• Previous Article
    Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition
  • DCDS-S Home
  • This Issue
  • Next Article
    An efficient numerical method for fractional model of allelopathic stimulatory phytoplankton species with Mittag-Leffler law
doi: 10.3934/dcdss.2020364

Equipartition of energy for nonautonomous damped wave equations

1. 

Dipartimento di Matematica, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy

2. 

Department of Mathematical Sciences, University of Memphis, 373 Dunn Hall, Memphis, TN 38152-3240, USA

* Corresponding author: Jerome A. Goldstein

Dedicated to Michel Pierre on his seventieth birthday

Received  December 2019 Published  May 2020

The kinetic and potential energies for the damped wave equation
$ \begin{equation} u''+2Bu'+A^2u = 0 \;\;\;\;\;\;({\rm DWE})\end{equation} $
are defined by
$ K(t) = \Vert u'(t)\Vert^2,\, P(t) = \Vert Au(t)\Vert^2, $
where
$ A,B $
are suitable commuting selfadjoint operators. Asymptotic equipartition of energy means
$\begin{equation} \lim\limits_{t\to\infty} \frac{K(t)}{P(t)} = 1 \;\;\;\;\;\;({\rm AEE})\end{equation}$
for all (finite energy) non-zero solutions of (DWE). The main result of this paper is the proof of a result analogous to (AEE) for a nonautonomous version of (DWE).
Citation: Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020364
References:
[1]

M. D'AbbiccoM. R. Ebert and S. Lucente, Self-similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation, Math. Methods Appl. Sci., 40 (2017), 6480-6494.  doi: 10.1002/mma.4469.  Google Scholar

[2]

M. D'AbbiccoG. Girardi and M. Reissig, A scale of critical exponents for semilinear waves with time-dependent damping and mass terms, Nonlinear Anal., 179 (2019), 15-40.  doi: 10.1016/j.na.2018.08.006.  Google Scholar

[3]

J. L. Doob, Stochastic Processes, John Wiley and Sons, Inc., New York, Chapman and Hall, Ltd., 1953.  Google Scholar

[4]

G. R. GoldsteinJ. A. Goldstein and F. Travessini, Equipartition of energy for nonautonomous wave equations, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 75-85.  doi: 10.3934/dcdss.2017004.  Google Scholar

[5]

J. A. Goldstein, An asymptotic property of solutions of wave equations, Proc. Amer. Math. Soc., 23 (1969), 359-363.  doi: 10.1090/S0002-9939-1969-0250125-1.  Google Scholar

[6]

J. A. Goldstein, An asymptotic property of solutions of wave equations. II, J. Math. Anal. Appl., 32 (1970), 392-399.  doi: 10.1016/0022-247X(70)90305-7.  Google Scholar

[7]

J. A. Goldstein, Semigroups of Linear Operators and Applications, 2nd edition, Dover Publications, Inc., Mineola, New York, 2017.  Google Scholar

[8]

J. A. Goldstein and G. Reyes, Equipartition of operator-weighted energies in damped wave equations, Asymptot. Anal., 81 (2013), 171-187.  doi: 10.3233/ASY-2012-1124.  Google Scholar

[9]

T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995.  Google Scholar

show all references

References:
[1]

M. D'AbbiccoM. R. Ebert and S. Lucente, Self-similar asymptotic profile of the solution to a nonlinear evolution equation with critical dissipation, Math. Methods Appl. Sci., 40 (2017), 6480-6494.  doi: 10.1002/mma.4469.  Google Scholar

[2]

M. D'AbbiccoG. Girardi and M. Reissig, A scale of critical exponents for semilinear waves with time-dependent damping and mass terms, Nonlinear Anal., 179 (2019), 15-40.  doi: 10.1016/j.na.2018.08.006.  Google Scholar

[3]

J. L. Doob, Stochastic Processes, John Wiley and Sons, Inc., New York, Chapman and Hall, Ltd., 1953.  Google Scholar

[4]

G. R. GoldsteinJ. A. Goldstein and F. Travessini, Equipartition of energy for nonautonomous wave equations, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 75-85.  doi: 10.3934/dcdss.2017004.  Google Scholar

[5]

J. A. Goldstein, An asymptotic property of solutions of wave equations, Proc. Amer. Math. Soc., 23 (1969), 359-363.  doi: 10.1090/S0002-9939-1969-0250125-1.  Google Scholar

[6]

J. A. Goldstein, An asymptotic property of solutions of wave equations. II, J. Math. Anal. Appl., 32 (1970), 392-399.  doi: 10.1016/0022-247X(70)90305-7.  Google Scholar

[7]

J. A. Goldstein, Semigroups of Linear Operators and Applications, 2nd edition, Dover Publications, Inc., Mineola, New York, 2017.  Google Scholar

[8]

J. A. Goldstein and G. Reyes, Equipartition of operator-weighted energies in damped wave equations, Asymptot. Anal., 81 (2013), 171-187.  doi: 10.3233/ASY-2012-1124.  Google Scholar

[9]

T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995.  Google Scholar

[1]

Gisèle Ruiz Goldstein, Jerome A. Goldstein, Fabiana Travessini De Cezaro. Equipartition of energy for nonautonomous wave equations. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 75-85. doi: 10.3934/dcdss.2017004

[2]

Ioana Moise, Ricardo Rosa, Xiaoming Wang. Attractors for noncompact nonautonomous systems via energy equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 473-496. doi: 10.3934/dcds.2004.10.473

[3]

Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

[4]

Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335-351. doi: 10.3934/eect.2018017

[5]

Ge Zu, Bin Guo. Bounds for lifespan of solutions to strongly damped semilinear wave equations with logarithmic sources and arbitrary initial energy. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020065

[6]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[7]

Mohammed Aassila. On energy decay rate for linear damped systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 851-864. doi: 10.3934/dcds.2002.8.851

[8]

John M. Ball. Global attractors for damped semilinear wave equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 31-52. doi: 10.3934/dcds.2004.10.31

[9]

Lili Fan, Hongxia Liu, Huijiang Zhao, Qingyang Zou. Global stability of stationary waves for damped wave equations. Kinetic & Related Models, 2013, 6 (4) : 729-760. doi: 10.3934/krm.2013.6.729

[10]

P. Fabrie, C. Galusinski, A. Miranville. Uniform inertial sets for damped wave equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 393-418. doi: 10.3934/dcds.2000.6.393

[11]

Alexandre Nolasco de Carvalho, Jan W. Cholewa, Tomasz Dlotko. Damped wave equations with fast growing dissipative nonlinearities. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1147-1165. doi: 10.3934/dcds.2009.24.1147

[12]

Carlos E. Kenig. The method of energy channels for nonlinear wave equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6979-6993. doi: 10.3934/dcds.2019240

[13]

Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065

[14]

Mengyun Liu, Chengbo Wang. Global existence for semilinear damped wave equations in relation with the Strauss conjecture. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 709-724. doi: 10.3934/dcds.2020058

[15]

Bouthaina Abdelhedi. Existence of periodic solutions of a system of damped wave equations in thin domains. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 767-800. doi: 10.3934/dcds.2008.20.767

[16]

Feng Zhou, Chunyou Sun, Xin Li. Dynamics for the damped wave equations on time-dependent domains. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1645-1674. doi: 10.3934/dcdsb.2018068

[17]

Nemanja Kosovalić, Brian Pigott. Self-excited vibrations for damped and delayed higher dimensional wave equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2413-2435. doi: 10.3934/dcds.2019102

[18]

Filippo Dell'Oro. Global attractors for strongly damped wave equations with subcritical-critical nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1015-1027. doi: 10.3934/cpaa.2013.12.1015

[19]

Kyouhei Wakasa. The lifespan of solutions to semilinear damped wave equations in one space dimension. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1265-1283. doi: 10.3934/cpaa.2016.15.1265

[20]

Sergey Zelik. Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 351-392. doi: 10.3934/dcds.2004.11.351

2019 Impact Factor: 1.233

Article outline

[Back to Top]