m2an/2016073.  Google Scholar

[7]

H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.  Google Scholar

[8]

H. Brezis, Analyse Fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983.  Google Scholar

[9]

G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245.  doi: 10.1007/BF00254827.  Google Scholar

[10]

W. Chen, C. Wang, X. Wang and S. M. Wise, Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential, J. Comput. Phys. X, 3 (2019). doi: 10.1016/j.jcpx.2019.100031.  Google Scholar

[11]

L. CherfilsH. Fakih and A. Miranville, Finite-dimensional attractors for the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation in image inpainting, Inverse Probl. Imaging, 9 (2015), 105-125.  doi: 10.3934/ipi.2015.9.105.  Google Scholar

[12]

L. CherfilsH. Fakih and A. Miranville, On the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation with logarithmic nonlinear terms, SIAM J. Imaging Sci., 8 (2015), 1123-1140.  doi: 10.1137/140985627.  Google Scholar

[13]

L. CherfilsS. Gatti and A. Miranville, Corrigendum to: "Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials", J. Math. Anal. Appl., 348 (2008), 1029-1030.  doi: 10.1016/j.jmaa.2008.07.058.  Google Scholar

[14]

L. Cherfils, S. Gatti and A. Miranville, Finite dimensional attractors for the Caginalp system with singular potentials and dynamic boundary conditions, Bull. Transilv. Univ. Braşov Ser. III, 2 (2009), 25–34.  Google Scholar

[15]

L. CherfilsS. Gatti and A. Miranville, Long time behavior of the Caginalp system with singular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 11 (2012), 2261-2290.  doi: 10.3934/cpaa.2012.11.2261.  Google Scholar

[16]

L. Cherfils and A. Miranville, Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl., 17 (2007), 107-129.   Google Scholar

[17]

L. Cherfils and A. Miranville, On the Caginalp system with dynamic boundary conditions and singular potentials, Appl. Math., 54 (2009), 89-115.  doi: 10.1007/s10492-009-0008-6.  Google Scholar

[18]

L. CherfilsA. Miranville and S. Zelik, The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79 (2011), 561-596.  doi: 10.1007/s00032-011-0165-4.  Google Scholar

[19]

L. Cherfils and M. Petcu, A numerical analysis of the Cahn-Hilliard equation with non-permeable walls, Numer. Math., 128 (2014), 517-549.  doi: 10.1007/s00211-014-0618-0.  Google Scholar

[20]

L. CherfilsM. Petcu and M. Pierre, A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions, Discrete Contin. Dyn. Syst., 27 (2010), 1511-1533.  doi: 10.3934/dcds.2010.27.1511.  Google Scholar

[21]

M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), 39-65.  doi: 10.1007/BF01385847.  Google Scholar

[22]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Applied Mathematics, 28, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999. doi: 10.1137/1.9781611971088.  Google Scholar

[23]

H. P. FischerP. Maass and W. Dieterich, Novel surface modes in spinodal decomposition, Phys. Rev. Lett., 79 (1997), 893-896.  doi: 10.1103/PhysRevLett.79.893.  Google Scholar

[24]

H. P. FischerP. Maass and W. Dieterich, Diverging time and length scales of spinodal decomposition modes in thin flows, Europhys. Lett., 42 (1998), 49-54.   Google Scholar

[25]

H. P. FischerJ. ReinhardW. DieterichJ.-F. GouyetP. MaassA. Majhofer and D. Reinel, Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall, J. Chem. Phys., 108 (1998), 3028-3037.  doi: 10.1063/1.475690.  Google Scholar

[26]

T. FukaoS. Yoshikawa and S. Wada, Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case, Commun. Pure Appl. Anal., 16 (2017), 1915-1938.  doi: 10.3934/cpaa.2017093.  Google Scholar

[27]

M. GrasselliA. Miranville and G. Schimperna, The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials, Discrete Contin. Dyn. Syst., 28 (2010), 67-98.  doi: 10.3934/dcds.2010.28.67.  Google Scholar

[28]

M. GrasselliH. Petzeltová and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potential, Z. Anal. Anwend., 25 (2006), 51-72.  doi: 10.4171/ZAA/1277.  Google Scholar

[29]

F. Hecht, New development in freefem++, J. Numer. Math., 20 (2012), 251-265.  doi: 10.1515/jnum-2012-0013.  Google Scholar

[30]

H. IsraelA. Miranville and M. Petcu, Numerical analysis of a Cahn-Hilliard type equation with dynamic boundary conditions, Ric. Mat., 64 (2015), 25-50.  doi: 10.1007/s11587-014-0187-7.  Google Scholar

[31]

B. Kovács and C. Lubich, Numerical analysis of parabolic problems with dynamic boundary conditions, IMA J. Numer. Anal., 37 (2017), 1-39.  doi: 10.1093/imanum/drw015.  Google Scholar

[32]

J.-L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires, Dunod; Gauthier-Villars, Paris, 1969.  Google Scholar

[33]

A. Miranville, The Cahn-Hilliard equation and some of its variants, AIMS Mathematics, 2 (2017), 479-544.  doi: 10.3934/Math.2017.2.479.  Google Scholar

[34]

A. Miranville and S. Zelik, The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions, Discrete Contin. Dyn. Syst., 28 (2010), 275-310.  doi: 10.3934/dcds.2010.28.275.  Google Scholar

[35]

D. Mugnolo and S. Romanelli, Dirichlet forms for general Wentzell boundary conditions, analytic semigroups, and cosine operator functions, Electron. J. Differential Equations, 2006 (2006), 1-20.   Google Scholar

[36]

F. Nabet, Convergence of a finite-volume scheme for the Cahn-Hilliard equation with dynamic boundary conditions, IMA J. Numer. Anal., 36 (2016), 1898-1942.  doi: 10.1093/imanum/drv057.  Google Scholar

[37]

M. Pierre and M. Pierre, Global existence via a multivalued operator for an Allen-Cahn-Gurtin equation, Discrete Contin. Dyn. Syst., 33 (2013), 5347-5377.  doi: 10.3934/dcds.2013.33.5347.  Google Scholar

[38]

J. Simon, Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65–96. doi: 10.1007/BF01762360.  Google Scholar

[39]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam, 1984. doi: 10.1090/chel/343.  Google Scholar

Figure 1.  Solution $ y_K $ for different values of $ K $
Figure 2.  Solutions of the regularized problem without constraint ($ y_K^ \varepsilon $, left) and with constraint ($ \tilde{y}_K^ \varepsilon $, right)
Figure 3.  Initial condition $ u_0 $
Figure 4.  Solution $ u(t) $ at time $ t = 0.10 $
Figure 5.  Solution $ u(t) $ at singular time $ t = 0.71 $
Figure 6.  Stationary solution ($ u(t) $ at time $ t = 5.00 $)
Figure 7.  Solution $ y\mapsto u(t, x = 2, y) $ from $ t = 0 $ to $ t = 5.00 $
Table 1.  $ L^2 $-error and ratio of consecutive errors vs time step
$ m $ (cf. time step) 0 1 2 3 4 5
$ L^2 $-error 0.0240 0.0124 0.0063 0.0032 0.0016 0.0008
ratio 1.94 1.97 1.97 2 2
$ m $ (cf. time step) 0 1 2 3 4 5
$ L^2 $-error 0.0240 0.0124 0.0063 0.0032 0.0016 0.0008
ratio 1.94 1.97 1.97 2 2
Table 2.  Normalized CPU time vs time step for the linearly implicit (LI) scheme and the doubly splitting (DS) scheme
$ m $ (cf. time step) 0 1 2 3 4 5
LI scheme 1 2 4 8 16 32
DS scheme 165 262 305 381 511 489
$ m $ (cf. time step) 0 1 2 3 4 5
LI scheme 1 2 4 8 16 32
DS scheme 165 262 305 381 511 489
[1]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[2]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[3]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[4]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006

[7]

Laure Cardoulis, Michel Cristofol, Morgan Morancey. A stability result for the diffusion coefficient of the heat operator defined on an unbounded guide. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020054

[8]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[9]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[10]

Vadim Azhmyakov, Juan P. Fernández-Gutiérrez, Erik I. Verriest, Stefan W. Pickl. A separation based optimization approach to Dynamic Maximal Covering Location Problems with switched structure. Journal of Industrial & Management Optimization, 2021, 17 (2) : 669-686. doi: 10.3934/jimo.2019128

[11]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[12]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[13]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[14]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[15]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008

[16]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[17]

Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134

[18]

Marcos C. Mota, Regilene D. S. Oliveira. Dynamic aspects of Sprott BC chaotic system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1653-1673. doi: 10.3934/dcdsb.2020177

[19]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[20]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]