
-
Previous Article
Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves
- DCDS-S Home
- This Issue
-
Next Article
A novel model for the contamination of a system of three artificial lakes
A delayed nonlinear stochastic model for cocaine consumption: Stability analysis and simulation using real data
◇. | Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València, Camino de vera s/n, Valencia, 46022, Spain |
♣. | Department of Mathematics, Ariel University, Ariel 40700, Israel |
In this paper we propose a stochastic mathematical model with distributed delay in order to describe the transmission dynamics of cocaine consumption in Spain. We investigate conditions to guarantee the stability in probability of the equilibrium points under stochastic perturbations via the white noise processes. The results are applied to the model cocaine consumption using data retrieved from the Spanish Drug National Plan, http://www.pnsd.mscbs.gob.es/. The obtained results may be useful for policy health authorities in order to improve the strategies against the drug consumption in the long-run.
References:
[1] |
C. Burgos, J.-C. Cortés, L. Shaikhet and R.-J. Villanueva,
A nonlinear dynamic age-structured model of e-commerce in Spain: Stability analysis of the equilibrium by delay and stochastic perturbations, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 149-158.
doi: 10.1016/j.cnsns.2018.04.022. |
[2] |
A. Caselles, J. C. Micó and S. Amigò,
Cocaine addiction and personality: A mathematical model, British J. Math. Statist. Psych., 63 (2010), 449-448.
doi: 10.1348/000711009X470768. |
[3] |
N. A. Christakis and J. H. Folwer, Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives, Little, Brown Spark, 2009. Google Scholar |
[4] |
Encuesta sobre alcohol y otras drogas en España, (EDADES 1995-2017). Survey from alcohol and other drugs in Spain, 2017. Available from: http://www.pnsd.mscbs.gob.es/profesionales/sistemasInformacion/sistemaInformacion/pdf/EDADES_2017_Informe.pdf. Google Scholar |
[5] |
E. Fridman and L. Shaikhet,
Simple LMIs for stability of stochastic systems with delay term given by Stieltjes integral or with stabilizing delay, Systems Control Lett., 124 (2019), 83-91.
doi: 10.1016/j.sysconle.2018.12.007. |
[6] |
I. I. Gikhman and A. V. Skorokhod, Stochastic differential equations, in The Theory of Stochastic Processes III, Springer, 2007,113–219. Google Scholar |
[7] |
F. Guerrero, F.-J. Santonja and R.-J. Villanueva,
Analysing the Spanish smoke-free legislation of 2006: A new method to quantify its impact using a dynamic model, Inter. J. Drug Policy, 22 (2011), 247-251.
doi: 10.1016/j.drugpo.2011.05.003. |
[8] |
F. Guerrero, F.-J. Santonja and R.-J. Villanueva,
Solving a model for the evolution of smoking habit in Spain with homotopy analysis method, Nonlinear Anal. Real World Appl., 14 (2013), 549-558.
doi: 10.1016/j.nonrwa.2012.07.015. |
[9] |
F. Guerrero and H. Vazquez-Leal,
Application of multi-stage HAM-Padé to solve a model for the evolution of cocaine consumption in Spain, TWMS J. Pure Appl. Math., 5 (2014), 241-255.
doi: 10.1016/j.mcm.2010.02.032. |
[10] |
C. Jacob and N. Khemka, Particle swarm optimization in Mathematica, as exploration kit for evolutionary optimization, Proceedings of the Sixth International Mathematica Symposium, 2004. Google Scholar |
[11] |
J. D. Murray, Mathematical Biology. I, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002.
doi: 10.1007/b98868. |
[12] |
E. Sánchez, R.-J. Villanueva, F.-J. Santonja and M. Rubio,
Predicting cocaine consumption in Spain: A mathematical modelling approach, Drugs: Education Prevention Policy, 18 (2011), 108-115.
doi: 10.3109/09687630903443299. |
[13] |
F. J. Santonja, E. Sánchez, M. Rubio and J. L. Morera,
Alcohol consumption in Spain and its economic cost: A mathematical modeling approach, Math. Comput. Modelling, 52 (2010), 999-1003.
doi: 10.1016/j.mcm.2010.02.029. |
[14] |
F. J. Santonja, I. C. Lombana, M. Rubio, E. Sánchez and J. Villanueva,
A network model for the short-term prediction of the evolution of cocaine consumption in Spain, Math. Comput. Modelling, 52 (2010), 1023-1029.
doi: 10.1016/j.mcm.2010.02.032. |
[15] |
L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Functional Differential Equations, Springer, Cham, 2013.
doi: 10.1007/978-3-319-00101-2. |
[16] |
Spanish INE: Indicadores Demográficos Básicos (BasicDemographic Indicators), 2017. Available from: http://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177003&menu=resultados&idp=1254735573002. Google Scholar |
[17] |
G. Wanner and E. Hairer, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, 14, Springer-Verlag, Berlin, 1991.
doi: 10.1007/978-3-662-09947-6. |
show all references
References:
[1] |
C. Burgos, J.-C. Cortés, L. Shaikhet and R.-J. Villanueva,
A nonlinear dynamic age-structured model of e-commerce in Spain: Stability analysis of the equilibrium by delay and stochastic perturbations, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 149-158.
doi: 10.1016/j.cnsns.2018.04.022. |
[2] |
A. Caselles, J. C. Micó and S. Amigò,
Cocaine addiction and personality: A mathematical model, British J. Math. Statist. Psych., 63 (2010), 449-448.
doi: 10.1348/000711009X470768. |
[3] |
N. A. Christakis and J. H. Folwer, Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives, Little, Brown Spark, 2009. Google Scholar |
[4] |
Encuesta sobre alcohol y otras drogas en España, (EDADES 1995-2017). Survey from alcohol and other drugs in Spain, 2017. Available from: http://www.pnsd.mscbs.gob.es/profesionales/sistemasInformacion/sistemaInformacion/pdf/EDADES_2017_Informe.pdf. Google Scholar |
[5] |
E. Fridman and L. Shaikhet,
Simple LMIs for stability of stochastic systems with delay term given by Stieltjes integral or with stabilizing delay, Systems Control Lett., 124 (2019), 83-91.
doi: 10.1016/j.sysconle.2018.12.007. |
[6] |
I. I. Gikhman and A. V. Skorokhod, Stochastic differential equations, in The Theory of Stochastic Processes III, Springer, 2007,113–219. Google Scholar |
[7] |
F. Guerrero, F.-J. Santonja and R.-J. Villanueva,
Analysing the Spanish smoke-free legislation of 2006: A new method to quantify its impact using a dynamic model, Inter. J. Drug Policy, 22 (2011), 247-251.
doi: 10.1016/j.drugpo.2011.05.003. |
[8] |
F. Guerrero, F.-J. Santonja and R.-J. Villanueva,
Solving a model for the evolution of smoking habit in Spain with homotopy analysis method, Nonlinear Anal. Real World Appl., 14 (2013), 549-558.
doi: 10.1016/j.nonrwa.2012.07.015. |
[9] |
F. Guerrero and H. Vazquez-Leal,
Application of multi-stage HAM-Padé to solve a model for the evolution of cocaine consumption in Spain, TWMS J. Pure Appl. Math., 5 (2014), 241-255.
doi: 10.1016/j.mcm.2010.02.032. |
[10] |
C. Jacob and N. Khemka, Particle swarm optimization in Mathematica, as exploration kit for evolutionary optimization, Proceedings of the Sixth International Mathematica Symposium, 2004. Google Scholar |
[11] |
J. D. Murray, Mathematical Biology. I, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002.
doi: 10.1007/b98868. |
[12] |
E. Sánchez, R.-J. Villanueva, F.-J. Santonja and M. Rubio,
Predicting cocaine consumption in Spain: A mathematical modelling approach, Drugs: Education Prevention Policy, 18 (2011), 108-115.
doi: 10.3109/09687630903443299. |
[13] |
F. J. Santonja, E. Sánchez, M. Rubio and J. L. Morera,
Alcohol consumption in Spain and its economic cost: A mathematical modeling approach, Math. Comput. Modelling, 52 (2010), 999-1003.
doi: 10.1016/j.mcm.2010.02.029. |
[14] |
F. J. Santonja, I. C. Lombana, M. Rubio, E. Sánchez and J. Villanueva,
A network model for the short-term prediction of the evolution of cocaine consumption in Spain, Math. Comput. Modelling, 52 (2010), 1023-1029.
doi: 10.1016/j.mcm.2010.02.032. |
[15] |
L. Shaikhet, Lyapunov Functionals and Stability of Stochastic Functional Differential Equations, Springer, Cham, 2013.
doi: 10.1007/978-3-319-00101-2. |
[16] |
Spanish INE: Indicadores Demográficos Básicos (BasicDemographic Indicators), 2017. Available from: http://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177003&menu=resultados&idp=1254735573002. Google Scholar |
[17] |
G. Wanner and E. Hairer, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer Series in Computational Mathematics, 14, Springer-Verlag, Berlin, 1991.
doi: 10.1007/978-3-662-09947-6. |


Percentages | Dec |
Dec |
Dec |
Dec |
Dec |
Non-consumers | |||||
Occasional consumers | |||||
Regular consumers | |||||
Habitual consumers | |||||
Percentages | Dec |
Dec |
Dec |
Dec |
|
Non-consumers | |||||
Occasional consumers | |||||
Regular consumers | |||||
Habitual consumers |
Percentages | Dec |
Dec |
Dec |
Dec |
Dec |
Non-consumers | |||||
Occasional consumers | |||||
Regular consumers | |||||
Habitual consumers | |||||
Percentages | Dec |
Dec |
Dec |
Dec |
|
Non-consumers | |||||
Occasional consumers | |||||
Regular consumers | |||||
Habitual consumers |
Model parameters | Estimations |
Model parameters | Estimations |
[1] |
Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021010 |
[2] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[3] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[4] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[5] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020383 |
[6] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[7] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[8] |
Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324 |
[9] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[10] |
Ténan Yeo. Stochastic and deterministic SIS patch model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021012 |
[11] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[12] |
Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133 |
[13] |
Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 |
[14] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
[15] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[16] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[17] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[18] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[19] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[20] |
Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020320 |
2019 Impact Factor: 1.233
Tools
Article outline
Figures and Tables
[Back to Top]