• Previous Article
    Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation
  • DCDS-S Home
  • This Issue
  • Next Article
    A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions
February  2021, 14(2): 677-694. doi: 10.3934/dcdss.2020360

Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties

1. 

Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse, CNRS, F–31062 Toulouse Cedex 9, France

2. 

Leibniz Universität Hannover, Institut für Angewandte Mathematik, Welfengarten 1, D–30167 Hannover, Germany

* Corresponding author

Dedicated to Michel Pierre on the occasion of his 70th birthday

Received  October 2019 Published  May 2020

Fund Project: Partially supported by the CNRS Projet International de Coopération Scientifique PICS07710

The existence of weak solutions to the obstacle problem for a nonlocal semilinear fourth-order parabolic equation is shown, using its underlying gradient flow structure. The model governs the dynamics of a microelectromechanical system with heterogeneous dielectric properties.

Citation: Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360
References:
[1]

H. Amann and P. Quittner, Semilinear parabolic equations involving measures and low regularity data, Trans. Amer. Math. Soc., 356 (2004), 1045-1119.  doi: 10.1090/S0002-9947-03-03440-8.  Google Scholar

[2]

V. R. Ambati, A. Asheim, J. B. van den Berg, et al., Some studies on the deformation of the membrane in an RF MEMS switch, In Proceedings of the 63rd European Study Group Mathematics with Industry, Centrum voor Wiskunde en Informatica Syllabus, Netherlands, 2008, 65–84. /http://eprints.ewi.utwente.nl/14950 Google Scholar

[3]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[4]

D. H. Bernstein and P. Guidotti, Modeling and analysis of hysteresis phenomena in electrostatic zipper actuators, In Proceedings of Modeling and Simulation of Microsystems 2001, Hilton Head Island, SC, 2001,306–309. Google Scholar

[5]

H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl., 51 (1972), 1-168.   Google Scholar

[6]

L. A. Caffarelli and A. Friedman, The obstacle problem for the biharmonic operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 6 (1979), 151-184.   Google Scholar

[7]

F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, London, EDP Sciences, Les Ulis, 2012. doi: 10.1007/978-1-4471-2807-6.  Google Scholar

[8]

J. Frehse, On the regularity of the solution of the biharmonic variational inequality, Manuscripta Math., 9 (1973), 91-103.  doi: 10.1007/BF01320669.  Google Scholar

[9]

A. Henrot and M. Pierre, Variation et Optimisation de Formes. Mathématiques and Applications, Vol. 48, Springer, Berlin, 2005. doi: 10.1007/3-540-37689-5.  Google Scholar

[10]

A. Henrot and M. Pierre, Shape Variation and Optimization. EMS Tracts in Mathematics, Vol. 28, European Mathematical Society (EMS), Zürich, 2018. doi: 10.4171/178.  Google Scholar

[11]

Ph. Laurençot and Ch. Walker, Some singular equations modeling MEMS, Bull. Amer. Math. Soc. (N.S.), 54 (2017), 437-479.  doi: 10.1090/bull/1563.  Google Scholar

[12]

Ph. Laurençot and Ch. Walker, Shape derivative of the Dirichlet energy for a transmission problem, Arch. Rational Mech. Anal., 237 (2020), 447-496.  doi: 10.1007/s00205-020-01512-8.  Google Scholar

[13]

A. E. LindsayJ. Lega and K. G. Glasner, Regularized model of post-touchdown configurations in electrostatic MEMS: Equilibrium analysis, Phys. D, 280-281 (2014), 95-108.   Google Scholar

[14]

A. E. LindsayJ. Lega and K. G. Glasner, Regularized model of post-touchdown configurations in electrostatic MEMS: Interface dynamics, IMA J. Appl. Math., 80 (2015), 1635-1663.  doi: 10.1093/imamat/hxv011.  Google Scholar

[15]

M. Novaga and S. Okabe, Regularity of the obstacle problem for the parabolic biharmonic equation, Math. Ann., 363 (2015), 1147-1186.  doi: 10.1007/s00208-015-1200-5.  Google Scholar

[16]

J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM J. Appl. Math., 62 (2001/02), 888-908.  doi: 10.1137/S0036139900381079.  Google Scholar

[17]

J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003.  Google Scholar

[18]

C. Pozzolini and A. Léger, A stability result concerning the obstacle problem for a plate, J. Math. Pures Appl., 90 (2008), 505-519.  doi: 10.1016/j.matpur.2008.07.005.  Google Scholar

[19]

B. Schild, On the coincidence set in biharmonic variational inequalities with thin obstacles, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13 (1986), 559-616.   Google Scholar

show all references

References:
[1]

H. Amann and P. Quittner, Semilinear parabolic equations involving measures and low regularity data, Trans. Amer. Math. Soc., 356 (2004), 1045-1119.  doi: 10.1090/S0002-9947-03-03440-8.  Google Scholar

[2]

V. R. Ambati, A. Asheim, J. B. van den Berg, et al., Some studies on the deformation of the membrane in an RF MEMS switch, In Proceedings of the 63rd European Study Group Mathematics with Industry, Centrum voor Wiskunde en Informatica Syllabus, Netherlands, 2008, 65–84. /http://eprints.ewi.utwente.nl/14950 Google Scholar

[3]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures. 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[4]

D. H. Bernstein and P. Guidotti, Modeling and analysis of hysteresis phenomena in electrostatic zipper actuators, In Proceedings of Modeling and Simulation of Microsystems 2001, Hilton Head Island, SC, 2001,306–309. Google Scholar

[5]

H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl., 51 (1972), 1-168.   Google Scholar

[6]

L. A. Caffarelli and A. Friedman, The obstacle problem for the biharmonic operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 6 (1979), 151-184.   Google Scholar

[7]

F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations, Springer, London, EDP Sciences, Les Ulis, 2012. doi: 10.1007/978-1-4471-2807-6.  Google Scholar

[8]

J. Frehse, On the regularity of the solution of the biharmonic variational inequality, Manuscripta Math., 9 (1973), 91-103.  doi: 10.1007/BF01320669.  Google Scholar

[9]

A. Henrot and M. Pierre, Variation et Optimisation de Formes. Mathématiques and Applications, Vol. 48, Springer, Berlin, 2005. doi: 10.1007/3-540-37689-5.  Google Scholar

[10]

A. Henrot and M. Pierre, Shape Variation and Optimization. EMS Tracts in Mathematics, Vol. 28, European Mathematical Society (EMS), Zürich, 2018. doi: 10.4171/178.  Google Scholar

[11]

Ph. Laurençot and Ch. Walker, Some singular equations modeling MEMS, Bull. Amer. Math. Soc. (N.S.), 54 (2017), 437-479.  doi: 10.1090/bull/1563.  Google Scholar

[12]

Ph. Laurençot and Ch. Walker, Shape derivative of the Dirichlet energy for a transmission problem, Arch. Rational Mech. Anal., 237 (2020), 447-496.  doi: 10.1007/s00205-020-01512-8.  Google Scholar

[13]

A. E. LindsayJ. Lega and K. G. Glasner, Regularized model of post-touchdown configurations in electrostatic MEMS: Equilibrium analysis, Phys. D, 280-281 (2014), 95-108.   Google Scholar

[14]

A. E. LindsayJ. Lega and K. G. Glasner, Regularized model of post-touchdown configurations in electrostatic MEMS: Interface dynamics, IMA J. Appl. Math., 80 (2015), 1635-1663.  doi: 10.1093/imamat/hxv011.  Google Scholar

[15]

M. Novaga and S. Okabe, Regularity of the obstacle problem for the parabolic biharmonic equation, Math. Ann., 363 (2015), 1147-1186.  doi: 10.1007/s00208-015-1200-5.  Google Scholar

[16]

J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM J. Appl. Math., 62 (2001/02), 888-908.  doi: 10.1137/S0036139900381079.  Google Scholar

[17]

J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003.  Google Scholar

[18]

C. Pozzolini and A. Léger, A stability result concerning the obstacle problem for a plate, J. Math. Pures Appl., 90 (2008), 505-519.  doi: 10.1016/j.matpur.2008.07.005.  Google Scholar

[19]

B. Schild, On the coincidence set in biharmonic variational inequalities with thin obstacles, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13 (1986), 559-616.   Google Scholar

Figure 1.  Geometry of $ \Omega(u) $ for a state $ u = v $ with empty coincidence set (green)
Figure 2.  Geometry of $ \Omega(u) $ for a state $ u = w $ with non-empty coincidence set (blue)
[1]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[2]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[3]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

Elena Nozdrinova, Olga Pochinka. Solution of the 33rd Palis-Pugh problem for gradient-like diffeomorphisms of a two-dimensional sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1101-1131. doi: 10.3934/dcds.2020311

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[8]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[9]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[10]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[11]

Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308

[12]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[13]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[14]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[15]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[16]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[17]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[18]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[19]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021004

[20]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (69)
  • HTML views (269)
  • Cited by (0)

Other articles
by authors

[Back to Top]