April  2021, 14(4): 1345-1358. doi: 10.3934/dcdss.2020367

Pullback exponential attractors for differential equations with delay

1. 

Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Route de la Soukra km 4 Sfax 3038, Tunisia

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, c/ Tarfia s/n, 41012-Sevilla, Spain

Received  August 2019 Revised  January 2020 Published  May 2020

Fund Project: This work has been partially supported by FEDER and the Spanish Ministerio de Ciencia, Innovación y Universidades under project PGC2018-096540-B-I00, and Proyecto I+D+i Programa Operativo FEDER Andalucía US-1254251

We show the existence of an exponential attractor for non-autono-mous dynamical system with bounded delay. We considered the case of strong dissipativity then prove that the result remains for the weak dissipativity. We conclude then the existence of the global attractor and ensure the boundedness of its fractal dimension.

Citation: Sana Netchaoui, Mohamed Ali Hammami, Tomás Caraballo. Pullback exponential attractors for differential equations with delay. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1345-1358. doi: 10.3934/dcdss.2020367
References:
[1]

T. CaraballoP. Marin-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.  doi: 10.1016/j.jde.2003.09.008.  Google Scholar

[2]

T. CaraballoJ. A. Langa and J. C. Robinson, Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.  doi: 10.1006/jmaa.2000.7464.  Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013.  Google Scholar

[4]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[5]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.  doi: 10.3934/cpaa.2014.13.1141.  Google Scholar

[6]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic problems, J. Math. Anal. Appl., 381 (2011), 748-765.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[7]

J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomathematics, vol. 20, Springer-Verlag, Heidelberg, 1977.  Google Scholar

[8]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley and Sons Ltd., Chichester, 1994.  Google Scholar

[9]

D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators, Cambridge Tracts in Mathematics, 120. Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9780511662201.  Google Scholar

[10]

M. A. EfendievA. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713-718.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[11]

S. Habibi, Estimates on the dimension of an exponential attractor for a delay differential equation, Math. Slovaca, 64 (2014), 1237-1248.  doi: 10.2478/s12175-014-0272-0.  Google Scholar

[12]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI., 1988.  Google Scholar

[13]

M. A.HammamiL. MchiriS. Netchaoui and S. Sonner, Pullback exponential attractors for differential equations with variable delays, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 301-319.  doi: 10.3934/dcdsb.2019183.  Google Scholar

[14]

J. A. LangaA. Miranville and J. Real, Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[15]

D. Pražák, On the dynamics of equations with infinite delay, Cent. Eur. J. Math., 4 (2006), 635-647.  doi: 10.2478/s11533-006-0024-7.  Google Scholar

[16]

H. Smith, An Introduction To Delay Differential Equations With Applications To the Life Sciences, Texts in Applied Mathematics, 57. Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[17]

S. Sonner, Systems of Quasi-Linear PDEs Arising in the Modelling of Biofilms and Related Dynamical Questions, Ph.D. thesis, Technische Universität München, Germany, 2012. Google Scholar

show all references

References:
[1]

T. CaraballoP. Marin-Rubio and J. Valero, Autonomous and non-autonomous attractors for differential equations with delays, J. Differential Equations, 208 (2005), 9-41.  doi: 10.1016/j.jde.2003.09.008.  Google Scholar

[2]

T. CaraballoJ. A. Langa and J. C. Robinson, Attractors for differential equations with variable delays, J. Math. Anal. Appl., 260 (2001), 421-438.  doi: 10.1006/jmaa.2000.7464.  Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182. Springer, New York, 2013.  Google Scholar

[4]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Theoretical results, Commun. Pure Appl. Anal., 12 (2013), 3047-3071.  doi: 10.3934/cpaa.2013.12.3047.  Google Scholar

[5]

A. N. Carvalho and S. Sonner, Pullback exponential attractors for evolution processes in Banach spaces: Properties and applications, Commun. Pure Appl. Anal., 13 (2014), 1141-1165.  doi: 10.3934/cpaa.2014.13.1141.  Google Scholar

[6]

R. Czaja and M. A. Efendiev, Pullback exponential attractors for nonautonomous equations part I: Semilinear parabolic problems, J. Math. Anal. Appl., 381 (2011), 748-765.  doi: 10.1016/j.jmaa.2011.03.053.  Google Scholar

[7]

J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Lecture Notes in Biomathematics, vol. 20, Springer-Verlag, Heidelberg, 1977.  Google Scholar

[8]

A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equations, John Wiley and Sons Ltd., Chichester, 1994.  Google Scholar

[9]

D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers, Differential Operators, Cambridge Tracts in Mathematics, 120. Cambridge University Press, Cambridge, 1996. doi: 10.1017/CBO9780511662201.  Google Scholar

[10]

M. A. EfendievA. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C. R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713-718.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[11]

S. Habibi, Estimates on the dimension of an exponential attractor for a delay differential equation, Math. Slovaca, 64 (2014), 1237-1248.  doi: 10.2478/s12175-014-0272-0.  Google Scholar

[12]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, American Mathematical Society, Providence, RI., 1988.  Google Scholar

[13]

M. A.HammamiL. MchiriS. Netchaoui and S. Sonner, Pullback exponential attractors for differential equations with variable delays, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 301-319.  doi: 10.3934/dcdsb.2019183.  Google Scholar

[14]

J. A. LangaA. Miranville and J. Real, Pullback exponential attractors, Discrete Contin. Dyn. Syst., 26 (2010), 1329-1357.  doi: 10.3934/dcds.2010.26.1329.  Google Scholar

[15]

D. Pražák, On the dynamics of equations with infinite delay, Cent. Eur. J. Math., 4 (2006), 635-647.  doi: 10.2478/s11533-006-0024-7.  Google Scholar

[16]

H. Smith, An Introduction To Delay Differential Equations With Applications To the Life Sciences, Texts in Applied Mathematics, 57. Springer, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[17]

S. Sonner, Systems of Quasi-Linear PDEs Arising in the Modelling of Biofilms and Related Dynamical Questions, Ph.D. thesis, Technische Universität München, Germany, 2012. Google Scholar

[1]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[2]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[3]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[4]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[5]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[6]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[7]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[8]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[9]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[10]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[11]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[12]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[13]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021008

[14]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[15]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[16]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[17]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[18]

Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181

[19]

Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675

[20]

Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems & Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (98)
  • HTML views (277)
  • Cited by (0)

[Back to Top]