• Previous Article
    Finite-time exponential synchronization of reaction-diffusion delayed complex-dynamical networks
  • DCDS-S Home
  • This Issue
  • Next Article
    Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species
doi: 10.3934/dcdss.2020358

A Novel Lyapunov functional with application to stability analysis of neutral systems with nonlinear disturbances

Department of Computer Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey

* Corresponding author: Sabri Arik

Received  September 2019 Revised  November 2019 Published  May 2020

It is well-known that the global asymptotic stability analysis of neutral systems is an important concept in designing the appropriate controllers or filters for this class of systems. This paper carries out a delay-independent stability analysis of neutral systems possessing discrete time delays in the states and discrete neutral delays in the time derivative of the states in the presence of nonlinear disturbances. Some new global asymptotic stability criteria are proposed by introducing a novel Lyapunov functional. The obtained delay-independent stability criteria establish some simple and easily verifiable mathematical expressions involving the elements of the system matrices and the disturbance parameters of the neutral system. Different from the most of the previously reported stability results for neutral systems, the conditions obtained in this paper are not expressed in terms the Linear Matrix Inequalities (LMIs). Therefore, the criteria presented in this paper can be considered as the alternative results to previously published stability results stated in the LMI forms. A comparison between the results of this paper and some of previously published corresponding stability results is made to substantiate the significant improvement of the proposed results. A constructive numerical example is also presented to show applicability and the effectiveness of the proposed stability condition.

Citation: Sibel Senan, Eylem Yucel, Zeynep Orman, Ruya Samli, Sabri Arik. A Novel Lyapunov functional with application to stability analysis of neutral systems with nonlinear disturbances. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020358
References:
[1]

E. Fridman, Lyapunov-Based Stability Analysis: Introduction to Time-Delay Systems, Springer International Publishing, Switzerland, 2014. Google Scholar

[2]

X. LiuH. J. MarquezK. D. Kumar and Y. Lin, Sampled-data control of networked nonlinear systems with variable delays and drops, Internat. J. Robust Nonlinear Control, 25 (2015), 72-87.  doi: 10.1002/rnc.3074.  Google Scholar

[3]

A. Seuret, A novel stability analysis of linear systems under asynchronous samplings, Automatica J. IFAC, 48 (2012), 177-182.  doi: 10.1016/j.automatica.2011.09.033.  Google Scholar

[4]

T. WangH. Gao and J. Qiu, A combined fault-tolerant and predictive control for network-based industrial processes, IEEE Trans. Industrial Electronics, 63 (2016), 2529-2536.  doi: 10.1109/TIE.2016.2515073.  Google Scholar

[5]

T. WangH. Gao and J. Qiu, A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control, IEEE Trans. Neural Netw. Learn. Syst., 27 (2016), 416-425.  doi: 10.1109/TNNLS.2015.2411671.  Google Scholar

[6]

T. WangJ. Qiu and H. Gao, Adaptive neural control of stochastic nonlinear time-delay systems with multiple constraints, IEEE Trans. Syst. Man Cybernetics Syst., 47 (2017), 1875-1883.  doi: 10.1109/TSMC.2016.2562511.  Google Scholar

[7]

Y. WeiJ. Qiu and S. Fu, Mode-dependent nonrational output feedback control for continuous-time semi-Markovian jump systems with time-varying delay, Nonlinear Anal. Hybrid Syst., 16 (2015), 52-71.  doi: 10.1016/j.nahs.2014.11.003.  Google Scholar

[8]

J. P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica J. IFAC, 39 (2003), 1667-1694.  doi: 10.1016/S0005-1098(03)00167-5.  Google Scholar

[9]

S. I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Lecture Notes in Control and Information Sciences, 269, Springer-Verlag, London, 2001. doi: 10.1007/1-84628-553-4.  Google Scholar

[10] V. B. Kolmanovski$ {\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }} $, Stability of Functional-Differential Equations, Mathematics in Science and Engineering, 180, Academic Press, Inc., London, 1986.   Google Scholar
[11]

J. K. Hale, Introduction to Functional-Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[12]

S. LongY. WuS. Zhong and D. Zhang, Stability analysis for a class of neutral type singular systems with time-varying delay, Appl. Math. Comput., 339 (2018), 113-131.  doi: 10.1016/j.amc.2018.06.058.  Google Scholar

[13]

H. B. Chen, New criteria on stability analysis for uncertain neutral system with mixed time-varying delays, Optimal Control Appl. Methods, 34 (2013), 487-501.  doi: 10.1002/oca.2036.  Google Scholar

[14]

J. SunG. P. LiuJ. Chen and D. Rees, Improved delay-range-dependent stability criteria for linear systems with time-varying delays, Automatica J. IFAC, 46 (2010), 466-470.  doi: 10.1016/j.automatica.2009.11.002.  Google Scholar

[15]

H.-B. ZengY. HeM. Wu and J. She, New results on stability analysis for systems with discrete distributed delay, Automatica J. IFAC, 60 (2015), 189-192.  doi: 10.1016/j.automatica.2015.07.017.  Google Scholar

[16]

M. ParkO. M. KwonJ. H. ParkS. Lee and E. Cha, Stability of time-delay systems via Wirtinger-based double integral inequality, Automatica J. IFAC, 55 (2015), 204-208.  doi: 10.1016/j.automatica.2015.03.010.  Google Scholar

[17]

L. DingY. HeM. Wu and C. Ning, Improved mixed-delay-dependent asymptotic stability criteria for neutral systems, IET Control Theory Appl., 9 (2015), 2180-2187.  doi: 10.1049/iet-cta.2015.0022.  Google Scholar

[18]

Y. G. ChenW. Qian and S. M. Fei, Improved robust stability conditions for uncertain neutral systems with discrete and distributed delays, J. Franklin Inst., 352 (2015), 2634-2645.  doi: 10.1016/j.jfranklin.2015.03.040.  Google Scholar

[19]

P. L. Liu, Improved results on delay-interval-dependent robust stability criteria for uncertain neutral-type systems with time-varying delays, ISA Trans., 60 (2016), 53-66.  doi: 10.1016/j.isatra.2015.11.004.  Google Scholar

[20]

L. L. XiongS. M. Zhong and D. Y. Li, Novel delay-dependent asymptotical stability of neutral systems with nonlinear perturbations, J. Comput. Appl. Math., 232 (2009), 505-513.  doi: 10.1016/j.cam.2009.06.026.  Google Scholar

[21]

Y. J. LiuW. B. MaM.S. Mahmoud and S. M. Lee, Improved delay-dependent exponential stability criteria for neutral-delay systems with nonlinear uncertainties, Appl. Math. Model., 39 (2015), 3164-3174.  doi: 10.1016/j.apm.2014.11.036.  Google Scholar

[22]

T. WangT. LiG. Zhang and S. Fei, Further triple integral approach to mixed-delay-dependent stability of time-delay neutral systems, ISA Trans., 70 (2017), 116-124.  doi: 10.1016/j.isatra.2017.05.010.  Google Scholar

[23]

T. WuL. XiongJ. CaoZ. Liu and H. Zhang, New stability and stabilization conditions for stochastic neural networks of neutral type with Markovian jumping parameters, J. Franklin Inst., 355 (2018), 8462-8483.  doi: 10.1016/j.jfranklin.2018.09.032.  Google Scholar

[24]

Z.-Y. LiJ. Lam and Y. Wang, Stability analysis of linear stochastic neutral-type time-delay systems with two delays, Automatica J. IFAC, 91 (2018), 179-189.  doi: 10.1016/j.automatica.2018.01.014.  Google Scholar

[25]

N. ZhaoX. ZhangY. Xue and P. Shi, Necessary conditions for exponential stability of linear neutral type systems with multiple time delays, J. Franklin Inst., 355 (2018), 458-473.  doi: 10.1016/j.jfranklin.2017.11.016.  Google Scholar

[26]

R. MohajerpoorL. ShanmugamH. AbdiR. RakkiyappanS. Nahavandi and J. H. Park, Improved delay-dependent stability criteria for neutral systems with mixed interval time-varying delays and nonlinear disturbances, J. Franklin Inst., 354 (2017), 1169-1194.  doi: 10.1016/j.jfranklin.2016.11.015.  Google Scholar

[27]

Y. WangX. Zhang and X. Zhang, Neutral-delay-range-dependent absolute stability criteria for neutral-type Lur'e systems with time-varying delays, J. Franklin Inst., 353 (2016), 5025-5039.  doi: 10.1016/j.jfranklin.2016.09.014.  Google Scholar

[28]

Y. WangY. Xue and X. Zhang, Less conservative robust absolute stability criteria for uncertain neutral-type Lur'e systems with time-varying delays, J. Franklin Inst., 353 (2016), 816-833.  doi: 10.1016/j.jfranklin.2016.01.001.  Google Scholar

[29]

W. DuanB. DuZ. Liu and Y. Zou, Improved stability criteria for uncertain neutral-type Lur'e systems with time-varying delays, J. Franklin Inst., 351 (2014), 4538-4554.  doi: 10.1016/j.jfranklin.2014.06.008.  Google Scholar

[30]

S. S. Alaviani, A necessary and sufficient condition for delay-independent stability of linear time-varying neutral delay systems, J. Franklin Inst., 351 (2014), 2574-2581.  doi: 10.1016/j.jfranklin.2013.12.003.  Google Scholar

[31]

Y. LiuS. M. LeeO. M. Kwon and J. H. Park, Delay-dependent exponential stability criteria for neutral systems with interval time-varying delays and nonlinear perturbations, J. Franklin Inst., 350 (2013), 3313-3327.  doi: 10.1016/j.jfranklin.2013.07.010.  Google Scholar

[32]

F. DengW. Mao and A. Wan, A novel result on stability analysis for uncertain neutral stochastic time-varying delay systems, Appl. Math. Comput., 221 (2013), 132-143.  doi: 10.1016/j.amc.2013.05.071.  Google Scholar

[33]

C. GaoZ. Liu and R. Xu, On exponential stabilization for a class of neutral-type systems with parameter uncertainties: An integral sliding mode approach, Appl. Math. Comput., 219 (2013), 11044-11055.  doi: 10.1016/j.amc.2013.04.038.  Google Scholar

[34]

H. K. Khalil, Nonlinear Systems, Prentice Hall, New Jersey, 1996. Google Scholar

[35]

S. Arik, A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays, J. Franklin Inst., 356 (2019), 276-291.  doi: 10.1016/j.jfranklin.2018.11.002.  Google Scholar

[36]

Y. Sun, On simple stability criteria for nonlinear neutral systems with multiple time delays, Appl. Math. Lett., 25 (2012), 1911-1915.  doi: 10.1016/j.aml.2012.02.066.  Google Scholar

show all references

References:
[1]

E. Fridman, Lyapunov-Based Stability Analysis: Introduction to Time-Delay Systems, Springer International Publishing, Switzerland, 2014. Google Scholar

[2]

X. LiuH. J. MarquezK. D. Kumar and Y. Lin, Sampled-data control of networked nonlinear systems with variable delays and drops, Internat. J. Robust Nonlinear Control, 25 (2015), 72-87.  doi: 10.1002/rnc.3074.  Google Scholar

[3]

A. Seuret, A novel stability analysis of linear systems under asynchronous samplings, Automatica J. IFAC, 48 (2012), 177-182.  doi: 10.1016/j.automatica.2011.09.033.  Google Scholar

[4]

T. WangH. Gao and J. Qiu, A combined fault-tolerant and predictive control for network-based industrial processes, IEEE Trans. Industrial Electronics, 63 (2016), 2529-2536.  doi: 10.1109/TIE.2016.2515073.  Google Scholar

[5]

T. WangH. Gao and J. Qiu, A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control, IEEE Trans. Neural Netw. Learn. Syst., 27 (2016), 416-425.  doi: 10.1109/TNNLS.2015.2411671.  Google Scholar

[6]

T. WangJ. Qiu and H. Gao, Adaptive neural control of stochastic nonlinear time-delay systems with multiple constraints, IEEE Trans. Syst. Man Cybernetics Syst., 47 (2017), 1875-1883.  doi: 10.1109/TSMC.2016.2562511.  Google Scholar

[7]

Y. WeiJ. Qiu and S. Fu, Mode-dependent nonrational output feedback control for continuous-time semi-Markovian jump systems with time-varying delay, Nonlinear Anal. Hybrid Syst., 16 (2015), 52-71.  doi: 10.1016/j.nahs.2014.11.003.  Google Scholar

[8]

J. P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica J. IFAC, 39 (2003), 1667-1694.  doi: 10.1016/S0005-1098(03)00167-5.  Google Scholar

[9]

S. I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Lecture Notes in Control and Information Sciences, 269, Springer-Verlag, London, 2001. doi: 10.1007/1-84628-553-4.  Google Scholar

[10] V. B. Kolmanovski$ {\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }} $, Stability of Functional-Differential Equations, Mathematics in Science and Engineering, 180, Academic Press, Inc., London, 1986.   Google Scholar
[11]

J. K. Hale, Introduction to Functional-Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[12]

S. LongY. WuS. Zhong and D. Zhang, Stability analysis for a class of neutral type singular systems with time-varying delay, Appl. Math. Comput., 339 (2018), 113-131.  doi: 10.1016/j.amc.2018.06.058.  Google Scholar

[13]

H. B. Chen, New criteria on stability analysis for uncertain neutral system with mixed time-varying delays, Optimal Control Appl. Methods, 34 (2013), 487-501.  doi: 10.1002/oca.2036.  Google Scholar

[14]

J. SunG. P. LiuJ. Chen and D. Rees, Improved delay-range-dependent stability criteria for linear systems with time-varying delays, Automatica J. IFAC, 46 (2010), 466-470.  doi: 10.1016/j.automatica.2009.11.002.  Google Scholar

[15]

H.-B. ZengY. HeM. Wu and J. She, New results on stability analysis for systems with discrete distributed delay, Automatica J. IFAC, 60 (2015), 189-192.  doi: 10.1016/j.automatica.2015.07.017.  Google Scholar

[16]

M. ParkO. M. KwonJ. H. ParkS. Lee and E. Cha, Stability of time-delay systems via Wirtinger-based double integral inequality, Automatica J. IFAC, 55 (2015), 204-208.  doi: 10.1016/j.automatica.2015.03.010.  Google Scholar

[17]

L. DingY. HeM. Wu and C. Ning, Improved mixed-delay-dependent asymptotic stability criteria for neutral systems, IET Control Theory Appl., 9 (2015), 2180-2187.  doi: 10.1049/iet-cta.2015.0022.  Google Scholar

[18]

Y. G. ChenW. Qian and S. M. Fei, Improved robust stability conditions for uncertain neutral systems with discrete and distributed delays, J. Franklin Inst., 352 (2015), 2634-2645.  doi: 10.1016/j.jfranklin.2015.03.040.  Google Scholar

[19]

P. L. Liu, Improved results on delay-interval-dependent robust stability criteria for uncertain neutral-type systems with time-varying delays, ISA Trans., 60 (2016), 53-66.  doi: 10.1016/j.isatra.2015.11.004.  Google Scholar

[20]

L. L. XiongS. M. Zhong and D. Y. Li, Novel delay-dependent asymptotical stability of neutral systems with nonlinear perturbations, J. Comput. Appl. Math., 232 (2009), 505-513.  doi: 10.1016/j.cam.2009.06.026.  Google Scholar

[21]

Y. J. LiuW. B. MaM.S. Mahmoud and S. M. Lee, Improved delay-dependent exponential stability criteria for neutral-delay systems with nonlinear uncertainties, Appl. Math. Model., 39 (2015), 3164-3174.  doi: 10.1016/j.apm.2014.11.036.  Google Scholar

[22]

T. WangT. LiG. Zhang and S. Fei, Further triple integral approach to mixed-delay-dependent stability of time-delay neutral systems, ISA Trans., 70 (2017), 116-124.  doi: 10.1016/j.isatra.2017.05.010.  Google Scholar

[23]

T. WuL. XiongJ. CaoZ. Liu and H. Zhang, New stability and stabilization conditions for stochastic neural networks of neutral type with Markovian jumping parameters, J. Franklin Inst., 355 (2018), 8462-8483.  doi: 10.1016/j.jfranklin.2018.09.032.  Google Scholar

[24]

Z.-Y. LiJ. Lam and Y. Wang, Stability analysis of linear stochastic neutral-type time-delay systems with two delays, Automatica J. IFAC, 91 (2018), 179-189.  doi: 10.1016/j.automatica.2018.01.014.  Google Scholar

[25]

N. ZhaoX. ZhangY. Xue and P. Shi, Necessary conditions for exponential stability of linear neutral type systems with multiple time delays, J. Franklin Inst., 355 (2018), 458-473.  doi: 10.1016/j.jfranklin.2017.11.016.  Google Scholar

[26]

R. MohajerpoorL. ShanmugamH. AbdiR. RakkiyappanS. Nahavandi and J. H. Park, Improved delay-dependent stability criteria for neutral systems with mixed interval time-varying delays and nonlinear disturbances, J. Franklin Inst., 354 (2017), 1169-1194.  doi: 10.1016/j.jfranklin.2016.11.015.  Google Scholar

[27]

Y. WangX. Zhang and X. Zhang, Neutral-delay-range-dependent absolute stability criteria for neutral-type Lur'e systems with time-varying delays, J. Franklin Inst., 353 (2016), 5025-5039.  doi: 10.1016/j.jfranklin.2016.09.014.  Google Scholar

[28]

Y. WangY. Xue and X. Zhang, Less conservative robust absolute stability criteria for uncertain neutral-type Lur'e systems with time-varying delays, J. Franklin Inst., 353 (2016), 816-833.  doi: 10.1016/j.jfranklin.2016.01.001.  Google Scholar

[29]

W. DuanB. DuZ. Liu and Y. Zou, Improved stability criteria for uncertain neutral-type Lur'e systems with time-varying delays, J. Franklin Inst., 351 (2014), 4538-4554.  doi: 10.1016/j.jfranklin.2014.06.008.  Google Scholar

[30]

S. S. Alaviani, A necessary and sufficient condition for delay-independent stability of linear time-varying neutral delay systems, J. Franklin Inst., 351 (2014), 2574-2581.  doi: 10.1016/j.jfranklin.2013.12.003.  Google Scholar

[31]

Y. LiuS. M. LeeO. M. Kwon and J. H. Park, Delay-dependent exponential stability criteria for neutral systems with interval time-varying delays and nonlinear perturbations, J. Franklin Inst., 350 (2013), 3313-3327.  doi: 10.1016/j.jfranklin.2013.07.010.  Google Scholar

[32]

F. DengW. Mao and A. Wan, A novel result on stability analysis for uncertain neutral stochastic time-varying delay systems, Appl. Math. Comput., 221 (2013), 132-143.  doi: 10.1016/j.amc.2013.05.071.  Google Scholar

[33]

C. GaoZ. Liu and R. Xu, On exponential stabilization for a class of neutral-type systems with parameter uncertainties: An integral sliding mode approach, Appl. Math. Comput., 219 (2013), 11044-11055.  doi: 10.1016/j.amc.2013.04.038.  Google Scholar

[34]

H. K. Khalil, Nonlinear Systems, Prentice Hall, New Jersey, 1996. Google Scholar

[35]

S. Arik, A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays, J. Franklin Inst., 356 (2019), 276-291.  doi: 10.1016/j.jfranklin.2018.11.002.  Google Scholar

[36]

Y. Sun, On simple stability criteria for nonlinear neutral systems with multiple time delays, Appl. Math. Lett., 25 (2012), 1911-1915.  doi: 10.1016/j.aml.2012.02.066.  Google Scholar

[1]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[2]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[3]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1061-1082. doi: 10.3934/dcdsb.2020153

[4]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[5]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[6]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[7]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[8]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[9]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[11]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[12]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[13]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[14]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[15]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[16]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[17]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[18]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[19]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[20]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (94)
  • HTML views (284)
  • Cited by (0)

[Back to Top]