-
Previous Article
New synchronization index of non-identical networks
- DCDS-S Home
- This Issue
-
Next Article
$ \mathcal{H}_{\infty} $ control for fuzzy markovian jump systems based on sampled-data control method
Pullback exponential attractors for differential equations with delay
1. | Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Route de la Soukra km 4 Sfax 3038, Tunisia |
2. | Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, c/ Tarfia s/n, 41012-Sevilla, Spain |
We show the existence of an exponential attractor for non-autono-mous dynamical system with bounded delay. We considered the case of strong dissipativity then prove that the result remains for the weak dissipativity. We conclude then the existence of the global attractor and ensure the boundedness of its fractal dimension.
References:
[1] |
T. Caraballo, P. Marin-Rubio and J. Valero,
Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.
doi: 10.1016/j.jde.2003.09.008. |
[2] |
T. Caraballo, J. A. Langa and J. C. Robinson,
Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.
doi: 10.1006/jmaa.2000.7464. |
[3] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. |
[4] |
A. N. Carvalho and S. Sonner,
Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.
doi: 10.3934/cpaa.2013.12.3047. |
[5] |
A. N. Carvalho and S. Sonner,
Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.
doi: 10.3934/cpaa.2014.13.1141. |
[6] |
R. Czaja and M. A. Efendiev,
Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic problems, J. Math. Anal. Appl., 381 (2011), 748-765.
doi: 10.1016/j.jmaa.2011.03.053. |
[7] |
J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomathematics, vol. 20, Springer-Verlag, Heidelberg, 1977. |
[8] |
A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley and Sons Ltd., Chichester, 1994. |
[9] |
D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators,
Cambridge Tracts in Mathematics, 120. Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511662201. |
[10] |
M. A. Efendiev, A. Miranville and S. Zelik,
Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713-718.
doi: 10.1016/S0764-4442(00)00259-7. |
[11] |
S. Habibi,
Estimates on the dimension of an exponential attractor for a delay differential equation, Math. Slovaca, 64 (2014), 1237-1248.
doi: 10.2478/s12175-014-0272-0. |
[12] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI., 1988. |
[13] |
M. A.Hammami, L. Mchiri, S. Netchaoui and S. Sonner,
Pullback exponential attractors for differential equations with variable delays, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 301-319.
doi: 10.3934/dcdsb.2019183. |
[14] |
J. A. Langa, A. Miranville and J. Real,
Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357.
doi: 10.3934/dcds.2010.26.1329. |
[15] |
D. Pražák,
On the dynamics of equations with infinite delay, Cent. Eur. J. Math., 4 (2006), 635-647.
doi: 10.2478/s11533-006-0024-7. |
[16] |
H. Smith, An Introduction To Delay Differential Equations With Applications To the Life Sciences, Texts in Applied Mathematics, 57. Springer, New York, 2011.
doi: 10.1007/978-1-4419-7646-8. |
[17] |
S. Sonner, Systems of Quasi-Linear PDEs Arising in the Modelling of Biofilms and Related Dynamical Questions, Ph.D. thesis, Technische Universität München, Germany, 2012. Google Scholar |
show all references
References:
[1] |
T. Caraballo, P. Marin-Rubio and J. Valero,
Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.
doi: 10.1016/j.jde.2003.09.008. |
[2] |
T. Caraballo, J. A. Langa and J. C. Robinson,
Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.
doi: 10.1006/jmaa.2000.7464. |
[3] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013. |
[4] |
A. N. Carvalho and S. Sonner,
Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.
doi: 10.3934/cpaa.2013.12.3047. |
[5] |
A. N. Carvalho and S. Sonner,
Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.
doi: 10.3934/cpaa.2014.13.1141. |
[6] |
R. Czaja and M. A. Efendiev,
Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic problems, J. Math. Anal. Appl., 381 (2011), 748-765.
doi: 10.1016/j.jmaa.2011.03.053. |
[7] |
J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomathematics, vol. 20, Springer-Verlag, Heidelberg, 1977. |
[8] |
A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley and Sons Ltd., Chichester, 1994. |
[9] |
D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators,
Cambridge Tracts in Mathematics, 120. Cambridge University Press, Cambridge, 1996.
doi: 10.1017/CBO9780511662201. |
[10] |
M. A. Efendiev, A. Miranville and S. Zelik,
Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713-718.
doi: 10.1016/S0764-4442(00)00259-7. |
[11] |
S. Habibi,
Estimates on the dimension of an exponential attractor for a delay differential equation, Math. Slovaca, 64 (2014), 1237-1248.
doi: 10.2478/s12175-014-0272-0. |
[12] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI., 1988. |
[13] |
M. A.Hammami, L. Mchiri, S. Netchaoui and S. Sonner,
Pullback exponential attractors for differential equations with variable delays, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 301-319.
doi: 10.3934/dcdsb.2019183. |
[14] |
J. A. Langa, A. Miranville and J. Real,
Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357.
doi: 10.3934/dcds.2010.26.1329. |
[15] |
D. Pražák,
On the dynamics of equations with infinite delay, Cent. Eur. J. Math., 4 (2006), 635-647.
doi: 10.2478/s11533-006-0024-7. |
[16] |
H. Smith, An Introduction To Delay Differential Equations With Applications To the Life Sciences, Texts in Applied Mathematics, 57. Springer, New York, 2011.
doi: 10.1007/978-1-4419-7646-8. |
[17] |
S. Sonner, Systems of Quasi-Linear PDEs Arising in the Modelling of Biofilms and Related Dynamical Questions, Ph.D. thesis, Technische Universität München, Germany, 2012. Google Scholar |
[1] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[2] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[3] |
V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066 |
[4] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[5] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[6] |
Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175 |
[7] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[8] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[9] |
Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277 |
[10] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[11] |
Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192 |
[12] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[13] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[14] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[15] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[16] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[17] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[18] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
[19] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[20] |
Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]