• Previous Article
    Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials
  • DCDS-S Home
  • This Issue
  • Next Article
    Orthogonality of fluxes in general nonlinear reaction networks
January  2021, 14(1): 219-241. doi: 10.3934/dcdss.2020366

Weak sequential stability for a nonlinear model of nematic electrolytes

1. 

Institute of Mathematics of the Academy of Sciences of the Czech Republic, Žitná 25, CZ-115 67 Praha 1, Czech Republic

2. 

Università degli Studi di Pavia, Dipartimento di Matematica and IMATI-C.N.R, Via Ferrata 5, 27100, Pavia, Italy

3. 

IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Bizkaia, Spain

4. 

BCAM, Basque Center for Applied Mathematics, Mazarredo 14, E48009 Bilbao, Bizkaia, Spain

5. 

"Simion Stoilow" Institute of the Romanian Academy, 21 Calea Griviţei, 010702 Bucharest, Romania

* Corresponding author: Elisabetta Rocca

To Alex Mielke, with friendship and admiration

Received  September 2019 Revised  February 2020 Published  January 2021 Early access  May 2020

In this article we study a system of nonlinear PDEs modelling the electrokinetics of a nematic electrolyte material consisting of various ions species contained in a nematic liquid crystal.

The evolution is described by a system coupling a Nernst-Planck system for the ions concentrations with a Maxwell's equation of electrostatics governing the evolution of the electrostatic potential, a Navier-Stokes equation for the velocity field, and a non-smooth Allen-Cahn type equation for the nematic director field.

We focus on the two-species case and prove apriori estimates that provide a weak sequential stability result, the main step towards proving the existence of weak solutions.

Citation: Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366
References:
[1]

R. BarberiF. CiuchiG. E. DurandM. IovaneD. SikharulidzeA. M. Sonnet and E. Virga, Electric field induced order reconstruction in a nematic cell, The European Physical Journal E, 13 (2004), 61-71.  doi: 10.1140/epje/e2004-00040-5.

[2]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.

[3]

D. BotheA. Fischer and J. Saal, Global well-posedness and stability of electrokinetic flows, SIAM J. Math. Anal., 46 (2014), 1263-1316.  doi: 10.1137/120880926.

[4]

M. C. CaldererD. GolovatyO. Lavrentovich and J. N. Walkington, Modeling of nematic electrolytes and nonlinear electroosmosis, SIAM J. Appl. Math., 76 (2016), 2260-2285.  doi: 10.1137/16M1056225.

[5]

C. CavaterraE. Rocca and H. Wu, Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows, J. Differential Equations, 255 (2013), 24-57.  doi: 10.1016/j.jde.2013.03.009.

[6]

G. Cimatti and I. Fragalà, Invariant regions for the Nernst-Planck equations, Ann. Mat. Pura Appl., 175 (1998), 93-118.  doi: 10.1007/BF01783677.

[7]

P. ColliG. GilardiG. Marinoschi and E. Rocca, Optimal control for a phase field system with a possibly singular potential, Math. Control Relat. Fields, 6 (2016), 95-112.  doi: 10.3934/mcrf.2016.6.95.

[8]

P. Constantin and M. Ignatova, On the Nernst-Planck-Navier-Stokes system, Arch Rational Mech Anal, 232 (2019), 1379-1428.  doi: 10.1007/s00205-018-01345-6.

[9]

J. L. Ericksen, Conservation laws For liquid crystals, Trans. Soc. Rheol., 5 (1961), 23-34.  doi: 10.1122/1.548883.

[10]

J. L. Ericksen, Continuum theory of nematic liquid crystals, Res. Mechanica, 21 (1987), 381-392. 

[11]

J. L. Ericksen, Liquid crystals with variable degree of orientation, Arch. Rational Mech. Anal., 113 (1990), 97-120. 

[12]

E. FeireislE. RoccaG. Schimperna and A. Zarnescu, Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential, Commun. Math. Sci., 12 (2014), 317-343.  doi: 10.4310/CMS.2014.v12.n2.a6.

[13]

E. FeireislE. RoccaG. Schimperna and A. Zarnescu, Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy, Ann. Mat. Pura Appl., 194 (2015), 1269-1299.  doi: 10.1007/s10231-014-0419-1.

[14]

A. Fischer and J. Saal, Global weak solutions in three space dimensions for electrokinetic flow processes, J. Evol. Equ., 17 (2017), 309-333.  doi: 10.1007/s00028-016-0356-0.

[15]

H. Gong, C. Wang and X. Zhang, Partial regularity of suitable weak solutions of the Navier-Stokes-Planck-Nernst-Poisson equation, arXiv: 1905.13365.

[16]

F. M. Leslie, Theory of flow phenomenum in liquid crystals, Brown (Ed.), A.P., New York, 4 (1979), 1–81.

[17]

F. M. Leslie, Continuum theory for nematic liquid crystals, Contin. Mech. Thermodyn, 4 (1992), 167-175.  doi: 10.1007/BF01130288.

[18]

F. Lin, On nematic liquid crystals with variable degree of orientation, Comm. Pure Appl. Math., 44 (1991), 453-468.  doi: 10.1002/cpa.3160440404.

[19]

F. Lin and C. Liu, Static and dynamic theories of liquid crystals, J. Partial Differential Equations, 14 (2001), 289-330. 

[20]

F. Lin and C. Wang, The Analysis of Harmonic Maps and Their Heat Flows, World Scientific, 2008. doi: 10.1142/9789812779533.

[21]

F. Lin and C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130361, 18 pp. doi: 10.1098/rsta.2013.0361.

[22]

N. G. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 189-206. 

[23]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162. 

[24]

R. NochettoS. Walker and W. Zhang, A finite element method for nematic liquid crystals with variable degree of orientation, SIAM J. Numer. Anal., 55 (2017), 1357-1386.  doi: 10.1137/15M103844X.

[25]

M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system, Math. Models Methods Appl. Sci., 19 (2009), 993-1015.  doi: 10.1142/S0218202509003693.

[26]

O. M. Tovkach, C. Conklin, M. C. Calderer, D. Golovaty, O. Lavrentovich, J. Viñals and N. J. Walkington, Q-tensor model for electrokinetics in nematic liquid crystals, Phys. Rev. Fluids, 2 (2017), 053302. doi: 10.1103/PhysRevFluids.2.053302.

[27]

E. G. Virga, Variational Theories for Liquid Crystals, Applied Mathematics and Mathematical Computation 8, Chapman & Hall, London, 1994.

show all references

References:
[1]

R. BarberiF. CiuchiG. E. DurandM. IovaneD. SikharulidzeA. M. Sonnet and E. Virga, Electric field induced order reconstruction in a nematic cell, The European Physical Journal E, 13 (2004), 61-71.  doi: 10.1140/epje/e2004-00040-5.

[2]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.

[3]

D. BotheA. Fischer and J. Saal, Global well-posedness and stability of electrokinetic flows, SIAM J. Math. Anal., 46 (2014), 1263-1316.  doi: 10.1137/120880926.

[4]

M. C. CaldererD. GolovatyO. Lavrentovich and J. N. Walkington, Modeling of nematic electrolytes and nonlinear electroosmosis, SIAM J. Appl. Math., 76 (2016), 2260-2285.  doi: 10.1137/16M1056225.

[5]

C. CavaterraE. Rocca and H. Wu, Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows, J. Differential Equations, 255 (2013), 24-57.  doi: 10.1016/j.jde.2013.03.009.

[6]

G. Cimatti and I. Fragalà, Invariant regions for the Nernst-Planck equations, Ann. Mat. Pura Appl., 175 (1998), 93-118.  doi: 10.1007/BF01783677.

[7]

P. ColliG. GilardiG. Marinoschi and E. Rocca, Optimal control for a phase field system with a possibly singular potential, Math. Control Relat. Fields, 6 (2016), 95-112.  doi: 10.3934/mcrf.2016.6.95.

[8]

P. Constantin and M. Ignatova, On the Nernst-Planck-Navier-Stokes system, Arch Rational Mech Anal, 232 (2019), 1379-1428.  doi: 10.1007/s00205-018-01345-6.

[9]

J. L. Ericksen, Conservation laws For liquid crystals, Trans. Soc. Rheol., 5 (1961), 23-34.  doi: 10.1122/1.548883.

[10]

J. L. Ericksen, Continuum theory of nematic liquid crystals, Res. Mechanica, 21 (1987), 381-392. 

[11]

J. L. Ericksen, Liquid crystals with variable degree of orientation, Arch. Rational Mech. Anal., 113 (1990), 97-120. 

[12]

E. FeireislE. RoccaG. Schimperna and A. Zarnescu, Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential, Commun. Math. Sci., 12 (2014), 317-343.  doi: 10.4310/CMS.2014.v12.n2.a6.

[13]

E. FeireislE. RoccaG. Schimperna and A. Zarnescu, Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy, Ann. Mat. Pura Appl., 194 (2015), 1269-1299.  doi: 10.1007/s10231-014-0419-1.

[14]

A. Fischer and J. Saal, Global weak solutions in three space dimensions for electrokinetic flow processes, J. Evol. Equ., 17 (2017), 309-333.  doi: 10.1007/s00028-016-0356-0.

[15]

H. Gong, C. Wang and X. Zhang, Partial regularity of suitable weak solutions of the Navier-Stokes-Planck-Nernst-Poisson equation, arXiv: 1905.13365.

[16]

F. M. Leslie, Theory of flow phenomenum in liquid crystals, Brown (Ed.), A.P., New York, 4 (1979), 1–81.

[17]

F. M. Leslie, Continuum theory for nematic liquid crystals, Contin. Mech. Thermodyn, 4 (1992), 167-175.  doi: 10.1007/BF01130288.

[18]

F. Lin, On nematic liquid crystals with variable degree of orientation, Comm. Pure Appl. Math., 44 (1991), 453-468.  doi: 10.1002/cpa.3160440404.

[19]

F. Lin and C. Liu, Static and dynamic theories of liquid crystals, J. Partial Differential Equations, 14 (2001), 289-330. 

[20]

F. Lin and C. Wang, The Analysis of Harmonic Maps and Their Heat Flows, World Scientific, 2008. doi: 10.1142/9789812779533.

[21]

F. Lin and C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130361, 18 pp. doi: 10.1098/rsta.2013.0361.

[22]

N. G. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 189-206. 

[23]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115-162. 

[24]

R. NochettoS. Walker and W. Zhang, A finite element method for nematic liquid crystals with variable degree of orientation, SIAM J. Numer. Anal., 55 (2017), 1357-1386.  doi: 10.1137/15M103844X.

[25]

M. Schmuck, Analysis of the Navier-Stokes-Nernst-Planck-Poisson system, Math. Models Methods Appl. Sci., 19 (2009), 993-1015.  doi: 10.1142/S0218202509003693.

[26]

O. M. Tovkach, C. Conklin, M. C. Calderer, D. Golovaty, O. Lavrentovich, J. Viñals and N. J. Walkington, Q-tensor model for electrokinetics in nematic liquid crystals, Phys. Rev. Fluids, 2 (2017), 053302. doi: 10.1103/PhysRevFluids.2.053302.

[27]

E. G. Virga, Variational Theories for Liquid Crystals, Applied Mathematics and Mathematical Computation 8, Chapman & Hall, London, 1994.

[1]

Minghua Yang, Jinyi Sun. Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1617-1639. doi: 10.3934/cpaa.2017078

[2]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[3]

Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2379-2407. doi: 10.3934/dcdsb.2016052

[4]

Chia-Yu Hsieh. Stability of radial solutions of the Poisson-Nernst-Planck system in annular domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2657-2681. doi: 10.3934/dcdsb.2018269

[5]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks and Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[6]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the existence of solutions for the Navier-Stokes system in a sum of weak-$L^{p}$ spaces. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 171-183. doi: 10.3934/dcds.2010.27.171

[7]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[8]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[9]

Vena Pearl Bongolan-walsh, David Cheban, Jinqiao Duan. Recurrent motions in the nonautonomous Navier-Stokes system. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 255-262. doi: 10.3934/dcdsb.2003.3.255

[10]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure and Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[11]

Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073

[12]

C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403

[13]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[14]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[15]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[16]

Jie Liao, Xiao-Ping Wang. Stability of an efficient Navier-Stokes solver with Navier boundary condition. Discrete and Continuous Dynamical Systems - B, 2012, 17 (1) : 153-171. doi: 10.3934/dcdsb.2012.17.153

[17]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[18]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[19]

Jing Wang, Lining Tong. Stability of boundary layers for the inflow compressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2595-2613. doi: 10.3934/dcdsb.2012.17.2595

[20]

Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (237)
  • HTML views (235)
  • Cited by (1)

[Back to Top]