February  2021, 14(2): 695-721. doi: 10.3934/dcdss.2020362

Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation

Institut de Mathématiques de Toulouse, UMR CNRS 5219, Université Paul Sabatier Toulouse Ⅲ, 118 route de Narbonne, 31 062 Toulouse Cedex 4, France

* Corresponding author: Judith Vancostenoble

Received  November 2019 Revised  February 2020 Published  May 2020

We consider a reaction-diffusion model of biological invasion in which the evolution of the population is governed by several parameters among them the intrinsic growth rate $ \mu(x) $. The knowledge of this growth rate is essential to predict the evolution of the population, but it is a priori unknown for exotic invasive species. We prove uniqueness and unconditional Lipschitz stability for the corresponding inverse problem, taking advantage of the positivity of the solution inside the spatial domain and studying its behaviour near the boundary with maximum principles. Our results complement previous works by Cristofol and Roques [11,13].

Citation: Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362
References:
[1]

L. Baudouin and J. P. Puel, An inverse problem for the Schrödinger equation, Inverse Problems, 18 (2002), 1537-1554.  doi: 10.1088/0266-5611/18/6/307.  Google Scholar

[2]

A. BenabdallahP. Gaitan and J. Le Rousseau, Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation, SIAM J. Control Optim., 46 (2007), 1849-1881.  doi: 10.1137/050640047.  Google Scholar

[3]

A. BenabdallahY. Dermenjian and J. Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem, J. Math. Anal. Appl., 336 (2007), 865-887.  doi: 10.1016/j.jmaa.2007.03.024.  Google Scholar

[4]

H. BerestyckiF. Hamel and L. Roques, Analysis of the periodically fragmented environment model: I–Species persistence, J. Math. Biol., 51 (2005), 75-113.  doi: 10.1007/s00285-004-0313-3.  Google Scholar

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential equations, Springer, New York, 2011.  Google Scholar

[6]

A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269-272.   Google Scholar

[7]

P. Cannarsa, G. Floridia, F. Gölgeleyen and M. Yamamoto, (Inverse coefficient problems for a transport equation by local Carleman estimate, Inverse Problems, 35 (2019), 105013, 22 pp. doi: 10.1088/1361-6420/ab1c69.  Google Scholar

[8]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for degenerate parabolic operators with applications, Mem. Amer. Math. Soc., 239 (2016), no. 1133. doi: 10.1090/memo/1133.  Google Scholar

[9]

P. Cannarsa, J. Tort, and M. Yamamoto, Determination of a source term in a degenerate parabolic equation, Inverse Problems, 26 (2010), 105003, 20 pp. doi: 10.1088/0266-5611/26/10/105003.  Google Scholar

[10]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations. Wiley Series in Mathematical and Computational Biology, John Wiley and Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[11]

M. Cristofol and L. Roques, Biological invasions: Deriving the regions at risk from partial measurements, Math. Biosci., 215 (2008), 158-166.  doi: 10.1016/j.mbs.2008.07.004.  Google Scholar

[12]

M. CristofolJ. GarnierF. Hamel and L. Roques, Uniqueness from pointwise observations in a multi-parameter inverse problem, Commun. Pure Appl. Anal., 11 (2011), 173-188.  doi: 10.3934/cpaa.2012.11.173.  Google Scholar

[13]

M. Cristofol and L. Roques, Stable estimation of two coefficients in a nonlinear Fisher-KPP equation, Inverse Problems, 29 (2013), 095007, 18 pp. doi: 10.1088/0266-5611/29/9/095007.  Google Scholar

[14]

M. CristofolP. Gaitan and H. Ramoul, Inverse problem for a two by two reaction-diffusion system using a Carleman estimate with one observation, Inverse Problems, 22 (2006), 1561-1573.  doi: 10.1088/0266-5611/22/5/003.  Google Scholar

[15]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964.  Google Scholar

[16]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34, Seoul National University, Research Institute of Mathematics, Seoul, 1996.  Google Scholar

[17]

F. HamelJ. Fayard and L. Roques, Spreading speeds in slowly oscillating environments., Bull. Math. Biol., 72 (2010), 1166-1191.  doi: 10.1007/s11538-009-9486-7.  Google Scholar

[18]

F. HamelG. Nadin and L. Roques, A viscosity solution method for the spreading speed formula in slowly varying media, Indiana Univ. Math. J., 60 (2011), 1229-1247.  doi: 10.1512/iumj.2011.60.4370.  Google Scholar

[19]

O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems, 14 (1998), 1229-1245.  doi: 10.1088/0266-5611/14/5/009.  Google Scholar

[20]

V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, Vol. 127, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4899-0030-2.  Google Scholar

[21]

M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8 (1992), 575-596.  doi: 10.1088/0266-5611/8/4/009.  Google Scholar

[22]

M. V. Klibanov and A. Timonov, Carleman estimates for coefficient inverse problems and numerical applications, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2004. doi: 10.1515/9783110915549.  Google Scholar

[23]

J. LiM. Yamamoto and J. Zou, Conditional stability and numerical reconstruction of initial temperature, Commun. Pure Appl. Anal., 8 (2009), 361-382.  doi: 10.3934/cpaa.2009.8.361.  Google Scholar

[24]

P. MartinezJ. Tort and J. Vancostenoble, Lipschitz stability for an inverse problem for the 2D-Sellers model on a manifold, Riv. Mat. Univ. Parma, (N.S.), 7 (2016), 351-389.   Google Scholar

[25] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.   Google Scholar
[26]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1967.  Google Scholar

[27]

J. P. Puel and M. Yamamoto, Applications of Exact Controllability to Some Inverse Problems for the Wave Equation. Control of partial differential equations and applications, Lecture Notes in Pure and Appl. Math., Vol. 174, Dekker, New York, 1996,241–249.  Google Scholar

[28] N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, Oxford, 1997.   Google Scholar
[29]

L. Roques, Species persistence decreases with habitat fragmentation: An analysis in periodic stochastic environments, J. Math. Biol., 55 (2007), 189-205.  doi: 10.1007/s00285-007-0076-8.  Google Scholar

[30]

L. Roques and M. Cristofol, On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation, Nonlinearity, 23 (2010), 675-686.  doi: 10.1088/0951-7715/23/3/014.  Google Scholar

[31]

L. Roques and M. Chekroun, On population resilience to external perturbations, SIAM J. Appl. Math., 68 (2007), 133-153.  doi: 10.1137/060676994.  Google Scholar

[32]

S. Saitoh and M. Yamamoto, Stability of Lipschitz type in determination of initial heat distribution, J. Inequal. Appl., 1 (1997), 73-83.  doi: 10.1155/S1025583497000052.  Google Scholar

[33]

J. Tort and J. Vancostenoble, Determination of the insolation function in the nonlinear Sellers climate model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 683-713.  doi: 10.1016/j.anihpc.2012.03.003.  Google Scholar

[34]

J. Vancostenoble, Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 761-790.  doi: 10.3934/dcdss.2011.4.761.  Google Scholar

[35]

J. Vancostenoble, Lipschitz stability in inverse source problems for singular parabolic equations, Comm. Partial Differential Equations, 36 (2011), 1287-1317.  doi: 10.1080/03605302.2011.587491.  Google Scholar

show all references

References:
[1]

L. Baudouin and J. P. Puel, An inverse problem for the Schrödinger equation, Inverse Problems, 18 (2002), 1537-1554.  doi: 10.1088/0266-5611/18/6/307.  Google Scholar

[2]

A. BenabdallahP. Gaitan and J. Le Rousseau, Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation, SIAM J. Control Optim., 46 (2007), 1849-1881.  doi: 10.1137/050640047.  Google Scholar

[3]

A. BenabdallahY. Dermenjian and J. Le Rousseau, Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem, J. Math. Anal. Appl., 336 (2007), 865-887.  doi: 10.1016/j.jmaa.2007.03.024.  Google Scholar

[4]

H. BerestyckiF. Hamel and L. Roques, Analysis of the periodically fragmented environment model: I–Species persistence, J. Math. Biol., 51 (2005), 75-113.  doi: 10.1007/s00285-004-0313-3.  Google Scholar

[5]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential equations, Springer, New York, 2011.  Google Scholar

[6]

A. L. Bukhgeim and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR, 260 (1981), 269-272.   Google Scholar

[7]

P. Cannarsa, G. Floridia, F. Gölgeleyen and M. Yamamoto, (Inverse coefficient problems for a transport equation by local Carleman estimate, Inverse Problems, 35 (2019), 105013, 22 pp. doi: 10.1088/1361-6420/ab1c69.  Google Scholar

[8]

P. Cannarsa, P. Martinez and J. Vancostenoble, Carleman estimates for degenerate parabolic operators with applications, Mem. Amer. Math. Soc., 239 (2016), no. 1133. doi: 10.1090/memo/1133.  Google Scholar

[9]

P. Cannarsa, J. Tort, and M. Yamamoto, Determination of a source term in a degenerate parabolic equation, Inverse Problems, 26 (2010), 105003, 20 pp. doi: 10.1088/0266-5611/26/10/105003.  Google Scholar

[10]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations. Wiley Series in Mathematical and Computational Biology, John Wiley and Sons, Ltd., Chichester, 2003. doi: 10.1002/0470871296.  Google Scholar

[11]

M. Cristofol and L. Roques, Biological invasions: Deriving the regions at risk from partial measurements, Math. Biosci., 215 (2008), 158-166.  doi: 10.1016/j.mbs.2008.07.004.  Google Scholar

[12]

M. CristofolJ. GarnierF. Hamel and L. Roques, Uniqueness from pointwise observations in a multi-parameter inverse problem, Commun. Pure Appl. Anal., 11 (2011), 173-188.  doi: 10.3934/cpaa.2012.11.173.  Google Scholar

[13]

M. Cristofol and L. Roques, Stable estimation of two coefficients in a nonlinear Fisher-KPP equation, Inverse Problems, 29 (2013), 095007, 18 pp. doi: 10.1088/0266-5611/29/9/095007.  Google Scholar

[14]

M. CristofolP. Gaitan and H. Ramoul, Inverse problem for a two by two reaction-diffusion system using a Carleman estimate with one observation, Inverse Problems, 22 (2006), 1561-1573.  doi: 10.1088/0266-5611/22/5/003.  Google Scholar

[15]

A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964.  Google Scholar

[16]

A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, 34, Seoul National University, Research Institute of Mathematics, Seoul, 1996.  Google Scholar

[17]

F. HamelJ. Fayard and L. Roques, Spreading speeds in slowly oscillating environments., Bull. Math. Biol., 72 (2010), 1166-1191.  doi: 10.1007/s11538-009-9486-7.  Google Scholar

[18]

F. HamelG. Nadin and L. Roques, A viscosity solution method for the spreading speed formula in slowly varying media, Indiana Univ. Math. J., 60 (2011), 1229-1247.  doi: 10.1512/iumj.2011.60.4370.  Google Scholar

[19]

O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems, 14 (1998), 1229-1245.  doi: 10.1088/0266-5611/14/5/009.  Google Scholar

[20]

V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences, Vol. 127, Springer-Verlag, New York, 1998. doi: 10.1007/978-1-4899-0030-2.  Google Scholar

[21]

M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8 (1992), 575-596.  doi: 10.1088/0266-5611/8/4/009.  Google Scholar

[22]

M. V. Klibanov and A. Timonov, Carleman estimates for coefficient inverse problems and numerical applications, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2004. doi: 10.1515/9783110915549.  Google Scholar

[23]

J. LiM. Yamamoto and J. Zou, Conditional stability and numerical reconstruction of initial temperature, Commun. Pure Appl. Anal., 8 (2009), 361-382.  doi: 10.3934/cpaa.2009.8.361.  Google Scholar

[24]

P. MartinezJ. Tort and J. Vancostenoble, Lipschitz stability for an inverse problem for the 2D-Sellers model on a manifold, Riv. Mat. Univ. Parma, (N.S.), 7 (2016), 351-389.   Google Scholar

[25] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.   Google Scholar
[26]

M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1967.  Google Scholar

[27]

J. P. Puel and M. Yamamoto, Applications of Exact Controllability to Some Inverse Problems for the Wave Equation. Control of partial differential equations and applications, Lecture Notes in Pure and Appl. Math., Vol. 174, Dekker, New York, 1996,241–249.  Google Scholar

[28] N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, Oxford, 1997.   Google Scholar
[29]

L. Roques, Species persistence decreases with habitat fragmentation: An analysis in periodic stochastic environments, J. Math. Biol., 55 (2007), 189-205.  doi: 10.1007/s00285-007-0076-8.  Google Scholar

[30]

L. Roques and M. Cristofol, On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation, Nonlinearity, 23 (2010), 675-686.  doi: 10.1088/0951-7715/23/3/014.  Google Scholar

[31]

L. Roques and M. Chekroun, On population resilience to external perturbations, SIAM J. Appl. Math., 68 (2007), 133-153.  doi: 10.1137/060676994.  Google Scholar

[32]

S. Saitoh and M. Yamamoto, Stability of Lipschitz type in determination of initial heat distribution, J. Inequal. Appl., 1 (1997), 73-83.  doi: 10.1155/S1025583497000052.  Google Scholar

[33]

J. Tort and J. Vancostenoble, Determination of the insolation function in the nonlinear Sellers climate model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 683-713.  doi: 10.1016/j.anihpc.2012.03.003.  Google Scholar

[34]

J. Vancostenoble, Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems, Discrete Contin. Dyn. Syst. Ser. S, 4 (2011), 761-790.  doi: 10.3934/dcdss.2011.4.761.  Google Scholar

[35]

J. Vancostenoble, Lipschitz stability in inverse source problems for singular parabolic equations, Comm. Partial Differential Equations, 36 (2011), 1287-1317.  doi: 10.1080/03605302.2011.587491.  Google Scholar

[1]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[2]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[3]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[4]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[5]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[6]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[7]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[8]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[9]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[10]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[11]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[12]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[13]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[14]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[15]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[16]

Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic & Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047

[17]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020277

[18]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[19]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[20]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (65)
  • HTML views (265)
  • Cited by (0)

Other articles
by authors

[Back to Top]