• Previous Article
    Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials
  • DCDS-S Home
  • This Issue
  • Next Article
    Orthogonality of fluxes in general nonlinear reaction networks
January  2021, 14(1): 219-241. doi: 10.3934/dcdss.2020366

Weak sequential stability for a nonlinear model of nematic electrolytes

1. 

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, CZ-115 67 Praha 1, Czech Republic

2. 

Università degli Studi di Pavia, Dipartimento di Matematica and IMATI-C.N.R, Via Ferrata 5, 27100, Pavia, Italy

3. 

IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain

4. 

BCAM, Basque Center for Applied Mathematics, Mazarredo 14, E48009 Bilbao, Bizkaia, Spain

5. 

"Simion Stoilow" Institute of the Romanian Academy, 21 Calea Griviţei, 010702 Bucharest, Romania

* Corresponding author: Elisabetta Rocca

To Alex Mielke, with friendship and admiration

Received  September 2019 Revised  February 2020 Published  May 2020

In this article we study a system of nonlinear PDEs modelling the electrokinetics of a nematic electrolyte material consisting of various ions species contained in a nematic liquid crystal.

The evolution is described by a system coupling a Nernst-Planck system for the ions concentrations with a Maxwell's equation of electrostatics governing the evolution of the electrostatic potential, a Navier-Stokes equation for the velocity field, and a non-smooth Allen-Cahn type equation for the nematic director field.

We focus on the two-species case and prove apriori estimates that provide a weak sequential stability result, the main step towards proving the existence of weak solutions.

Citation: Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366
References:
[1]

R. BarberiF. CiuchiG. E. DurandM. IovaneD. SikharulidzeA. M. Sonnet and E. Virga, Electric field induced order reconstruction in a nematic cell, The European Physical Journal E, 13 (2004), 61-71.  doi: 10.1140/epje/e2004-00040-5.  Google Scholar

[2]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.  Google Scholar

[3]

D. BotheA. Fischer and J. Saal, Global well-posedness and stability of electrokinetic flows, SIAM J. Math. Anal., 46 (2014), 1263-1316.  doi: 10.1137/120880926.  Google Scholar

[4]

M. C. CaldererD. GolovatyO. Lavrentovich and J. N. Walkington, Modeling of nematic electrolytes and nonlinear electroosmosis, SIAM J. Appl. Math., 76 (2016), 2260-2285.  doi: 10.1137/16M1056225.  Google Scholar

[5]

C. CavaterraE. Rocca and H. Wu, Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows, J. Differential Equations, 255 (2013), 24-57.  doi: 10.1016/j.jde.2013.03.009.  Google Scholar

[6]

G. Cimatti and I. Fragalà, Invariant regions for the Nernst-Planck equations, Ann. Mat. Pura Appl., 175 (1998), 93-118.  doi: 10.1007/BF01783677.  Google Scholar

[7]

P. ColliG. GilardiG. Marinoschi and E. Rocca, Optimal control for a phase field system with a possibly singular potential, Math. Control Relat. Fields, 6 (2016), 95-112.  doi: 10.3934/mcrf.2016.6.95.  Google Scholar

[8]

P. Constantin and M. Ignatova, On the Nernst-Planck-Navier-Stokes system, Arch Rational Mech Anal, 232 (2019), 1379-1428.  doi: 10.1007/s00205-018-01345-6.  Google Scholar

[9]

J. L. Ericksen, Conservation laws For liquid crystals, Trans. Soc. Rheol., 5 (1961), 23-34.  doi: 10.1122/1.548883.  Google Scholar

[10]

J. L. Ericksen, Continuum theory of nematic liquid crystals, Res. Mechanica, 21 (1987), 381-392.   Google Scholar

[11]

J. L. Ericksen, Liquid crystals with variable degree of orientation, Arch. Rational Mech. Anal., 113 (1990), 97-120.   Google Scholar

[12]

E. FeireislE. RoccaG. Schimperna and A. Zarnescu, Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential, Commun. Math. Sci., 12 (2014), 317-343.  doi: 10.4310/CMS.2014.v12.n2.a6.  Google Scholar

[13]

E. FeireislE. RoccaG. Schimperna and A. Zarnescu, Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy, Ann. Mat. Pura Appl., 194 (2015), 1269-1299.  doi: 10.1007/s10231-014-0419-1.  Google Scholar

[14]

A. Fischer and J. Saal, Global weak solutions in three space dimensions for electrokinetic flow processes, J. Evol. Equ., 17 (2017), 309-333.  doi: 10.1007/s00028-016-0356-0.  Google Scholar

[15]

H. Gong, C. Wang and X. Zhang, Partial regularity of suitable weak solutions of the Navier-Stokes-Planck-Nernst-Poisson equation, arXiv: 1905.13365. Google Scholar

[16]

F. M. Leslie, Theory of flow phenomenum in liquid crystals, Brown (Ed.), A.P., New York, 4 (1979), 1–81. Google Scholar

[17]

F. M. Leslie, Continuum theory for nematic liquid crystals, Contin. Mech. Thermodyn, 4 (1992), 167-175.  doi: 10.1007/BF01130288.  Google Scholar

[18]

F. Lin, On nematic liquid crystals with variable degree of orientation, Comm. Pure Appl. Math., 44 (1991), 453-468.  doi: 10.1002/cpa.3160440404.  Google Scholar

[19]

F. Lin and C. Liu, Static and dynamic theories of liquid crystals, J. Partial Differential Equations, 14 (2001), 289-330.   Google Scholar

[20]

F. Lin and C. Wang, The Analysis of Harmonic Maps and Their Heat Flows, World Scientific, 2008. doi: 10.1142/9789812779533.  Google Scholar

[21]

F. Lin and C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130361, 18 pp. doi: 10.1098/rsta.2013.0361.  Google Scholar

[22]

N. G. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 189-206.   Google Scholar

[23]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.   Google Scholar

[24]

R. NochettoS. Walker and W. Zhang, A finite element method for nematic liquid crystals with variable degree of orientation, SIAM J. Numer. Anal., 55 (2017), 1357-1386.  doi: 10.1137/15M103844X.  Google Scholar

[25]

M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system, Math. Models Methods Appl. Sci., 19 (2009), 993-1015.  doi: 10.1142/S0218202509003693.  Google Scholar

[26]

O. M. Tovkach, C. Conklin, M. C. Calderer, D. Golovaty, O. Lavrentovich, J. Viñals and N. J. Walkington, Q-tensor model for electrokinetics in nematic liquid crystals, Phys. Rev. Fluids, 2 (2017), 053302. doi: 10.1103/PhysRevFluids.2.053302.  Google Scholar

[27]

E. G. Virga, Variational Theories for Liquid Crystals, Applied Mathematics and Mathematical Computation 8, Chapman & Hall, London, 1994.  Google Scholar

show all references

References:
[1]

R. BarberiF. CiuchiG. E. DurandM. IovaneD. SikharulidzeA. M. Sonnet and E. Virga, Electric field induced order reconstruction in a nematic cell, The European Physical Journal E, 13 (2004), 61-71.  doi: 10.1140/epje/e2004-00040-5.  Google Scholar

[2]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.  Google Scholar

[3]

D. BotheA. Fischer and J. Saal, Global well-posedness and stability of electrokinetic flows, SIAM J. Math. Anal., 46 (2014), 1263-1316.  doi: 10.1137/120880926.  Google Scholar

[4]

M. C. CaldererD. GolovatyO. Lavrentovich and J. N. Walkington, Modeling of nematic electrolytes and nonlinear electroosmosis, SIAM J. Appl. Math., 76 (2016), 2260-2285.  doi: 10.1137/16M1056225.  Google Scholar

[5]

C. CavaterraE. Rocca and H. Wu, Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows, J. Differential Equations, 255 (2013), 24-57.  doi: 10.1016/j.jde.2013.03.009.  Google Scholar

[6]

G. Cimatti and I. Fragalà, Invariant regions for the Nernst-Planck equations, Ann. Mat. Pura Appl., 175 (1998), 93-118.  doi: 10.1007/BF01783677.  Google Scholar

[7]

P. ColliG. GilardiG. Marinoschi and E. Rocca, Optimal control for a phase field system with a possibly singular potential, Math. Control Relat. Fields, 6 (2016), 95-112.  doi: 10.3934/mcrf.2016.6.95.  Google Scholar

[8]

P. Constantin and M. Ignatova, On the Nernst-Planck-Navier-Stokes system, Arch Rational Mech Anal, 232 (2019), 1379-1428.  doi: 10.1007/s00205-018-01345-6.  Google Scholar

[9]

J. L. Ericksen, Conservation laws For liquid crystals, Trans. Soc. Rheol., 5 (1961), 23-34.  doi: 10.1122/1.548883.  Google Scholar

[10]

J. L. Ericksen, Continuum theory of nematic liquid crystals, Res. Mechanica, 21 (1987), 381-392.   Google Scholar

[11]

J. L. Ericksen, Liquid crystals with variable degree of orientation, Arch. Rational Mech. Anal., 113 (1990), 97-120.   Google Scholar

[12]

E. FeireislE. RoccaG. Schimperna and A. Zarnescu, Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential, Commun. Math. Sci., 12 (2014), 317-343.  doi: 10.4310/CMS.2014.v12.n2.a6.  Google Scholar

[13]

E. FeireislE. RoccaG. Schimperna and A. Zarnescu, Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy, Ann. Mat. Pura Appl., 194 (2015), 1269-1299.  doi: 10.1007/s10231-014-0419-1.  Google Scholar

[14]

A. Fischer and J. Saal, Global weak solutions in three space dimensions for electrokinetic flow processes, J. Evol. Equ., 17 (2017), 309-333.  doi: 10.1007/s00028-016-0356-0.  Google Scholar

[15]

H. Gong, C. Wang and X. Zhang, Partial regularity of suitable weak solutions of the Navier-Stokes-Planck-Nernst-Poisson equation, arXiv: 1905.13365. Google Scholar

[16]

F. M. Leslie, Theory of flow phenomenum in liquid crystals, Brown (Ed.), A.P., New York, 4 (1979), 1–81. Google Scholar

[17]

F. M. Leslie, Continuum theory for nematic liquid crystals, Contin. Mech. Thermodyn, 4 (1992), 167-175.  doi: 10.1007/BF01130288.  Google Scholar

[18]

F. Lin, On nematic liquid crystals with variable degree of orientation, Comm. Pure Appl. Math., 44 (1991), 453-468.  doi: 10.1002/cpa.3160440404.  Google Scholar

[19]

F. Lin and C. Liu, Static and dynamic theories of liquid crystals, J. Partial Differential Equations, 14 (2001), 289-330.   Google Scholar

[20]

F. Lin and C. Wang, The Analysis of Harmonic Maps and Their Heat Flows, World Scientific, 2008. doi: 10.1142/9789812779533.  Google Scholar

[21]

F. Lin and C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130361, 18 pp. doi: 10.1098/rsta.2013.0361.  Google Scholar

[22]

N. G. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 189-206.   Google Scholar

[23]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162.   Google Scholar

[24]

R. NochettoS. Walker and W. Zhang, A finite element method for nematic liquid crystals with variable degree of orientation, SIAM J. Numer. Anal., 55 (2017), 1357-1386.  doi: 10.1137/15M103844X.  Google Scholar

[25]

M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system, Math. Models Methods Appl. Sci., 19 (2009), 993-1015.  doi: 10.1142/S0218202509003693.  Google Scholar

[26]

O. M. Tovkach, C. Conklin, M. C. Calderer, D. Golovaty, O. Lavrentovich, J. Viñals and N. J. Walkington, Q-tensor model for electrokinetics in nematic liquid crystals, Phys. Rev. Fluids, 2 (2017), 053302. doi: 10.1103/PhysRevFluids.2.053302.  Google Scholar

[27]

E. G. Virga, Variational Theories for Liquid Crystals, Applied Mathematics and Mathematical Computation 8, Chapman & Hall, London, 1994.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[5]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[6]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[9]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[10]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[11]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[12]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[15]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[16]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[17]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[18]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[19]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[20]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (42)
  • HTML views (195)
  • Cited by (0)

[Back to Top]