
-
Previous Article
Androgen driven evolutionary population dynamics in prostate cancer growth
- DCDS-S Home
- This Issue
-
Next Article
On a linearized Mullins-Sekerka/Stokes system for two-phase flows
Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion
1. | School of Computer Science and Technology, Anhui University of Technology, Ma'anshan 243032, China |
2. | Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, Kyongsan 38541, Republic of Korea |
3. | College of Mathematics and Systems Science, Shandong University of Science & Technology, Qingdao 266590, China |
This paper is concerned with the issue of fault-tolerant anti-synchro-nization control for chaotic switched neural networks with time delay and reaction-diffusion terms under the drive-response scheme, where the response system is assumed to be disturbed by stochastic noise. Both arbitrary switching signal and average dwell-time limited switching signal are taken into account. With the aid of the Lyapunov-Krasovskii functional approach and combining with the generalized Itô formula, sufficient conditions on the mean-square exponential stability for the anti-synchronization error system are presented. Then, by utilizing some decoupling methods, constructive design strategies on the desired fault-tolerant anti-synchronization controller are proposed. Finally, an example is given to demonstrate the effectiveness of our design strategies.
References:
[1] |
A. Abdulle, Y. Bai and G. Vilmart,
Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 91-118.
doi: 10.3934/dcdss.2015.8.91. |
[2] |
C. K. Ahn,
Adaptive $H_{\infty}$ anti-synchronization for time-delayed chaotic neural networks, Prog. Theoretical Phys., 122 (2009), 1391-1403.
doi: 10.1143/PTP.122.1391. |
[3] |
J. Cao, R. Rakkiyappan, K. Maheswari and A. Chandrasekar,
Exponential $H_{\infty}$ filtering analysis for discrete-time switched neural networks with random delays using sojourn probabilities, Sci. China Technol. Sci., 59 (2016), 387-402.
doi: 10.1007/s11431-016-6006-5. |
[4] |
X. Chang, R. Liu and J. H. Park,
A further study on output feedback $H_{\infty}$ control for discrete-time systems, IEEE Trans. Circuits Systems II: Express Briefs, 67 (2020), 305-309.
doi: 10.1109/TCSII.2019.2904320. |
[5] |
N. D. Cong and T. S. Doan,
On integral separation of bounded linear random differential equations, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 995-1007.
doi: 10.3934/dcdss.2016038. |
[6] |
Y. Fan, X. Huang, Y. Li, J. Xia and G. Chen,
Aperiodically intermittent control for quasi-synchronization of delayed memristive neural networks: An interval matrix and matrix measure combined method, IEEE Trans. Systems Man Cybernetics: Systems, 49 (2019), 2254-2265.
doi: 10.1109/TSMC.2018.2850157. |
[7] |
Y. Fan, X. Huang, H. Shen and J. Cao,
Switching event-triggered control for global stabilization of delayed memristive neural networks: An exponential attenuation scheme, Neural Networks, 117 (2019), 216-224.
doi: 10.1016/j.neunet.2019.05.014. |
[8] |
J. Fell and N. Axmacher,
The role of phase synchronization in memory processes, Nature Rev. Neurosci., 12 (2011), 105-118.
doi: 10.1038/nrn2979. |
[9] |
J. P. Hespanha and A. S. Morse, Stability of switched systems with average dwell-time, Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, 1999, 2655–2660.
doi: 10.1109/CDC.1999.831330. |
[10] |
J. Hou, Y. Huang and S. Ren,
Anti-synchronization analysis and pinning control of multi-weighted coupled neural networks with and without reaction-diffusion terms, Neurocomputing, 330 (2019), 78-93.
doi: 10.1016/j.neucom.2018.10.079. |
[11] |
Y.-L. Huang, S.-Y. Ren, J. Wu and B.-B. Xu,
Passivity and synchronization of switched coupled reaction-diffusion neural networks with non-delayed and delayed couplings, Int. J. Comput. Math., 96 (2019), 1702-1722.
doi: 10.1080/00207160.2018.1463437. |
[12] |
T. Jiao, J. H. Park, G. Zong, Y. Zhao and Q. Du,
On stability analysis of random impulsive and switching neural networks, Neurocomputing, 350 (2019), 146-154.
doi: 10.1016/j.neucom.2019.03.039. |
[13] |
R. Konnur,
Synchronization-based approach for estimating all model parameters of chaotic systems, Phys. Rev. E, 67 (2003), 1387-1396.
doi: 10.1103/PhysRevE.67.027204. |
[14] |
T. H. Lee, C. P. Lim, S. Nahavandi and J. H. Park,
Network-based synchronization of T-S fuzzy chaotic systems with asynchronous samplings, J. Franklin Inst., 355 (2018), 5736-5758.
doi: 10.1016/j.jfranklin.2018.05.023. |
[15] |
X. Li, M. Bohner and C. K. Wang,
Impulsive differential equations: Periodic solutions and applications, Automatica J. IFAC, 52 (2015), 173-178.
doi: 10.1016/j.automatica.2014.11.009. |
[16] |
T. L. Liao and N. S. Huang,
An observer-based approach for chaotic synchronization with applications to secure communications, IEEE Trans. Circuits Systems I: Fundamental Theory Appl., 46 (1999), 1144-1151.
doi: 10.1109/81.788817. |
[17] |
Y. Liu, J. H. Park and F. Fang,
Global exponential stability of delayed neural networks based on a new integral inequality, IEEE Trans. Systems Man Cybernetics: Systems, 49 (2019), 2318-2325.
doi: 10.1109/TSMC.2018.2815560. |
[18] |
E. N. Lorenz,
Deterministic nonperiodic flow, J. Atmospheric Sci., 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. |
[19] |
Q. Ma, S. Xu, Y. Zou and G. Shi,
Synchronization of stochastic chaotic neural networks with reaction-diffusion terms, Nonlinear Dynam., 67 (2012), 2183-2196.
doi: 10.1007/s11071-011-0138-8. |
[20] |
X. Mao,
Razumikhin-type theorems on exponential stability of stochastic functional differential equations, Stochastic Process. Appl., 65 (1996), 233-250.
doi: 10.1016/S0304-4149(96)00109-3. |
[21] |
S. Nakata, T. Miyata, N. Ojima and K. Yoshikawa,
Self-synchronization in coupled salt-water oscillators, Phys. D, 115 (1998), 313-320.
doi: 10.1016/S0167-2789(97)00240-6. |
[22] |
N. Ozcan, M. S. Ali, J. Yogambigai, Q. Zhu and S. Arik,
Robust synchronization of uncertain Markovian jump complex dynamical networks with time-varying delays and reaction-diffusion terms via sampled-data control, J. Franklin Inst., 355 (2018), 1192-1216.
doi: 10.1016/j.jfranklin.2017.12.016. |
[23] |
L. M. Pecora and T. L. Carroll,
Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821-824.
doi: 10.1103/PhysRevLett.64.821. |
[24] |
F. Ren and J. Cao,
Anti-synchronization of stochastic perturbed delayed chaotic neural networks, Neural Comput. Appl., 18 (2009), 515-521.
doi: 10.1007/s00521-009-0251-5. |
[25] |
I. Stamova, T. Stamov and X. Li,
Global exponential stability of a class of impulsive cellular neural networks with supremums, Internat. J. Adapt. Control Signal Process., 28 (2014), 1227-1239.
doi: 10.1002/acs.2440. |
[26] |
V. Sundarapandian and R. Karthikeyan, Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control, European J. Sci. Res., 64 (2011), 94-106. Google Scholar |
[27] |
W. Tai, Q. Teng, Y. Zhou, J. Zhou and Z. Wang,
Chaos synchronization of stochastic reaction-diffusion time-delay neural networks via non-fragile output-feedback control, Appl. Math. Comput., 354 (2019), 115-127.
doi: 10.1016/j.amc.2019.02.028. |
[28] |
Z. Wang, L. Li, Y. Li and Z. Cheng,
Stability and Hopf bifurcation of a three-neuron network with multiple discrete and distributed delays, Neural Process. Lett., 48 (2018), 1481-1502.
doi: 10.1007/s11063-017-9754-8. |
[29] |
I. Wedekind and U. Parlitz, Synchronization and antisynchronization of chaotic power drop-outs and jump-ups of coupled semiconductor lasers, Phys. Rev. E, 66 (2002).
doi: 10.1103/PhysRevE.66.026218. |
[30] |
J. Xia, G. Chen and W. Sun,
Extended dissipative analysis of generalized Markovian switching neural networks with two delay components, Neurocomputing, 260 (2017), 275-283.
doi: 10.1016/j.neucom.2017.05.005. |
[31] |
Z. Yan, X. Huang and J. Cao, Variable-sampling-period dependent global stabilization of delayed memristive neural networks via refined switching event-triggered control, SCIENCE CHINA Information Sciences, in progress.
doi: 10.1007/s11432-019-2664-7. |
[32] |
D. Ye and G. Yang,
Adaptive fault-tolerant tracking control against actuator faults with application to flight control, IEEE Trans. Control Systems Tech, 14 (2006), 1088-1096.
doi: 10.1109/TCST.2006.883191. |
[33] |
E. Yucel, M. S. Ali, N. Gunasekaran and S. Arik,
Sampled-data filtering of Takagi–Sugeno fuzzy neural networks with interval time-varying delays, Fuzzy Sets and Systems, 316 (2017), 69-81.
doi: 10.1016/j.fss.2016.04.014. |
[34] |
X. Zhang, X. Lv and X. Li,
Sampled-data-based lag synchronization of chaotic delayed neural networks with impulsive control, Nonlinear Dynam., 90 (2017), 2199-2207.
doi: 10.1007/s11071-017-3795-4. |
[35] |
W. Zhang, S. Yang, C. Li and Z. Li,
Finite-time and fixed-time synchronization of complex networks with discontinuous nodes via quantized control, Neural Process. Lett., 50 (2019), 2073-2086.
doi: 10.1007/s11063-019-09985-9. |
[36] |
D. Zhang, L. Yu, Q. G. Wang and C. J. Ong,
Estimator design for discrete-time switched neural networks with asynchronous switching and time-varying delay, IEEE Trans. Neural Networks Learning Systems, 23 (2012), 827-834.
doi: 10.1109/TNNLS.2012.2186824. |
[37] |
J. Zhou, Y. Wang, X. Zheng, Z. Wang and H. Shen,
Weighted $H_{\infty}$ consensus design for stochastic multi-agent systems subject to external disturbances and ADT switching topologies, Nonlinear Dyn., 96 (2019), 853-868.
doi: 10.1007/s11071-019-04826-9. |
[38] |
Y. Zhou, J. Xia, H. Shen, J. Zhou and Z. Wang,
Extended dissipative learning of time-delay recurrent neural networks, J. Franklin Inst., 356 (2019), 8745-8769.
doi: 10.1016/j.jfranklin.2019.08.003. |
[39] |
J. Zhou, S. Xu, H. Shen and B. Zhang,
Passivity analysis for uncertain BAM neural networks with time delays and reaction-diffusions, Internat. J. Systems Sci., 44 (2013), 1494-1503.
doi: 10.1080/00207721.2012.659693. |
[40] |
K. Zhou and P. P. Khargonekar,
Robust stabilization of linear systems with norm-bounded time-varying uncertainty, Systems Control Lett., 10 (1988), 17-20.
doi: 10.1016/0167-6911(88)90034-5. |
[41] |
J. Zhou, J. H. Park and Q. Ma,
Non-fragile observer-based $H_{\infty}$ control for stochastic time-delay systems, Appl. Math. Comput., 291 (2016), 69-83.
doi: 10.1016/j.amc.2016.06.024. |
[42] |
G. Zhuang, Q. Ma, B. Zhang, S. Xu and J. Xia,
Admissibility and stabilization of stochastic singular Markovian jump systems with time delays, Systems Control Lett., 114 (2018), 1-10.
doi: 10.1016/j.sysconle.2018.02.004. |
show all references
References:
[1] |
A. Abdulle, Y. Bai and G. Vilmart,
Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems, Discrete Contin. Dyn. Syst. Ser. S, 8 (2015), 91-118.
doi: 10.3934/dcdss.2015.8.91. |
[2] |
C. K. Ahn,
Adaptive $H_{\infty}$ anti-synchronization for time-delayed chaotic neural networks, Prog. Theoretical Phys., 122 (2009), 1391-1403.
doi: 10.1143/PTP.122.1391. |
[3] |
J. Cao, R. Rakkiyappan, K. Maheswari and A. Chandrasekar,
Exponential $H_{\infty}$ filtering analysis for discrete-time switched neural networks with random delays using sojourn probabilities, Sci. China Technol. Sci., 59 (2016), 387-402.
doi: 10.1007/s11431-016-6006-5. |
[4] |
X. Chang, R. Liu and J. H. Park,
A further study on output feedback $H_{\infty}$ control for discrete-time systems, IEEE Trans. Circuits Systems II: Express Briefs, 67 (2020), 305-309.
doi: 10.1109/TCSII.2019.2904320. |
[5] |
N. D. Cong and T. S. Doan,
On integral separation of bounded linear random differential equations, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 995-1007.
doi: 10.3934/dcdss.2016038. |
[6] |
Y. Fan, X. Huang, Y. Li, J. Xia and G. Chen,
Aperiodically intermittent control for quasi-synchronization of delayed memristive neural networks: An interval matrix and matrix measure combined method, IEEE Trans. Systems Man Cybernetics: Systems, 49 (2019), 2254-2265.
doi: 10.1109/TSMC.2018.2850157. |
[7] |
Y. Fan, X. Huang, H. Shen and J. Cao,
Switching event-triggered control for global stabilization of delayed memristive neural networks: An exponential attenuation scheme, Neural Networks, 117 (2019), 216-224.
doi: 10.1016/j.neunet.2019.05.014. |
[8] |
J. Fell and N. Axmacher,
The role of phase synchronization in memory processes, Nature Rev. Neurosci., 12 (2011), 105-118.
doi: 10.1038/nrn2979. |
[9] |
J. P. Hespanha and A. S. Morse, Stability of switched systems with average dwell-time, Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, AZ, 1999, 2655–2660.
doi: 10.1109/CDC.1999.831330. |
[10] |
J. Hou, Y. Huang and S. Ren,
Anti-synchronization analysis and pinning control of multi-weighted coupled neural networks with and without reaction-diffusion terms, Neurocomputing, 330 (2019), 78-93.
doi: 10.1016/j.neucom.2018.10.079. |
[11] |
Y.-L. Huang, S.-Y. Ren, J. Wu and B.-B. Xu,
Passivity and synchronization of switched coupled reaction-diffusion neural networks with non-delayed and delayed couplings, Int. J. Comput. Math., 96 (2019), 1702-1722.
doi: 10.1080/00207160.2018.1463437. |
[12] |
T. Jiao, J. H. Park, G. Zong, Y. Zhao and Q. Du,
On stability analysis of random impulsive and switching neural networks, Neurocomputing, 350 (2019), 146-154.
doi: 10.1016/j.neucom.2019.03.039. |
[13] |
R. Konnur,
Synchronization-based approach for estimating all model parameters of chaotic systems, Phys. Rev. E, 67 (2003), 1387-1396.
doi: 10.1103/PhysRevE.67.027204. |
[14] |
T. H. Lee, C. P. Lim, S. Nahavandi and J. H. Park,
Network-based synchronization of T-S fuzzy chaotic systems with asynchronous samplings, J. Franklin Inst., 355 (2018), 5736-5758.
doi: 10.1016/j.jfranklin.2018.05.023. |
[15] |
X. Li, M. Bohner and C. K. Wang,
Impulsive differential equations: Periodic solutions and applications, Automatica J. IFAC, 52 (2015), 173-178.
doi: 10.1016/j.automatica.2014.11.009. |
[16] |
T. L. Liao and N. S. Huang,
An observer-based approach for chaotic synchronization with applications to secure communications, IEEE Trans. Circuits Systems I: Fundamental Theory Appl., 46 (1999), 1144-1151.
doi: 10.1109/81.788817. |
[17] |
Y. Liu, J. H. Park and F. Fang,
Global exponential stability of delayed neural networks based on a new integral inequality, IEEE Trans. Systems Man Cybernetics: Systems, 49 (2019), 2318-2325.
doi: 10.1109/TSMC.2018.2815560. |
[18] |
E. N. Lorenz,
Deterministic nonperiodic flow, J. Atmospheric Sci., 20 (1963), 130-141.
doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2. |
[19] |
Q. Ma, S. Xu, Y. Zou and G. Shi,
Synchronization of stochastic chaotic neural networks with reaction-diffusion terms, Nonlinear Dynam., 67 (2012), 2183-2196.
doi: 10.1007/s11071-011-0138-8. |
[20] |
X. Mao,
Razumikhin-type theorems on exponential stability of stochastic functional differential equations, Stochastic Process. Appl., 65 (1996), 233-250.
doi: 10.1016/S0304-4149(96)00109-3. |
[21] |
S. Nakata, T. Miyata, N. Ojima and K. Yoshikawa,
Self-synchronization in coupled salt-water oscillators, Phys. D, 115 (1998), 313-320.
doi: 10.1016/S0167-2789(97)00240-6. |
[22] |
N. Ozcan, M. S. Ali, J. Yogambigai, Q. Zhu and S. Arik,
Robust synchronization of uncertain Markovian jump complex dynamical networks with time-varying delays and reaction-diffusion terms via sampled-data control, J. Franklin Inst., 355 (2018), 1192-1216.
doi: 10.1016/j.jfranklin.2017.12.016. |
[23] |
L. M. Pecora and T. L. Carroll,
Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821-824.
doi: 10.1103/PhysRevLett.64.821. |
[24] |
F. Ren and J. Cao,
Anti-synchronization of stochastic perturbed delayed chaotic neural networks, Neural Comput. Appl., 18 (2009), 515-521.
doi: 10.1007/s00521-009-0251-5. |
[25] |
I. Stamova, T. Stamov and X. Li,
Global exponential stability of a class of impulsive cellular neural networks with supremums, Internat. J. Adapt. Control Signal Process., 28 (2014), 1227-1239.
doi: 10.1002/acs.2440. |
[26] |
V. Sundarapandian and R. Karthikeyan, Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control, European J. Sci. Res., 64 (2011), 94-106. Google Scholar |
[27] |
W. Tai, Q. Teng, Y. Zhou, J. Zhou and Z. Wang,
Chaos synchronization of stochastic reaction-diffusion time-delay neural networks via non-fragile output-feedback control, Appl. Math. Comput., 354 (2019), 115-127.
doi: 10.1016/j.amc.2019.02.028. |
[28] |
Z. Wang, L. Li, Y. Li and Z. Cheng,
Stability and Hopf bifurcation of a three-neuron network with multiple discrete and distributed delays, Neural Process. Lett., 48 (2018), 1481-1502.
doi: 10.1007/s11063-017-9754-8. |
[29] |
I. Wedekind and U. Parlitz, Synchronization and antisynchronization of chaotic power drop-outs and jump-ups of coupled semiconductor lasers, Phys. Rev. E, 66 (2002).
doi: 10.1103/PhysRevE.66.026218. |
[30] |
J. Xia, G. Chen and W. Sun,
Extended dissipative analysis of generalized Markovian switching neural networks with two delay components, Neurocomputing, 260 (2017), 275-283.
doi: 10.1016/j.neucom.2017.05.005. |
[31] |
Z. Yan, X. Huang and J. Cao, Variable-sampling-period dependent global stabilization of delayed memristive neural networks via refined switching event-triggered control, SCIENCE CHINA Information Sciences, in progress.
doi: 10.1007/s11432-019-2664-7. |
[32] |
D. Ye and G. Yang,
Adaptive fault-tolerant tracking control against actuator faults with application to flight control, IEEE Trans. Control Systems Tech, 14 (2006), 1088-1096.
doi: 10.1109/TCST.2006.883191. |
[33] |
E. Yucel, M. S. Ali, N. Gunasekaran and S. Arik,
Sampled-data filtering of Takagi–Sugeno fuzzy neural networks with interval time-varying delays, Fuzzy Sets and Systems, 316 (2017), 69-81.
doi: 10.1016/j.fss.2016.04.014. |
[34] |
X. Zhang, X. Lv and X. Li,
Sampled-data-based lag synchronization of chaotic delayed neural networks with impulsive control, Nonlinear Dynam., 90 (2017), 2199-2207.
doi: 10.1007/s11071-017-3795-4. |
[35] |
W. Zhang, S. Yang, C. Li and Z. Li,
Finite-time and fixed-time synchronization of complex networks with discontinuous nodes via quantized control, Neural Process. Lett., 50 (2019), 2073-2086.
doi: 10.1007/s11063-019-09985-9. |
[36] |
D. Zhang, L. Yu, Q. G. Wang and C. J. Ong,
Estimator design for discrete-time switched neural networks with asynchronous switching and time-varying delay, IEEE Trans. Neural Networks Learning Systems, 23 (2012), 827-834.
doi: 10.1109/TNNLS.2012.2186824. |
[37] |
J. Zhou, Y. Wang, X. Zheng, Z. Wang and H. Shen,
Weighted $H_{\infty}$ consensus design for stochastic multi-agent systems subject to external disturbances and ADT switching topologies, Nonlinear Dyn., 96 (2019), 853-868.
doi: 10.1007/s11071-019-04826-9. |
[38] |
Y. Zhou, J. Xia, H. Shen, J. Zhou and Z. Wang,
Extended dissipative learning of time-delay recurrent neural networks, J. Franklin Inst., 356 (2019), 8745-8769.
doi: 10.1016/j.jfranklin.2019.08.003. |
[39] |
J. Zhou, S. Xu, H. Shen and B. Zhang,
Passivity analysis for uncertain BAM neural networks with time delays and reaction-diffusions, Internat. J. Systems Sci., 44 (2013), 1494-1503.
doi: 10.1080/00207721.2012.659693. |
[40] |
K. Zhou and P. P. Khargonekar,
Robust stabilization of linear systems with norm-bounded time-varying uncertainty, Systems Control Lett., 10 (1988), 17-20.
doi: 10.1016/0167-6911(88)90034-5. |
[41] |
J. Zhou, J. H. Park and Q. Ma,
Non-fragile observer-based $H_{\infty}$ control for stochastic time-delay systems, Appl. Math. Comput., 291 (2016), 69-83.
doi: 10.1016/j.amc.2016.06.024. |
[42] |
G. Zhuang, Q. Ma, B. Zhang, S. Xu and J. Xia,
Admissibility and stabilization of stochastic singular Markovian jump systems with time delays, Systems Control Lett., 114 (2018), 1-10.
doi: 10.1016/j.sysconle.2018.02.004. |






[1] |
Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011 |
[2] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[3] |
Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096 |
[4] |
Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120 |
[5] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[6] |
Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 |
[7] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[8] |
D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346 |
[9] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[10] |
Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334 |
[11] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021019 |
[12] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[13] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[14] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[15] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[16] |
Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113 |
[17] |
Maoli Chen, Xiao Wang, Yicheng Liu. Collision-free flocking for a time-delay system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1223-1241. doi: 10.3934/dcdsb.2020251 |
[18] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[19] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[20] |
Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]