April  2021, 14(4): 1233-1244. doi: 10.3934/dcdss.2020356

A delayed nonlinear stochastic model for cocaine consumption: Stability analysis and simulation using real data

◇. 

Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de vera s/n, Valencia, 46022, Spain

♣. 

Department of Mathematics, Ariel University, Ariel 40700, Israel

* Corresponding author: jccortes@imm.upv.es

Received  August 2019 Revised  November 2019 Published  April 2021 Early access  May 2020

In this paper we propose a stochastic mathematical model with distributed delay in order to describe the transmission dynamics of cocaine consumption in Spain. We investigate conditions to guarantee the stability in probability of the equilibrium points under stochastic perturbations via the white noise processes. The results are applied to the model cocaine consumption using data retrieved from the Spanish Drug National Plan, http://www.pnsd.mscbs.gob.es/. The obtained results may be useful for policy health authorities in order to improve the strategies against the drug consumption in the long-run.

Citation: C. Burgos, J.-C. Cortés, L. Shaikhet, R.-J. Villanueva. A delayed nonlinear stochastic model for cocaine consumption: Stability analysis and simulation using real data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1233-1244. doi: 10.3934/dcdss.2020356
References:
[1]

C. BurgosJ.-C. CortésL. Shaikhet and R.-J. Villanueva, A nonlinear dynamic age-structured model of e-commerce in Spain: Stability analysis of the equilibrium by delay and stochastic perturbations, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 149-158.  doi: 10.1016/j.cnsns.2018.04.022.

[2]

A. CasellesJ. C. Micó and S. Amigò, Cocaine addiction and personality: A mathematical model, British J. Math. Statist. Psych., 63 (2010), 449-448.  doi: 10.1348/000711009X470768.

[3]

N. A. Christakis and J. H. Folwer, Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives, Little, Brown Spark, 2009.

[4]

Encuesta sobre alcohol y otras drogas en España, (EDADES 1995-2017). Survey from alcohol and other drugs in Spain, 2017. Available from: http://www.pnsd.mscbs.gob.es/profesionales/sistemasInformacion/sistemaInformacion/pdf/EDADES_2017_Informe.pdf.

[5]

E. Fridman and L. Shaikhet, Simple LMIs for stability of stochastic systems with delay term given by Stieltjes integral or with stabilizing delay, Systems Control Lett., 124 (2019), 83-91.  doi: 10.1016/j.sysconle.2018.12.007.

[6]

I. I. Gikhman and A. V. Skorokhod, Stochastic differential equations, in The Theory of Stochastic Processes III, Springer, 2007,113–219.

[7]

F. GuerreroF.-J. Santonja and R.-J. Villanueva, Analysing the Spanish smoke-free legislation of 2006: A new method to quantify its impact using a dynamic model, Inter. J. Drug Policy, 22 (2011), 247-251.  doi: 10.1016/j.drugpo.2011.05.003.

[8]

F. GuerreroF.-J. Santonja and R.-J. Villanueva, Solving a model for the evolution of smoking habit in Spain with homotopy analysis method, Nonlinear Anal. Real World Appl., 14 (2013), 549-558.  doi: 10.1016/j.nonrwa.2012.07.015.

[9]

F. Guerrero and H. Vazquez-Leal, Application of multi-stage HAM-Padé to solve a model for the evolution of cocaine consumption in Spain, TWMS J. Pure Appl. Math., 5 (2014), 241-255.  doi: 10.1016/j.mcm.2010.02.032.

[10]

C. Jacob and N. Khemka, Particle swarm optimization in Mathematica, as exploration kit for evolutionary optimization, Proceedings of the Sixth International Mathematica Symposium, 2004.

[11]

J. D. Murray, Mathematical Biology. I, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002. doi: 10.1007/b98868.

[12]

E. SánchezR.-J. VillanuevaF.-J. Santonja and M. Rubio, Predicting cocaine consumption in Spain: A mathematical modelling approach, Drugs: Education Prevention Policy, 18 (2011), 108-115.  doi: 10.3109/09687630903443299.

[13]

F. J. SantonjaE. SánchezM. Rubio and J. L. Morera, Alcohol consumption in Spain and its economic cost: A mathematical modeling approach, Math. Comput. Modelling, 52 (2010), 999-1003.  doi: 10.1016/j.mcm.2010.02.029.

[14]

F. J. SantonjaI. C. LombanaM. RubioE. Sánchez and J. Villanueva, A network model for the short-term prediction of the evolution of cocaine consumption in Spain, Math. Comput. Modelling, 52 (2010), 1023-1029.  doi: 10.1016/j.mcm.2010.02.032.

[15]

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Functional Differential Equations, Springer, Cham, 2013. doi: 10.1007/978-3-319-00101-2.

[16]

Spanish INE: Indicadores Demográficos Básicos (BasicDemographic Indicators), 2017. Available from: http://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177003&menu=resultados&idp=1254735573002.

[17]

G. Wanner and E. Hairer, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, 14, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-662-09947-6.

show all references

References:
[1]

C. BurgosJ.-C. CortésL. Shaikhet and R.-J. Villanueva, A nonlinear dynamic age-structured model of e-commerce in Spain: Stability analysis of the equilibrium by delay and stochastic perturbations, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 149-158.  doi: 10.1016/j.cnsns.2018.04.022.

[2]

A. CasellesJ. C. Micó and S. Amigò, Cocaine addiction and personality: A mathematical model, British J. Math. Statist. Psych., 63 (2010), 449-448.  doi: 10.1348/000711009X470768.

[3]

N. A. Christakis and J. H. Folwer, Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives, Little, Brown Spark, 2009.

[4]

Encuesta sobre alcohol y otras drogas en España, (EDADES 1995-2017). Survey from alcohol and other drugs in Spain, 2017. Available from: http://www.pnsd.mscbs.gob.es/profesionales/sistemasInformacion/sistemaInformacion/pdf/EDADES_2017_Informe.pdf.

[5]

E. Fridman and L. Shaikhet, Simple LMIs for stability of stochastic systems with delay term given by Stieltjes integral or with stabilizing delay, Systems Control Lett., 124 (2019), 83-91.  doi: 10.1016/j.sysconle.2018.12.007.

[6]

I. I. Gikhman and A. V. Skorokhod, Stochastic differential equations, in The Theory of Stochastic Processes III, Springer, 2007,113–219.

[7]

F. GuerreroF.-J. Santonja and R.-J. Villanueva, Analysing the Spanish smoke-free legislation of 2006: A new method to quantify its impact using a dynamic model, Inter. J. Drug Policy, 22 (2011), 247-251.  doi: 10.1016/j.drugpo.2011.05.003.

[8]

F. GuerreroF.-J. Santonja and R.-J. Villanueva, Solving a model for the evolution of smoking habit in Spain with homotopy analysis method, Nonlinear Anal. Real World Appl., 14 (2013), 549-558.  doi: 10.1016/j.nonrwa.2012.07.015.

[9]

F. Guerrero and H. Vazquez-Leal, Application of multi-stage HAM-Padé to solve a model for the evolution of cocaine consumption in Spain, TWMS J. Pure Appl. Math., 5 (2014), 241-255.  doi: 10.1016/j.mcm.2010.02.032.

[10]

C. Jacob and N. Khemka, Particle swarm optimization in Mathematica, as exploration kit for evolutionary optimization, Proceedings of the Sixth International Mathematica Symposium, 2004.

[11]

J. D. Murray, Mathematical Biology. I, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002. doi: 10.1007/b98868.

[12]

E. SánchezR.-J. VillanuevaF.-J. Santonja and M. Rubio, Predicting cocaine consumption in Spain: A mathematical modelling approach, Drugs: Education Prevention Policy, 18 (2011), 108-115.  doi: 10.3109/09687630903443299.

[13]

F. J. SantonjaE. SánchezM. Rubio and J. L. Morera, Alcohol consumption in Spain and its economic cost: A mathematical modeling approach, Math. Comput. Modelling, 52 (2010), 999-1003.  doi: 10.1016/j.mcm.2010.02.029.

[14]

F. J. SantonjaI. C. LombanaM. RubioE. Sánchez and J. Villanueva, A network model for the short-term prediction of the evolution of cocaine consumption in Spain, Math. Comput. Modelling, 52 (2010), 1023-1029.  doi: 10.1016/j.mcm.2010.02.032.

[15]

L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Functional Differential Equations, Springer, Cham, 2013. doi: 10.1007/978-3-319-00101-2.

[16]

Spanish INE: Indicadores Demográficos Básicos (BasicDemographic Indicators), 2017. Available from: http://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177003&menu=resultados&idp=1254735573002.

[17]

G. Wanner and E. Hairer, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, 14, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-662-09947-6.

Figure 1.  Compartmental diagram of the dynamic model for cocaine consumption depicted from equations (1). The boxes represent the four different subpopulations and the arrows the transitions between them
Figure 2.  Simulations of 500 trajectories of the approximated solution stochastic process modelling the dynamics of cocaine consumption in Spain according to stochastic system with delay (11). Those approximations have been constructed using the numerical scheme (16) taking $ \Delta t = 1 $ month and delay $ h = 12 $ months. Red line represents the average of the trajectories and the black one represents the equilibrium point, $ E_1 = (N^*, C_o^*,C_r^*,C_b^*) = (0.3167,0.4189,0.1542,0.1101) $
Table 1.  Percentage of non-consumers, occasional consumers, regular consumers and habitual consumers of cocaine during the period $ 2001-2017 $ for Spanish population aged $ 15-64 $, [4]
Percentages Dec $ 2001 $ Dec $ 2003 $ Dec $ 2005 $ Dec $ 2007 $ Dec $ 2009 $
Non-consumers $ 91.4 \% $ $ 90.3\% $ $ 88.4\% $ $ 87.4\% $ $ 86.0\% $
Occasional consumers $ 4.8 \% $ $ 5.9 \% $ $ 7.0 \% $ $ 8.0 \% $ $ 10.2\% $
Regular consumers $ 2.5 \% $ $ 2.7 \% $ $ 3.0 \% $ $ 3.0 \% $ $ 2.6 \% $
Habitual consumers $ 1.3 \% $ $ 1.1 \% $ $ 1.6 \% $ $ 1.6 \% $ $ 1.2 \% $
Percentages Dec $2011 $ Dec $2013 $ Dec $2015 $ Dec $2017 $
Non-consumers $87.9 \%$ $86.7\%$ $88.3\%$ $86.9\%$
Occasional consumers $8.8 \%$ $10.2\%$ $8.9 \%$ $10.0\%$
Regular consumers $2.2 \%$ $2.1 \%$ $1.9 \%$ $2.0 \%$
Habitual consumers $1.1 \%$ $1.0 \%$ $0.9 \%$ $1.1 \%$
Percentages Dec $ 2001 $ Dec $ 2003 $ Dec $ 2005 $ Dec $ 2007 $ Dec $ 2009 $
Non-consumers $ 91.4 \% $ $ 90.3\% $ $ 88.4\% $ $ 87.4\% $ $ 86.0\% $
Occasional consumers $ 4.8 \% $ $ 5.9 \% $ $ 7.0 \% $ $ 8.0 \% $ $ 10.2\% $
Regular consumers $ 2.5 \% $ $ 2.7 \% $ $ 3.0 \% $ $ 3.0 \% $ $ 2.6 \% $
Habitual consumers $ 1.3 \% $ $ 1.1 \% $ $ 1.6 \% $ $ 1.6 \% $ $ 1.2 \% $
Percentages Dec $2011 $ Dec $2013 $ Dec $2015 $ Dec $2017 $
Non-consumers $87.9 \%$ $86.7\%$ $88.3\%$ $86.9\%$
Occasional consumers $8.8 \%$ $10.2\%$ $8.9 \%$ $10.0\%$
Regular consumers $2.2 \%$ $2.1 \%$ $1.9 \%$ $2.0 \%$
Habitual consumers $1.1 \%$ $1.0 \%$ $0.9 \%$ $1.1 \%$
Table 2.  Values of the parameters that best fit model (2) with the data in Table 1 using PSO algorithm [10]. Recall that we assumed that $ \mu = d $
Model parameters Estimations
$ \mu $ $ 1.587198 \,\, 10^{-3} $
$ d $ $ 1.587198 \,\, 10^{-3} $
$ \beta $ $ 5.013946 \,\, 10^{-3} $
$ \varepsilon $ $ 5.855882 \,\, 10^{-6} $
$ \gamma $ $ 1.003084 \,\, 10^{-3} $
$ \sigma $ $ 1.137033 \,\, 10^{-3} $
Model parameters Estimations
$ \mu $ $ 1.587198 \,\, 10^{-3} $
$ d $ $ 1.587198 \,\, 10^{-3} $
$ \beta $ $ 5.013946 \,\, 10^{-3} $
$ \varepsilon $ $ 5.855882 \,\, 10^{-6} $
$ \gamma $ $ 1.003084 \,\, 10^{-3} $
$ \sigma $ $ 1.137033 \,\, 10^{-3} $
[1]

Mazyar Ghani Varzaneh, Sebastian Riedel. A dynamical theory for singular stochastic delay differential equations Ⅱ: nonlinear equations and invariant manifolds. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4587-4612. doi: 10.3934/dcdsb.2020304

[2]

Graeme D. Chalmers, Desmond J. Higham. Convergence and stability analysis for implicit simulations of stochastic differential equations with random jump magnitudes. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 47-64. doi: 10.3934/dcdsb.2008.9.47

[3]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[4]

Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5355-5375. doi: 10.3934/dcdsb.2019062

[5]

Neville J. Ford, Stewart J. Norton. Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 367-382. doi: 10.3934/cpaa.2006.5.367

[6]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[7]

Yanqiang Chang, Huabin Chen. Stability analysis of stochastic delay differential equations with Markovian switching driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021301

[8]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[9]

Mogtaba Mohammed, Mamadou Sango. Homogenization of nonlinear hyperbolic stochastic partial differential equations with nonlinear damping and forcing. Networks and Heterogeneous Media, 2019, 14 (2) : 341-369. doi: 10.3934/nhm.2019014

[10]

Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5709-5736. doi: 10.3934/dcdsb.2019103

[11]

Viorel Barbu. Existence for nonlinear finite dimensional stochastic differential equations of subgradient type. Mathematical Control and Related Fields, 2018, 8 (3&4) : 501-508. doi: 10.3934/mcrf.2018020

[12]

Igor Chueshov, Michael Scheutzow. Invariance and monotonicity for stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1533-1554. doi: 10.3934/dcdsb.2013.18.1533

[13]

Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095

[14]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 339-357. doi: 10.3934/dcdss.2021025

[15]

Yuri Bakhtin. Lyapunov exponents for stochastic differential equations with infinite memory and application to stochastic Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 697-709. doi: 10.3934/dcdsb.2006.6.697

[16]

Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3651-3657. doi: 10.3934/dcdsb.2020077

[17]

Pham Huu Anh Ngoc. New criteria for exponential stability in mean square of stochastic functional differential equations with infinite delay. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021040

[18]

Nguyen Dinh Cong, Nguyen Thi Thuy Quynh. Coincidence of Lyapunov exponents and central exponents of linear Ito stochastic differential equations with nondegenerate stochastic term. Conference Publications, 2011, 2011 (Special) : 332-342. doi: 10.3934/proc.2011.2011.332

[19]

Alexandra Rodkina, Henri Schurz. On positivity and boundedness of solutions of nonlinear stochastic difference equations. Conference Publications, 2009, 2009 (Special) : 640-649. doi: 10.3934/proc.2009.2009.640

[20]

Xinhong Zhang, Qing Yang. Dynamical behavior of a stochastic predator-prey model with general functional response and nonlinear jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3155-3175. doi: 10.3934/dcdsb.2021177

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (282)
  • HTML views (386)
  • Cited by (0)

[Back to Top]