• Previous Article
    Lipschitz stability in determination of coefficients in a two-dimensional Boussinesq system by arbitrary boundary observation
  • DCDS-S Home
  • This Issue
  • Next Article
    Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems
doi: 10.3934/dcdss.2020367

Pullback exponential attractors for differential equations with delay

1. 

Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Route de la Soukra km 4 Sfax 3038, Tunisia

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, c/ Tarfia s/n, 41012-Sevilla, Spain

Received  August 2019 Revised  January 2020 Published  May 2020

Fund Project: This work has been partially supported by FEDER and the Spanish Ministerio de Ciencia, Innovación y Universidades under project PGC2018-096540-B-I00, and Proyecto I+D+i Programa Operativo FEDER Andalucía US-1254251

We show the existence of an exponential attractor for non-autono-mous dynamical system with bounded delay. We considered the case of strong dissipativity then prove that the result remains for the weak dissipativity. We conclude then the existence of the global attractor and ensure the boundedness of its fractal dimension.

Citation: Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020367
References:
[1]

T. CaraballoP. Marin-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.  doi: 10.1016/j.jde.2003.09.008.  Google Scholar

[2]

T. CaraballoJ. A. Langa and J. C. Robinson, Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.  doi: 10.1006/jmaa.2000.7464.  Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013.  Google Scholar

[4]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[5]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.  doi: 10.3934/cpaa.2014.13.1141.  Google Scholar

[6]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic problems, J. Math. Anal. Appl., 381 (2011), 748-765.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[7]

J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomathematics, vol. 20, Springer-Verlag, Heidelberg, 1977.  Google Scholar

[8]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley and Sons Ltd., Chichester, 1994.  Google Scholar

[9]

D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators, Cambridge Tracts in Mathematics, 120. Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9780511662201.  Google Scholar

[10]

M. A. EfendievA. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713-718.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[11]

S. Habibi, Estimates on the dimension of an exponential attractor for a delay differential equation, Math. Slovaca, 64 (2014), 1237-1248.  doi: 10.2478/s12175-014-0272-0.  Google Scholar

[12]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI., 1988.  Google Scholar

[13]

M. A.HammamiL. MchiriS. Netchaoui and S. Sonner, Pullback exponential attractors for differential equations with variable delays, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 301-319.  doi: 10.3934/dcdsb.2019183.  Google Scholar

[14]

J. A. LangaA. Miranville and J. Real, Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[15]

D. Pražák, On the dynamics of equations with infinite delay, Cent. Eur. J. Math., 4 (2006), 635-647.  doi: 10.2478/s11533-006-0024-7.  Google Scholar

[16]

H. Smith, An Introduction To Delay Differential Equations With Applications To the Life Sciences, Texts in Applied Mathematics, 57. Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[17]

S. Sonner, Systems of Quasi-Linear PDEs Arising in the Modelling of Biofilms and Related Dynamical Questions, Ph.D. thesis, Technische Universität München, Germany, 2012. Google Scholar

show all references

References:
[1]

T. CaraballoP. Marin-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.  doi: 10.1016/j.jde.2003.09.008.  Google Scholar

[2]

T. CaraballoJ. A. Langa and J. C. Robinson, Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.  doi: 10.1006/jmaa.2000.7464.  Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013.  Google Scholar

[4]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[5]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.  doi: 10.3934/cpaa.2014.13.1141.  Google Scholar

[6]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic problems, J. Math. Anal. Appl., 381 (2011), 748-765.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[7]

J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomathematics, vol. 20, Springer-Verlag, Heidelberg, 1977.  Google Scholar

[8]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley and Sons Ltd., Chichester, 1994.  Google Scholar

[9]

D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators, Cambridge Tracts in Mathematics, 120. Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9780511662201.  Google Scholar

[10]

M. A. EfendievA. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713-718.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[11]

S. Habibi, Estimates on the dimension of an exponential attractor for a delay differential equation, Math. Slovaca, 64 (2014), 1237-1248.  doi: 10.2478/s12175-014-0272-0.  Google Scholar

[12]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI., 1988.  Google Scholar

[13]

M. A.HammamiL. MchiriS. Netchaoui and S. Sonner, Pullback exponential attractors for differential equations with variable delays, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 301-319.  doi: 10.3934/dcdsb.2019183.  Google Scholar

[14]

J. A. LangaA. Miranville and J. Real, Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[15]

D. Pražák, On the dynamics of equations with infinite delay, Cent. Eur. J. Math., 4 (2006), 635-647.  doi: 10.2478/s11533-006-0024-7.  Google Scholar

[16]

H. Smith, An Introduction To Delay Differential Equations With Applications To the Life Sciences, Texts in Applied Mathematics, 57. Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[17]

S. Sonner, Systems of Quasi-Linear PDEs Arising in the Modelling of Biofilms and Related Dynamical Questions, Ph.D. thesis, Technische Universität München, Germany, 2012. Google Scholar

[1]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[2]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[3]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[4]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[5]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[6]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[10]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[11]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[12]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[13]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[14]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[15]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[16]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[17]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[18]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[19]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[20]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (58)
  • HTML views (188)
  • Cited by (0)

[Back to Top]