doi: 10.3934/dcdss.2020358

A Novel Lyapunov functional with application to stability analysis of neutral systems with nonlinear disturbances

Department of Computer Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey

* Corresponding author: Sabri Arik

Received  September 2019 Revised  November 2019 Published  May 2020

It is well-known that the global asymptotic stability analysis of neutral systems is an important concept in designing the appropriate controllers or filters for this class of systems. This paper carries out a delay-independent stability analysis of neutral systems possessing discrete time delays in the states and discrete neutral delays in the time derivative of the states in the presence of nonlinear disturbances. Some new global asymptotic stability criteria are proposed by introducing a novel Lyapunov functional. The obtained delay-independent stability criteria establish some simple and easily verifiable mathematical expressions involving the elements of the system matrices and the disturbance parameters of the neutral system. Different from the most of the previously reported stability results for neutral systems, the conditions obtained in this paper are not expressed in terms the Linear Matrix Inequalities (LMIs). Therefore, the criteria presented in this paper can be considered as the alternative results to previously published stability results stated in the LMI forms. A comparison between the results of this paper and some of previously published corresponding stability results is made to substantiate the significant improvement of the proposed results. A constructive numerical example is also presented to show applicability and the effectiveness of the proposed stability condition.

Citation: Sibel Senan, Eylem Yucel, Zeynep Orman, Ruya Samli, Sabri Arik. A Novel Lyapunov functional with application to stability analysis of neutral systems with nonlinear disturbances. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020358
References:
[1]

E. Fridman, Lyapunov-Based Stability Analysis: Introduction to Time-Delay Systems, Springer International Publishing, Switzerland, 2014. Google Scholar

[2]

X. LiuH. J. MarquezK. D. Kumar and Y. Lin, Sampled-data control of networked nonlinear systems with variable delays and drops, Internat. J. Robust Nonlinear Control, 25 (2015), 72-87.  doi: 10.1002/rnc.3074.  Google Scholar

[3]

A. Seuret, A novel stability analysis of linear systems under asynchronous samplings, Automatica J. IFAC, 48 (2012), 177-182.  doi: 10.1016/j.automatica.2011.09.033.  Google Scholar

[4]

T. WangH. Gao and J. Qiu, A combined fault-tolerant and predictive control for network-based industrial processes, IEEE Trans. Industrial Electronics, 63 (2016), 2529-2536.  doi: 10.1109/TIE.2016.2515073.  Google Scholar

[5]

T. WangH. Gao and J. Qiu, A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control, IEEE Trans. Neural Netw. Learn. Syst., 27 (2016), 416-425.  doi: 10.1109/TNNLS.2015.2411671.  Google Scholar

[6]

T. WangJ. Qiu and H. Gao, Adaptive neural control of stochastic nonlinear time-delay systems with multiple constraints, IEEE Trans. Syst. Man Cybernetics Syst., 47 (2017), 1875-1883.  doi: 10.1109/TSMC.2016.2562511.  Google Scholar

[7]

Y. WeiJ. Qiu and S. Fu, Mode-dependent nonrational output feedback control for continuous-time semi-Markovian jump systems with time-varying delay, Nonlinear Anal. Hybrid Syst., 16 (2015), 52-71.  doi: 10.1016/j.nahs.2014.11.003.  Google Scholar

[8]

J. P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica J. IFAC, 39 (2003), 1667-1694.  doi: 10.1016/S0005-1098(03)00167-5.  Google Scholar

[9]

S. I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Lecture Notes in Control and Information Sciences, 269, Springer-Verlag, London, 2001. doi: 10.1007/1-84628-553-4.  Google Scholar

[10] V. B. Kolmanovski$ {\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }} $, Stability of Functional-Differential Equations, Mathematics in Science and Engineering, 180, Academic Press, Inc., London, 1986.   Google Scholar
[11]

J. K. Hale, Introduction to Functional-Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[12]

S. LongY. WuS. Zhong and D. Zhang, Stability analysis for a class of neutral type singular systems with time-varying delay, Appl. Math. Comput., 339 (2018), 113-131.  doi: 10.1016/j.amc.2018.06.058.  Google Scholar

[13]

H. B. Chen, New criteria on stability analysis for uncertain neutral system with mixed time-varying delays, Optimal Control Appl. Methods, 34 (2013), 487-501.  doi: 10.1002/oca.2036.  Google Scholar

[14]

J. SunG. P. LiuJ. Chen and D. Rees, Improved delay-range-dependent stability criteria for linear systems with time-varying delays, Automatica J. IFAC, 46 (2010), 466-470.  doi: 10.1016/j.automatica.2009.11.002.  Google Scholar

[15]

H.-B. ZengY. HeM. Wu and J. She, New results on stability analysis for systems with discrete distributed delay, Automatica J. IFAC, 60 (2015), 189-192.  doi: 10.1016/j.automatica.2015.07.017.  Google Scholar

[16]

M. ParkO. M. KwonJ. H. ParkS. Lee and E. Cha, Stability of time-delay systems via Wirtinger-based double integral inequality, Automatica J. IFAC, 55 (2015), 204-208.  doi: 10.1016/j.automatica.2015.03.010.  Google Scholar

[17]

L. DingY. HeM. Wu and C. Ning, Improved mixed-delay-dependent asymptotic stability criteria for neutral systems, IET Control Theory Appl., 9 (2015), 2180-2187.  doi: 10.1049/iet-cta.2015.0022.  Google Scholar

[18]

Y. G. ChenW. Qian and S. M. Fei, Improved robust stability conditions for uncertain neutral systems with discrete and distributed delays, J. Franklin Inst., 352 (2015), 2634-2645.  doi: 10.1016/j.jfranklin.2015.03.040.  Google Scholar

[19]

P. L. Liu, Improved results on delay-interval-dependent robust stability criteria for uncertain neutral-type systems with time-varying delays, ISA Trans., 60 (2016), 53-66.  doi: 10.1016/j.isatra.2015.11.004.  Google Scholar

[20]

L. L. XiongS. M. Zhong and D. Y. Li, Novel delay-dependent asymptotical stability of neutral systems with nonlinear perturbations, J. Comput. Appl. Math., 232 (2009), 505-513.  doi: 10.1016/j.cam.2009.06.026.  Google Scholar

[21]

Y. J. LiuW. B. MaM.S. Mahmoud and S. M. Lee, Improved delay-dependent exponential stability criteria for neutral-delay systems with nonlinear uncertainties, Appl. Math. Model., 39 (2015), 3164-3174.  doi: 10.1016/j.apm.2014.11.036.  Google Scholar

[22]

T. WangT. LiG. Zhang and S. Fei, Further triple integral approach to mixed-delay-dependent stability of time-delay neutral systems, ISA Trans., 70 (2017), 116-124.  doi: 10.1016/j.isatra.2017.05.010.  Google Scholar

[23]

T. WuL. XiongJ. CaoZ. Liu and H. Zhang, New stability and stabilization conditions for stochastic neural networks of neutral type with Markovian jumping parameters, J. Franklin Inst., 355 (2018), 8462-8483.  doi: 10.1016/j.jfranklin.2018.09.032.  Google Scholar

[24]

Z.-Y. LiJ. Lam and Y. Wang, Stability analysis of linear stochastic neutral-type time-delay systems with two delays, Automatica J. IFAC, 91 (2018), 179-189.  doi: 10.1016/j.automatica.2018.01.014.  Google Scholar

[25]

N. ZhaoX. ZhangY. Xue and P. Shi, Necessary conditions for exponential stability of linear neutral type systems with multiple time delays, J. Franklin Inst., 355 (2018), 458-473.  doi: 10.1016/j.jfranklin.2017.11.016.  Google Scholar

[26]

R. MohajerpoorL. ShanmugamH. AbdiR. RakkiyappanS. Nahavandi and J. H. Park, Improved delay-dependent stability criteria for neutral systems with mixed interval time-varying delays and nonlinear disturbances, J. Franklin Inst., 354 (2017), 1169-1194.  doi: 10.1016/j.jfranklin.2016.11.015.  Google Scholar

[27]

Y. WangX. Zhang and X. Zhang, Neutral-delay-range-dependent absolute stability criteria for neutral-type Lur'e systems with time-varying delays, J. Franklin Inst., 353 (2016), 5025-5039.  doi: 10.1016/j.jfranklin.2016.09.014.  Google Scholar

[28]

Y. WangY. Xue and X. Zhang, Less conservative robust absolute stability criteria for uncertain neutral-type Lur'e systems with time-varying delays, J. Franklin Inst., 353 (2016), 816-833.  doi: 10.1016/j.jfranklin.2016.01.001.  Google Scholar

[29]

W. DuanB. DuZ. Liu and Y. Zou, Improved stability criteria for uncertain neutral-type Lur'e systems with time-varying delays, J. Franklin Inst., 351 (2014), 4538-4554.  doi: 10.1016/j.jfranklin.2014.06.008.  Google Scholar

[30]

S. S. Alaviani, A necessary and sufficient condition for delay-independent stability of linear time-varying neutral delay systems, J. Franklin Inst., 351 (2014), 2574-2581.  doi: 10.1016/j.jfranklin.2013.12.003.  Google Scholar

[31]

Y. LiuS. M. LeeO. M. Kwon and J. H. Park, Delay-dependent exponential stability criteria for neutral systems with interval time-varying delays and nonlinear perturbations, J. Franklin Inst., 350 (2013), 3313-3327.  doi: 10.1016/j.jfranklin.2013.07.010.  Google Scholar

[32]

F. DengW. Mao and A. Wan, A novel result on stability analysis for uncertain neutral stochastic time-varying delay systems, Appl. Math. Comput., 221 (2013), 132-143.  doi: 10.1016/j.amc.2013.05.071.  Google Scholar

[33]

C. GaoZ. Liu and R. Xu, On exponential stabilization for a class of neutral-type systems with parameter uncertainties: An integral sliding mode approach, Appl. Math. Comput., 219 (2013), 11044-11055.  doi: 10.1016/j.amc.2013.04.038.  Google Scholar

[34]

H. K. Khalil, Nonlinear Systems, Prentice Hall, New Jersey, 1996. Google Scholar

[35]

S. Arik, A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays, J. Franklin Inst., 356 (2019), 276-291.  doi: 10.1016/j.jfranklin.2018.11.002.  Google Scholar

[36]

Y. Sun, On simple stability criteria for nonlinear neutral systems with multiple time delays, Appl. Math. Lett., 25 (2012), 1911-1915.  doi: 10.1016/j.aml.2012.02.066.  Google Scholar

show all references

References:
[1]

E. Fridman, Lyapunov-Based Stability Analysis: Introduction to Time-Delay Systems, Springer International Publishing, Switzerland, 2014. Google Scholar

[2]

X. LiuH. J. MarquezK. D. Kumar and Y. Lin, Sampled-data control of networked nonlinear systems with variable delays and drops, Internat. J. Robust Nonlinear Control, 25 (2015), 72-87.  doi: 10.1002/rnc.3074.  Google Scholar

[3]

A. Seuret, A novel stability analysis of linear systems under asynchronous samplings, Automatica J. IFAC, 48 (2012), 177-182.  doi: 10.1016/j.automatica.2011.09.033.  Google Scholar

[4]

T. WangH. Gao and J. Qiu, A combined fault-tolerant and predictive control for network-based industrial processes, IEEE Trans. Industrial Electronics, 63 (2016), 2529-2536.  doi: 10.1109/TIE.2016.2515073.  Google Scholar

[5]

T. WangH. Gao and J. Qiu, A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control, IEEE Trans. Neural Netw. Learn. Syst., 27 (2016), 416-425.  doi: 10.1109/TNNLS.2015.2411671.  Google Scholar

[6]

T. WangJ. Qiu and H. Gao, Adaptive neural control of stochastic nonlinear time-delay systems with multiple constraints, IEEE Trans. Syst. Man Cybernetics Syst., 47 (2017), 1875-1883.  doi: 10.1109/TSMC.2016.2562511.  Google Scholar

[7]

Y. WeiJ. Qiu and S. Fu, Mode-dependent nonrational output feedback control for continuous-time semi-Markovian jump systems with time-varying delay, Nonlinear Anal. Hybrid Syst., 16 (2015), 52-71.  doi: 10.1016/j.nahs.2014.11.003.  Google Scholar

[8]

J. P. Richard, Time-delay systems: An overview of some recent advances and open problems, Automatica J. IFAC, 39 (2003), 1667-1694.  doi: 10.1016/S0005-1098(03)00167-5.  Google Scholar

[9]

S. I. Niculescu, Delay Effects on Stability: A Robust Control Approach, Lecture Notes in Control and Information Sciences, 269, Springer-Verlag, London, 2001. doi: 10.1007/1-84628-553-4.  Google Scholar

[10] V. B. Kolmanovski$ {\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }} $, Stability of Functional-Differential Equations, Mathematics in Science and Engineering, 180, Academic Press, Inc., London, 1986.   Google Scholar
[11]

J. K. Hale, Introduction to Functional-Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[12]

S. LongY. WuS. Zhong and D. Zhang, Stability analysis for a class of neutral type singular systems with time-varying delay, Appl. Math. Comput., 339 (2018), 113-131.  doi: 10.1016/j.amc.2018.06.058.  Google Scholar

[13]

H. B. Chen, New criteria on stability analysis for uncertain neutral system with mixed time-varying delays, Optimal Control Appl. Methods, 34 (2013), 487-501.  doi: 10.1002/oca.2036.  Google Scholar

[14]

J. SunG. P. LiuJ. Chen and D. Rees, Improved delay-range-dependent stability criteria for linear systems with time-varying delays, Automatica J. IFAC, 46 (2010), 466-470.  doi: 10.1016/j.automatica.2009.11.002.  Google Scholar

[15]

H.-B. ZengY. HeM. Wu and J. She, New results on stability analysis for systems with discrete distributed delay, Automatica J. IFAC, 60 (2015), 189-192.  doi: 10.1016/j.automatica.2015.07.017.  Google Scholar

[16]

M. ParkO. M. KwonJ. H. ParkS. Lee and E. Cha, Stability of time-delay systems via Wirtinger-based double integral inequality, Automatica J. IFAC, 55 (2015), 204-208.  doi: 10.1016/j.automatica.2015.03.010.  Google Scholar

[17]

L. DingY. HeM. Wu and C. Ning, Improved mixed-delay-dependent asymptotic stability criteria for neutral systems, IET Control Theory Appl., 9 (2015), 2180-2187.  doi: 10.1049/iet-cta.2015.0022.  Google Scholar

[18]

Y. G. ChenW. Qian and S. M. Fei, Improved robust stability conditions for uncertain neutral systems with discrete and distributed delays, J. Franklin Inst., 352 (2015), 2634-2645.  doi: 10.1016/j.jfranklin.2015.03.040.  Google Scholar

[19]

P. L. Liu, Improved results on delay-interval-dependent robust stability criteria for uncertain neutral-type systems with time-varying delays, ISA Trans., 60 (2016), 53-66.  doi: 10.1016/j.isatra.2015.11.004.  Google Scholar

[20]

L. L. XiongS. M. Zhong and D. Y. Li, Novel delay-dependent asymptotical stability of neutral systems with nonlinear perturbations, J. Comput. Appl. Math., 232 (2009), 505-513.  doi: 10.1016/j.cam.2009.06.026.  Google Scholar

[21]

Y. J. LiuW. B. MaM.S. Mahmoud and S. M. Lee, Improved delay-dependent exponential stability criteria for neutral-delay systems with nonlinear uncertainties, Appl. Math. Model., 39 (2015), 3164-3174.  doi: 10.1016/j.apm.2014.11.036.  Google Scholar

[22]

T. WangT. LiG. Zhang and S. Fei, Further triple integral approach to mixed-delay-dependent stability of time-delay neutral systems, ISA Trans., 70 (2017), 116-124.  doi: 10.1016/j.isatra.2017.05.010.  Google Scholar

[23]

T. WuL. XiongJ. CaoZ. Liu and H. Zhang, New stability and stabilization conditions for stochastic neural networks of neutral type with Markovian jumping parameters, J. Franklin Inst., 355 (2018), 8462-8483.  doi: 10.1016/j.jfranklin.2018.09.032.  Google Scholar

[24]

Z.-Y. LiJ. Lam and Y. Wang, Stability analysis of linear stochastic neutral-type time-delay systems with two delays, Automatica J. IFAC, 91 (2018), 179-189.  doi: 10.1016/j.automatica.2018.01.014.  Google Scholar

[25]

N. ZhaoX. ZhangY. Xue and P. Shi, Necessary conditions for exponential stability of linear neutral type systems with multiple time delays, J. Franklin Inst., 355 (2018), 458-473.  doi: 10.1016/j.jfranklin.2017.11.016.  Google Scholar

[26]

R. MohajerpoorL. ShanmugamH. AbdiR. RakkiyappanS. Nahavandi and J. H. Park, Improved delay-dependent stability criteria for neutral systems with mixed interval time-varying delays and nonlinear disturbances, J. Franklin Inst., 354 (2017), 1169-1194.  doi: 10.1016/j.jfranklin.2016.11.015.  Google Scholar

[27]

Y. WangX. Zhang and X. Zhang, Neutral-delay-range-dependent absolute stability criteria for neutral-type Lur'e systems with time-varying delays, J. Franklin Inst., 353 (2016), 5025-5039.  doi: 10.1016/j.jfranklin.2016.09.014.  Google Scholar

[28]

Y. WangY. Xue and X. Zhang, Less conservative robust absolute stability criteria for uncertain neutral-type Lur'e systems with time-varying delays, J. Franklin Inst., 353 (2016), 816-833.  doi: 10.1016/j.jfranklin.2016.01.001.  Google Scholar

[29]

W. DuanB. DuZ. Liu and Y. Zou, Improved stability criteria for uncertain neutral-type Lur'e systems with time-varying delays, J. Franklin Inst., 351 (2014), 4538-4554.  doi: 10.1016/j.jfranklin.2014.06.008.  Google Scholar

[30]

S. S. Alaviani, A necessary and sufficient condition for delay-independent stability of linear time-varying neutral delay systems, J. Franklin Inst., 351 (2014), 2574-2581.  doi: 10.1016/j.jfranklin.2013.12.003.  Google Scholar

[31]

Y. LiuS. M. LeeO. M. Kwon and J. H. Park, Delay-dependent exponential stability criteria for neutral systems with interval time-varying delays and nonlinear perturbations, J. Franklin Inst., 350 (2013), 3313-3327.  doi: 10.1016/j.jfranklin.2013.07.010.  Google Scholar

[32]

F. DengW. Mao and A. Wan, A novel result on stability analysis for uncertain neutral stochastic time-varying delay systems, Appl. Math. Comput., 221 (2013), 132-143.  doi: 10.1016/j.amc.2013.05.071.  Google Scholar

[33]

C. GaoZ. Liu and R. Xu, On exponential stabilization for a class of neutral-type systems with parameter uncertainties: An integral sliding mode approach, Appl. Math. Comput., 219 (2013), 11044-11055.  doi: 10.1016/j.amc.2013.04.038.  Google Scholar

[34]

H. K. Khalil, Nonlinear Systems, Prentice Hall, New Jersey, 1996. Google Scholar

[35]

S. Arik, A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays, J. Franklin Inst., 356 (2019), 276-291.  doi: 10.1016/j.jfranklin.2018.11.002.  Google Scholar

[36]

Y. Sun, On simple stability criteria for nonlinear neutral systems with multiple time delays, Appl. Math. Lett., 25 (2012), 1911-1915.  doi: 10.1016/j.aml.2012.02.066.  Google Scholar

[1]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[2]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[3]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[4]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[5]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[6]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[7]

Tomás Caraballo, Carlos Ogouyandjou, Fulbert Kuessi Allognissode, Mamadou Abdoul Diop. Existence and exponential stability for neutral stochastic integro–differential equations with impulses driven by a Rosenblatt process. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 507-528. doi: 10.3934/dcdsb.2019251

[8]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[9]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[10]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[11]

Mustafa Hasanbulli, Yuri V. Rogovchenko. Classification of nonoscillatory solutions of nonlinear neutral differential equations. Conference Publications, 2009, 2009 (Special) : 340-348. doi: 10.3934/proc.2009.2009.340

[12]

Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure & Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103

[13]

Hernán R. Henríquez, Claudio Cuevas, Juan C. Pozo, Herme Soto. Existence of solutions for a class of abstract neutral differential equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2455-2482. doi: 10.3934/dcds.2017106

[14]

T. Candan, R.S. Dahiya. Oscillation of mixed neutral differential equations with forcing term. Conference Publications, 2003, 2003 (Special) : 167-172. doi: 10.3934/proc.2003.2003.167

[15]

Tomasz Kapela, Piotr Zgliczyński. A Lohner-type algorithm for control systems and ordinary differential inclusions. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 365-385. doi: 10.3934/dcdsb.2009.11.365

[16]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[17]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

[18]

Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040

[19]

Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control & Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036

[20]

Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control & Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (45)
  • HTML views (161)
  • Cited by (0)

[Back to Top]