doi: 10.3934/dcdss.2020369

Complex systems with impulsive effects and logical dynamics: A brief overview

1. 

School of Mathematics, Southeast University, Nanjing 210096, China

2. 

School of Information Science and Engineering, Southeast University, Nanjing 210096, China

* Corresponding author: Jianquan Lu

Received  September 2019 Revised  January 2020 Published  May 2020

In the past decades, complex systems with impulsive effects and logical dynamics have received much attention in both the natural and social sciences. This historical survey briefly introduces relevant studies on impulsive differential systems (IDSs) and logical networks (LNs), respectively. To begin with, we investigate five aspects of IDSs containing fundamental theory, Lyapunov stability, input-to-state stability, hybrid impulses and delay-dependent impulses. Next, we compactly summarize the research status of some problems of LNs including controllability, stability and stabilization, observability and current research. Moreover, some significant applications of proposed results are illustrated. Finally, based on this overview, we further discuss some future work on complex systems with impulsive effects and logical dynamics.

Citation: Bangxin Jiang, Bowen Li, Jianquan Lu. Complex systems with impulsive effects and logical dynamics: A brief overview. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020369
References:
[1]

T. AkutsuM. HayashidaW. Ching and M. Ng, Control of Boolean networks: Hardness results and algorithms for tree structured networks, Journal of Theoretical Biology, 244 (2007), 670-679.  doi: 10.1016/j.jtbi.2006.09.023.  Google Scholar

[2]

J. Benford and J. Swegle, Applications of high power microwaves, 1992 9th International Conference on High-Power Particle Beams, (1992). doi: 10.1109/PLASMA.1992.697928.  Google Scholar

[3]

H. Chen and J. Liang, Local synchronization of interconnected Boolean networks with stochastic disturbances, IEEE Transactions on Neural Networks and Learning Systems, 31 (2019), 452-463.   Google Scholar

[4]

W.-H. ChenS. Luo and W. X. Zheng, Impulsive synchronization of reaction–diffusion neural networks with mixed delays and its application to image encryption, IEEE Transactions on Neural Networks and Learning Systems, 27 (2016), 2696-2710.  doi: 10.1109/TNNLS.2015.2512849.  Google Scholar

[5]

W.-H. ChenD. Wei and W. Zheng, Delayed impulsive control of Takagi-Sugeno fuzzy delay systems, IEEE Transactions on Fuzzy Systems, 21 (2013), 516-526.  doi: 10.1109/TFUZZ.2012.2217147.  Google Scholar

[6]

W.-H. Chen and W.-X. Zheng, Exponential stability of nonlinear time-delay systems with delayed impulse effects, Automatica, 47 (2011), 1075-1083.  doi: 10.1016/j.automatica.2011.02.031.  Google Scholar

[7]

D. Cheng, Semi-tensor product of matrices and its application to Morgens problem, Science in China Series: Information Sciences, 44 (2001), 195-212.   Google Scholar

[8]

D. Cheng, Disturbance decoupling of Boolean control networks, IEEE Transactions on Automatic Control, 56 (2011), 2-10.  doi: 10.1109/TAC.2010.2050161.  Google Scholar

[9]

D. ChengF. HeH. Qi and T. Xu, Modeling, analysis and control of networked evolutionary games, IEEE Transactions on Automatic Control, 60 (2015), 2402-2415.  doi: 10.1109/TAC.2015.2404471.  Google Scholar

[10]

D. ChengC. Li and F. He, Observability of Boolean networks via set controllability approach, Systems & Control Letters, 115 (2018), 22-25.  doi: 10.1016/j.sysconle.2018.03.004.  Google Scholar

[11]

D. Cheng and H. Qi, Controllability and observability of Boolean control networks, Automatica, 45 (2009), 1659-1667.  doi: 10.1016/j.automatica.2009.03.006.  Google Scholar

[12]

D. ChengH. QiZ. Li and J. Liu, Stability and stabilization of Boolean networks, International Journal of Robust and Nonlinear Control, 21 (2011), 134-156.  doi: 10.1002/rnc.1581.  Google Scholar

[13]

D. Cheng, H. Qi and Z. Liu, From STP to game-based control, Science China Information Sciences, 61 (2018), 010201. doi: 10.1007/s11432-017-9265-2.  Google Scholar

[14]

W. ChingS. ZhangY. JiaoT. AkutsuN. Tsing and A. Wong, Optimal control policy for probabilistic Boolean networks with hard constraints, IET Systems Biology, 3 (2009), 90-99.  doi: 10.1049/iet-syb.2008.0120.  Google Scholar

[15]

S. Dashkovskiy and P. Feketa, Input-to-state stability of impulsive systems and their networks, Nonlinear Analysis: Hybrid Systems, 26 (2017), 190-200.  doi: 10.1016/j.nahs.2017.06.004.  Google Scholar

[16]

S. Dashkovskiy and A. Mironchenko, Input-to-state stability of nonlinear impulsive systems, SIAM Journal on Control and Optimization, 51 (2013), 1962–1987. doi: 10.1137/120881993.  Google Scholar

[17]

E. Dubrova, Finding matching initial states for equivalent NLFSRs in the Fibonacci and the Galois configurations, IEEE Transactions on Information Theory, 56 (2010), 2961-2966.  doi: 10.1109/TIT.2010.2046250.  Google Scholar

[18]

B. FaryabiA. Datta and E. Dougherty, On approximate stochastic control in genetic regulatory networks, IET Systems Biology, 1 (2007), 361-368.  doi: 10.1049/iet-syb:20070015.  Google Scholar

[19]

E. Fornasini and M. Valcher, Observability, reconstructibility and state observers of Boolean control networks, IEEE Transactions on Automatic Control, 58 (2013), 1390-1401.  doi: 10.1109/TAC.2012.2231592.  Google Scholar

[20]

L. GaoD. Wang and G. Wang, Further results on exponential stability for impulsive switched nonlinear time-delay systems with delayed impulse effects, Applied Mathematics and Computation, 268 (2015), 186-200.  doi: 10.1016/j.amc.2015.06.023.  Google Scholar

[21]

K. Gopalsamy and B. Zhang, On delay differential equations with impulses, Journal of Mathematical Analysis and Applications, 139 (1989), 110-122.  doi: 10.1016/0022-247X(89)90232-1.  Google Scholar

[22]

Z.-H. GuanG. Chen and T. Ueta, On impulsive control of a periodically forced chaotic pendulum system, IEEE Transactions on Automatic Control, 45 (2000), 1724-1727.  doi: 10.1109/9.880633.  Google Scholar

[23]

Z.-H. Guan and N. Liu, Generating chaos for discrete time-delayed systems via impulsive control, Chaos, 20 (2010), 013135. doi: 10.1063/1.3266929.  Google Scholar

[24]

Z.-H. GuanZ.-W. LiuG. Feng and W. Yan-Wu, Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control, IEEE Transactions on Circuits and Systems I: Regular Papers, 57 (2010), 2182-2195.   Google Scholar

[25]

G. ZhaoY. Wang and H. Li, A matrix approach to the modeling and analysis of networked evolutionary games with finite memories, IEEE/CAA Journal of Automatica Sinica, 5 (2018), 818-826.  doi: 10.1109/JAS.2016.7510259.  Google Scholar

[26]

Y. Guo, Observability of Boolean control networks using parallel extension and set reachability, IEEE Transactions on Neural Networks and Learning Systems, 29 (2018), 6402-6408.  doi: 10.1109/TNNLS.2018.2826075.  Google Scholar

[27]

Y. GuoP. WangW. Gui and C. Yang, Set stability and set stabilization of Boolean control networks based on invariant subsets, Automatica, 61 (2015), 106-112.  doi: 10.1016/j.automatica.2015.08.006.  Google Scholar

[28]

D. Haltara and G. Ankhbayar, Using the maximum principle of impulse control for ecology-economical models, Ecological Modelling, 216 (2008), 150-156.  doi: 10.1016/j.ecolmodel.2008.03.025.  Google Scholar

[29]

W. HeG. ChenQ. L. Han and F. Qian, Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control, Information Sciences, 380 (2017), 145-158.   Google Scholar

[30]

J. P. HespanhaD. Liberzon and A. R. Teel, Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 44 (2008), 2735-2744.  doi: 10.1016/j.automatica.2008.03.021.  Google Scholar

[31]

J. HuG. SuiX. Lu and X. Li, Fixed-time control of delayed neural networks with impulsive perturbations, Nonlinear Analysis: Modelling and Control, 23 (2018), 904-920.  doi: 10.15388/NA.2018.6.6.  Google Scholar

[32]

M.-J. HuJ.-W. XiaoR.-B. Xiao and W.-H. Chen, Impulsive effects on the stability and stabilization of positive systems with delays, Journal of the Franklin Institute, 354 (2017), 4034-4054.  doi: 10.1016/j.jfranklin.2017.03.019.  Google Scholar

[33]

C. HuangJ. LuD. W. HoG. Zhai and J. Cao, Stabilization of probabilistic Boolean networks via pinning control strategy, Information Sciences, 510 (2020), 205-217.  doi: 10.1016/j.ins.2019.09.029.  Google Scholar

[34]

A. Ignatyev and A. Soliman, Asymptotic stability and instability of the solutions of systems with impulse action, Mathematical Notes, 80 (2006), 491-499.  doi: 10.1007/s11006-006-0167-7.  Google Scholar

[35]

G. JiaM. Meng and J. Feng, Function perturbation of mix-valued logical networks with impacts on limit sets, Neurocomputing, 207 (2016), 428-436.   Google Scholar

[36]

B. JiangJ. LuX. Li and J. Qiu, Input/output-to-state stability of nonlinear impulsive delay systems based on a new impulsive inequality, International Journal of Robust and Nonlinear Control, 29 (2019), 6164-6178.  doi: 10.1002/rnc.4712.  Google Scholar

[37]

B. JiangJ. LuJ. Lou and J. Qiu, Synchronization in an array of coupled neural networks with delayed impulses: Average impulsive delay method, Neural Networks, 121 (2020), 452-460.  doi: 10.1016/j.neunet.2019.09.019.  Google Scholar

[38]

S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology, 22 (1969), 437-467.  doi: 10.1016/0022-5193(69)90015-0.  Google Scholar

[39]

A. KhadraX. Liu and X. Shen, Impulsively synchronizing chaotic systems with delay and applications to secure communication, Automatica, 41 (2005), 1491-1502.  doi: 10.1016/j.automatica.2005.04.012.  Google Scholar

[40]

J. LadymanJ. Lambert and K. Wiesner, What is a complex system?, European Journal for Philosophy of Science, 3 (2013), 33-67.  doi: 10.1007/s13194-012-0056-8.  Google Scholar

[41]

V. Lakshmikantham and S. Leela, On perturbing Lyapunov functions, Mathematical Systems Theory, 10 (1976), 85-90.  doi: 10.1007/BF01683265.  Google Scholar

[42]

V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6, World Scientific, 1989. doi: 10.1142/0906.  Google Scholar

[43]

D. Laschov and M. Margaliot, Controllability of Boolean control networks via perron-frobenius theory, Automatica J. IFAC, 48 (2012), 1218-1223.  doi: 10.1016/j.automatica.2012.03.022.  Google Scholar

[44]

D. LaschovM. Margaliot and G. Even, Observability of Boolean networks: A graph-theoretic approach, Automatica, 49 (2013), 2351-2362.  doi: 10.1016/j.automatica.2013.04.038.  Google Scholar

[45]

Y.-J. Lee, J. H. Olof and N. Karin, Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons, Plos One, 10 (2015), e0126265. doi: 10.1371/journal.pone.0126265.  Google Scholar

[46]

B. LiY. LiuK. Kou and L. Yu, Event-triggered control for the disturbance decoupling problem of Boolean control networks, IEEE Transactions on Cybernetics, 48 (2018), 2764-2769.  doi: 10.1109/TCYB.2017.2746102.  Google Scholar

[47]

B. LiY. LiuJ. LouJ. Lu and J. Cao, The robustness of outputs with respect to disturbances for Boolean control networks, IEEE Transactions on Neural Networks and Learning Systems, 31 (2020), 1046-1051.  doi: 10.1109/TNNLS.2019.2910193.  Google Scholar

[48]

B. LiJ. LuY. Liu and Z. Wu, The outputs robustness of Boolean control networks via pinning control, IEEE Transactions on Control of Network Systems, 7 (2020), 201-209.  doi: 10.1109/TCNS.2019.2913543.  Google Scholar

[49]

B. LiJ. LuY. Liu and W. Zheng, The local convergence of Boolean networks with disturbances, IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (2019), 667-671.  doi: 10.1109/TCSII.2018.2857841.  Google Scholar

[50]

B. LiJ. LuJ. Zhong and Y. Liu, Fast-time stability of temporal Boolean networks, IEEE Transactions on Neural Networks and Learning Systems, 30 (2019), 2285-2294.  doi: 10.1109/TNNLS.2018.2881459.  Google Scholar

[51]

F. Li, Pinning control design for the stabilization of Boolean networks, IEEE Transactions on Neural Networks and Learning Systems, 27 (2016), 1585-1590.  doi: 10.1109/TNNLS.2015.2449274.  Google Scholar

[52]

F. Li, Pinning control design for the synchronization of two coupled Boolean networks, IEEE Transactions on Circuits and Systems II: Express Briefs, 63 (2016), 309-313.  doi: 10.1109/TCSII.2015.2482658.  Google Scholar

[53]

F. Li, Stability of Boolean networks with delays using pinning control, IEEE Transactions on Control of Network Systems, 5 (2018), 179-185.  doi: 10.1109/TCNS.2016.2585861.  Google Scholar

[54]

F. LiH. LiL. Xie and Q. Zhou, On stabilization and set stabilization of multivalued logical systems, Automatica, 80 (2017), 41-47.  doi: 10.1016/j.automatica.2017.01.032.  Google Scholar

[55]

F. Li and J. Sun, Observability analysis of Boolean control networks with impulsive effects, IET Control Theory & Applications, 5 (2011), 1609-1616.  doi: 10.1049/iet-cta.2010.0558.  Google Scholar

[56]

F. Li and J. Sun, Stability and stabilization of Boolean networks with impulsive effects, Systems & Control Letters, 61 (2012), 1-5.  doi: 10.1016/j.sysconle.2011.09.019.  Google Scholar

[57]

F. LiJ. Sun and Q. Wu, Observability of Boolean control networks with state time delays, IEEE Transactions on Neural Networks, 22 (2011), 948-954.   Google Scholar

[58]

F. Li and Y. Tang, Set stabilization for switched Boolean control networks, Automatica, 78 (2017), 223-230.  doi: 10.1016/j.automatica.2016.12.007.  Google Scholar

[59]

F. LiH. Yan and H. Karimi, Single-input pinning controller design for reachability of Boolean networks, IEEE Transactions on Neural Networks and Learning Systems, 29 (2018), 3264-3269.   Google Scholar

[60]

H. Li and Y. Wang, Boolean derivative calculation with application to fault detection of combinational circuits via the semi-tensor product method, Automatica, 48 (2012), 688-693.  doi: 10.1016/j.automatica.2012.01.021.  Google Scholar

[61]

H. Li and Y. Wang, Controllability analysis and control design for switched Boolean networks with state and input constraints, SIAM Journal on Control and Optimization, 53 (2015), 2955-2979.  doi: 10.1137/120902331.  Google Scholar

[62]

H. Li and Y. Wang, Further results on feedback stabilization control design of Boolean control networks, Automatica, 83 (2017), 303-308.  doi: 10.1016/j.automatica.2017.06.043.  Google Scholar

[63]

H. Li and Y. Wang, Lyapunov-based stability and construction of Lyapunov functions for Boolean networks, SIAM Journal on Control and Optimization, 55 (2017), 3437-3457.  doi: 10.1137/16M1092581.  Google Scholar

[64]

H. LiY. Wang and Z. Liu, Stability analysis for switched Boolean networks under arbitrary switching signals, IEEE Transactions on Automatic Control, 59 (2014), 1978-1982.  doi: 10.1109/TAC.2014.2298731.  Google Scholar

[65]

H. LiY. Wang and L. Xie, Output tracking control of Boolean control networks via state feedback: Constant reference signal case, Automatica, 59 (2015), 54-59.  doi: 10.1016/j.automatica.2015.06.004.  Google Scholar

[66]

H. LiY. WangL. Xie and D. Cheng, Disturbance decoupling control design for switched Boolean control networks, Systems & Control Letters, 72 (2014), 1-6.  doi: 10.1016/j.sysconle.2014.07.008.  Google Scholar

[67]

P. Guo, Y. Wang and H. Li, Stable degree analysis for strategy profiles of evolutionary networked games, Science China Information Sciences, 59 (2016), 052204. doi: 10.1007/s11432-015-5376-9.  Google Scholar

[68]

H. Li, Y. Wang and P. Guo, Output reachability analysis and output regulation control design of Boolean control networks, Science China Information Sciences, 60 (2017), 022202. doi: 10.1007/s11432-015-0611-4.  Google Scholar

[69]

R. LiM. Yang and T. Chu, State feedback stabilization for Boolean control networks, IEEE Transactions on Automatic Control, 58 (2013), 1853-1857.  doi: 10.1109/TAC.2013.2238092.  Google Scholar

[70]

R. LiM. Yang and T. Chu, State feedback stabilization for probabilistic Boolean networks, Automatica, 50 (2014), 1272-1278.  doi: 10.1016/j.automatica.2014.02.034.  Google Scholar

[71]

S. LiX. Song and A. Li, Strict practical stability of nonlinear impulsive systems by employing two Lyapunov-like functions, Nonlinear Analysis Series B: Real World Applications, 9 (2008), 2262-2269.  doi: 10.1016/j.nonrwa.2007.08.003.  Google Scholar

[72]

X. Li, J. Lu, J. Qiu, X. Chen, X. Li and F. Alsaadi, Set stability for switched Boolean networks with open-loop and closed-loop switching signals, Science China Information Sciences, 61 (2018), 092207. Google Scholar

[73]

X. Li, Further analysis on uniform stability of impulsive infinite delay differential equations, Applied Mathematics Letters, 25 (2012), 133-137.  doi: 10.1016/j.aml.2011.08.001.  Google Scholar

[74]

X. Li and M. Bohner, An impulsive delay differential inequality and applications, Computers & Mathematics with Applications, 64 (2012), 1875-1881.  doi: 10.1016/j.camwa.2012.03.013.  Google Scholar

[75]

X. LiM. Bohner and C. K. Wang, Impulsive differential equations: Periodic solutions and applications, Automatica, 52 (2015), 173-178.  doi: 10.1016/j.automatica.2014.11.009.  Google Scholar

[76]

X. LiJ. Cao and D. W. C. Ho, Impulsive control of nonlinear systems with time-varying delay and applications, IEEE Transactions on Cybernetics, 50 (2020), 2661-2673.  doi: 10.1109/TCYB.2019.2896340.  Google Scholar

[77]

X. Li and F. Deng, Razumikhin method for impulsive functional differential equations of neutral type, Chaos Solitons and Fractals, 101 (2017), 41-49.  doi: 10.1016/j.chaos.2017.05.018.  Google Scholar

[78]

X. LiD. W. C. Ho and J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361-368.  doi: 10.1016/j.automatica.2018.10.024.  Google Scholar

[79]

X. LiP. Li and Q. G. Wang, Input/output-to-state stability of impulsive switched systems, Systems & Control Letters, 116 (2018), 1-7.  doi: 10.1016/j.sysconle.2018.04.001.  Google Scholar

[80]

X. LiD. O'Regan and H. Akca, Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays, IMA Journal of Applied Mathematics, 80 (2015), 85-99.  doi: 10.1093/imamat/hxt027.  Google Scholar

[81]

X. LiR. Rakkiyappan and C. Pradeep, Robust $\mu-$stability analysis of Markovian switching uncertain stochastic genetic regulatory networks with unbounded time-varying delays, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 3894-3905.  doi: 10.1016/j.cnsns.2012.02.008.  Google Scholar

[82]

X. LiJ. Shen and R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Applied Mathematics and Computation, 329 (2018), 14-22.  doi: 10.1016/j.amc.2018.01.036.  Google Scholar

[83]

X. Li and S. Song, Stabilization of delay systems: Delay-dependent impulsive control, IEEE Transactions on Automatic Control, 62 (2017), 406-411.  doi: 10.1109/TAC.2016.2530041.  Google Scholar

[84]

X. LiS. Song and J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Transactions on Automatic Control, 64 (2019), 4024-4034.  doi: 10.1109/TAC.2019.2905271.  Google Scholar

[85]

X. LiX. Yang and T. Huang, Persistence of delayed cooperative models: Impulsive control method, Applied Mathematics and Computation, 342 (2019), 130-146.  doi: 10.1016/j.amc.2018.09.003.  Google Scholar

[86]

X. LiX. Zhang and S. Song, Effect of delayed impulses on input-to-state stability of nonlinear systems, Automatica, 76 (2017), 378-382.  doi: 10.1016/j.automatica.2016.08.009.  Google Scholar

[87]

Y. LiB. LiY. Liu and J. Lu, Set stability and stabilization of switched Boolean networks with state-based switching, IEEE Access, 6 (2018), 35624-35630.  doi: 10.1109/ACCESS.2018.2851391.  Google Scholar

[88]

Y. LiR. LiuJ. LouJ. LuZ. Wang and Y. Liu, Output tracking of Boolean control networks driven by constant reference signal, IEEE Access, 7 (2019), 112572-112577.  doi: 10.1109/ACCESS.2019.2934740.  Google Scholar

[89]

Y. LiH. LiX. Xu and Y. Li, Semi-tensor product approach to minimal-agent consensus control of networked evolutionary games, IET Control Theory & Applications, 12 (2018), 2269-2275.  doi: 10.1049/iet-cta.2018.5230.  Google Scholar

[90]

Y. Li, Impulsive synchronization of stochastic neural networks via controlling partial states, Neural Processing Letters, 46 (2017), 59-69.  doi: 10.1007/s11063-016-9568-0.  Google Scholar

[91]

Y. LiJ. LouZ. Wang and F. E. Alsaadi, Synchronization of dynamical networks with nonlinearly coupling function under hybrid pinning impulsive controllers, Journal of the Franklin Institute, 355 (2018), 6520-6530.  doi: 10.1016/j.jfranklin.2018.06.021.  Google Scholar

[92]

Z. LiW. ZhangG. He and J.-A. Fang, Synchronisation of discrete-time complex networks with delayed heterogeneous impulses, Applications, 9 (2015), 2648-2656.  doi: 10.1049/iet-cta.2014.1281.  Google Scholar

[93]

J. LiangH. Chen and J. Lam, An improved criterion for controllability of boolean control networks, IEEE Transactions on Automatic Control, 62 (2017), 6012-6018.  doi: 10.1109/TAC.2017.2702008.  Google Scholar

[94]

L. LinJ. Cao and L. Rutkowski, Robust event-triggered control invariance of probabilistic Boolean control networks, IEEE Transactions on Neural Networks and Learning Systems, 31 (2020), 1060-1065.  doi: 10.1109/TNNLS.2019.2917753.  Google Scholar

[95]

H. LiuY. LiuY. LiZ. Wang and F. Alsaadi, Observability of Boolean networks via STP and graph methods, IET Control Theory & Applications, 13 (2019), 1031-1037.  doi: 10.1049/iet-cta.2018.5279.  Google Scholar

[96]

J. Liu and Z. Zhao, Multiple solutions for impulsive problems with non-autonomous perturbations $\star$, Applied Mathematics Letters, 64 (2017), 143-149.  doi: 10.1016/j.aml.2016.08.020.  Google Scholar

[97]

J. Liu and X. Li, Impulsive stabilization of high-order nonlinear retarded differential equations, Applications of Mathematics, 58 (2013), 347-367.  doi: 10.1007/s10492-013-0017-3.  Google Scholar

[98]

R. LiuJ. LuY. LiuJ. Cao and Z. Wu, Delayed feedback control for stabilization of Boolean control networks with state delay, IEEE Transactions on Neural Networks and Learning Systems, 29 (2018), 3283-3288.   Google Scholar

[99]

R. Liu, J. Lu, W. Zheng and J. Kurths, Output feedback control for set stabilization of Boolean control networks, IEEE Transactions on Neural Networks and Learning Systems Google Scholar

[100]

X. Liu and J. Zhu, On potential equations of finite games, Automatica, 68 (2016), 245-253.  doi: 10.1016/j.automatica.2016.01.074.  Google Scholar

[101]

X. Liu, Stability results for impulsive differential systems with applications to population growth models, Dynamics and Stability of Systems, 9 (1994), 163-174.  doi: 10.1080/02681119408806175.  Google Scholar

[102]

X. Liu and G. Ballinger, Existence and continuability of solutions for differential equations with delays and state-dependent impulses, Nonlinear Analysis, 51 (2002), 633-647.  doi: 10.1016/S0362-546X(01)00847-1.  Google Scholar

[103]

X. Liu and K. Zhang, Input-to-state stability of time-delay systems with delay-dependent impulses, IEEE Transactions on Automatic Control, 65 (2012), 1676-1682.  doi: 10.1109/TAC.2019.2930239.  Google Scholar

[104]

Y. LiuJ. CaoB. Li and J. Lu, Normalization and solvability of dynamic-algebraic Boolean networks, IEEE Transactions on Neural Networks and Learning Systems, 29 (2018), 3301-3306.   Google Scholar

[105]

Y. LiuJ. CaoL. Sun and J. Lu, Sampled-data state feedback stabilization of Boolean control networks, Neural Computation, 28 (2016), 778-799.  doi: 10.1162/NECO_a_00819.  Google Scholar

[106]

Y. LiuH. ChenJ. Lu and B. Wu, Controllability of probabilistic Boolean control networks based on transition probability matrices, Automatica, 52 (2015), 340-345.  doi: 10.1016/j.automatica.2014.12.018.  Google Scholar

[107]

Y. LiuB. LiH. Chen and J. Cao, Function perturbations on singular Boolean networks, Automatica, 84 (2017), 36-42.  doi: 10.1016/j.automatica.2017.06.035.  Google Scholar

[108]

Y. LiuB. Li and J. Lou, Disturbance decoupling of singular Boolean control networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13 (2016), 1194-1200.  doi: 10.1109/TCBB.2015.2509969.  Google Scholar

[109]

Y. LiuB. LiJ. Lu and J. Cao, Pinning control for the disturbance decoupling problem of Boolean networks, IEEE Transactions on Automatic Control, 62 (2017), 6595-6601.  doi: 10.1109/TAC.2017.2715181.  Google Scholar

[110]

Y. LiuL. SunJ. Lu and J. Liang, Feedback controller design for the synchronization of Boolean control networks, IEEE Transactions on Neural Networks and Learning Systems, 27 (2016), 1991-1996.  doi: 10.1109/TNNLS.2015.2461012.  Google Scholar

[111]

Z. LiuY. Wang and H. Li, New approach to derivative calculation of multi-valued logical functions with application to fault detection of digital circuits, IET ControlTheory & Applications, 8 (2014), 554-560.  doi: 10.1049/iet-cta.2013.0104.  Google Scholar

[112]

J. LuH. LiY. Liu and F. Li, Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems, IET Control Theory & Applications, 11 (2017), 2040-2047.  doi: 10.1049/iet-cta.2016.1659.  Google Scholar

[113]

J. LuM. LiT. HuangY. Liu and J. Cao, The transformation between the Galois NLFSRs and the Fibonacci NLFSRs via semi-tensor product of matrices, Automatica, 96 (2018), 393-397.  doi: 10.1016/j.automatica.2018.07.011.  Google Scholar

[114]

J. Lu, M. Li, Y. Liu, D. Ho and J. Kurths, Nonsingularity of grain-like cascade FSRs via semi-tensor product, Science China Information Sciences, 61 (2018), 010204, 12 pp. doi: 10.1007/s11432-017-9269-6.  Google Scholar

[115]

B. Li and J. Lu, Boolean-network-based approach for the construction of filter generators, Science China Information Sciences, in press. Google Scholar

[116]

J. LuL. SunY. LiuD. Ho and J. Cao, Stabilization of Boolean control networks under aperiodic sampled-data control, SIAM Journal on Control and Optimization, 56 (2018), 4385-4404.  doi: 10.1137/18M1169308.  Google Scholar

[117]

J. LuJ. ZhongD. W. C. HoY. Tang and J. Cao, On controllability of delayed Boolean control networks, SIAM Journal on Control and Optimization, 54 (2016), 475-494.  doi: 10.1137/140991820.  Google Scholar

[118]

J. LuJ. ZhongC. Huang and J. Cao, On pinning controllability of Boolean control networks, IEEE Transactions on Automatic Control, 61 (2016), 1658-1663.  doi: 10.1109/TAC.2015.2478123.  Google Scholar

[119]

J. LuD. W. C. Ho and J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica, 46 (2010), 1215-1221.  doi: 10.1016/j.automatica.2010.04.005.  Google Scholar

[120]

J. LuJ. KurthsJ. CaoN. Mahdavi and C. Huang, Synchronization control for nonlinear stochastic dynamical networks: Pinning impulsive strategy, IEEE Transactions on Neural Networks and Learning Systems, 23 (2012), 285-292.   Google Scholar

[121]

J. Lu, R. Liu, J. Lou and Y. Liu, Pinning stabilization of Boolean control networks via a minimum number of controllers, IEEE Transactions on Cybernetics, (2019), 1–9. doi: 10.1109/TCYB.2019.2944659.  Google Scholar

[122]

J. Lu, J. Yang, J. Lou and J. Qiu, Event-triggered sampled feedback synchronization in an array of output-coupled Boolean control networks, IEEE Transactions on Cybernetics, (2019), 1–6. doi: 10.1109/TCYB.2019.2939761.  Google Scholar

[123]

Y. MaoL. WangY. LiuJ. Lu and Z. Wang, Stabilization of evolutionary networked games with length-r information, Applied Mathematics and Computation, 337 (2018), 442-451.  doi: 10.1016/j.amc.2018.05.027.  Google Scholar

[124]

M. MengJ. LamJ. Feng and K. Cheung, Stability and guaranteed cost analysis of time-triggered Boolean networks, IEEE Transactions on Neural Networks and Learning Systems, 29 (2018), 3893-3899.  doi: 10.1109/TNNLS.2017.2737649.  Google Scholar

[125]

M. MengJ. LamJ. Feng and K. Cheung, Stability and stabilization of Boolean networks with stochastic delays, IEEE Transactions on Automatic Control, 64 (2019), 790-796.   Google Scholar

[126]

M. MengL. Liu and G. Feng, Stability and ${L}_1$ gain analysis of Boolean networks with Markovian jump parameters, IEEE Transactions on Automatic Control, 62 (2017), 4222-4228.  doi: 10.1109/TAC.2017.2679903.  Google Scholar

[127]

V. Milman and A. Myshkis, On the stability of motion in the presence of impulses, Sib. Math. J, 1 (1960), 233-237.   Google Scholar

[128]

P. NaghshtabriziJ. P. Hespanha and A. R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems, Systems & Control Letters, 57 (2008), 378-385.  doi: 10.1016/j.sysconle.2007.10.009.  Google Scholar

[129]

P. NaghshtabriziJ. P. Hespanha and A. R. Teel, Stability of delay impulsive systems with application to networked control systems, Transactions of the Institute of Measurement and Control, 32 (2010), 511-528.  doi: 10.1109/ACC.2007.4282847.  Google Scholar

[130]

F. G. Pfeiffer and M. O. Foerg, On the structure of multiple impact systems, Nonlinear Dynamics, 42 (2005), 101-112.  doi: 10.1007/s11071-005-1910-4.  Google Scholar

[131]

I. ShmulevichE. R. DoughertyS. Kim and W. Zhang, Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks, Bioinformatics, 18 (2002), 261-274.  doi: 10.1093/bioinformatics/18.2.261.  Google Scholar

[132]

P. S. Simeonov and D. D. Bainov, Exponential stability of the solutions of singularly perturbed systems with impulse effect, J. Math. Anal. Appl., 151 (1990), 462-487.  doi: 10.1016/0022-247X(90)90161-8.  Google Scholar

[133]

X. Song and A. Li, Stability and boundedness criteria of nonlinear impulsive systems employing perturbing Lyapunov functions $\star$, Applied Mathematics and Computation, 217 (2011), 10166-10174.  doi: 10.1016/j.amc.2011.05.011.  Google Scholar

[134]

E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Transactions on Automatic Control, 34 (1989), 435-443.  doi: 10.1109/9.28018.  Google Scholar

[135]

E. D. Sontag, Comments on integral variants of ISS, Systems & Control Letters, 34 (1998), 93-100.  doi: 10.1016/S0167-6911(98)00003-6.  Google Scholar

[136]

I. Stamova and G. Stamov, Stability analysis of impulsive functional systems of fractional order, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 702-709.  doi: 10.1016/j.cnsns.2013.07.005.  Google Scholar

[137]

I. M. Stamova and G. T. Stamov, Lyapunov-Razumikhin method for impulsive functional differential equations and applications to the population dynamics, Journal of Computational and Applied Mathematics, 130 (2001), 163-171.  doi: 10.1016/S0377-0427(99)00385-4.  Google Scholar

[138]

J. SunQ. L. Han and X. Jiang, Impulsive control of time-delay systems using delayed impulse and its application to impulsive master-slave synchronization, Physics Letters A, 372 (2008), 6375-6380.  doi: 10.1016/j.physleta.2008.08.067.  Google Scholar

[139]

L. SunJ. Lu and W. Ching, Switching-based stabilization of aperiodic sampled-data Boolean control networks with all modes unstable, Frontiers of Information Technology & Electronic Engineering, 21 (2020), 260-267.  doi: 10.1631/FITEE.1900312.  Google Scholar

[140]

L. TongY. LiuY. LiJ. LuZ. Wang and F. Alsaadi, Robust control invariance of probabilistic Boolean control networks via event-triggered control, IEEE Access, 6 (2018), 37767-37774.  doi: 10.1109/ACCESS.2018.2828128.  Google Scholar

[141]

G. Wang and Y. Shen, Second-order cluster consensus of multi-agent dynamical systems with impulsive effects, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 3220-3228.  doi: 10.1016/j.cnsns.2014.02.021.  Google Scholar

[142]

N. WangX. LiJ. Lu and F. E. Alsaadi, Unified synchronization criteria in an array of coupled neural networks with hybrid impulses, Neural Networks, 101 (2018), 25-32.  doi: 10.1016/j.neunet.2018.01.017.  Google Scholar

[143]

Y. Wang and H. Li, On definition and construction of lyapunov functions for Boolean networks, in Proceedings of the 10th World Congress on Intelligent Control and Automation, IEEE, (2012), 1247–1252. doi: 10.1109/WCICA.2012.6358072.  Google Scholar

[144]

Y. WangJ. LuJ. LiangJ. Cao and M. Perc, Pinning synchronization of nonlinear coupled Lur'e networks under hybrid impulses, IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (2019), 432-436.   Google Scholar

[145]

Y. WangJ. LuJ. LouC. DingF. E. Alsaadi and T. Hayat, Synchronization of heterogeneous partially coupled networks with heterogeneous impulses, Neural Processing Letters, 48 (2018), 557-575.  doi: 10.1007/s11063-017-9735-y.  Google Scholar

[146]

Y. Wang, J. Lu and Y. Lou, Halanay-type inequality with delayed impulses and its applications, Science China Information Sciences, 62 (2019), 192206, 10 pp. doi: 10.1007/s11432-018-9809-y.  Google Scholar

[147]

E. Weiss and M. Margaliot, A polynomial-time algorithm for solving the minimal observability problem in conjunctive Boolean networks, IEEE Transactions on Automatic Control, 64 (2019), 2727-2736.  doi: 10.1109/TAC.2018.2882154.  Google Scholar

[148]

Q. WuJ. Zhou and L. Xiang, Impulses-induced exponential stability in recurrent delayed neural networks, Neurocomputing, 74 (2011), 3204-3211.  doi: 10.1016/j.neucom.2011.05.001.  Google Scholar

[149]

Y. Wu and T. Shen, Policy iteration approach to control residual gas fraction in ic engines under the framework of stochastic logical dynamics, IEEE Transactions on Control Systems Technology, 25 (2017), 1100-1107.  doi: 10.1109/TCST.2016.2587247.  Google Scholar

[150]

Y. Wu and T. Shen, A finite convergence criterion for the discounted optimal control of stochastic logical networks, IEEE Transactions on Automatic Control, 63 (2018), 262-268.  doi: 10.1109/TAC.2017.2720730.  Google Scholar

[151]

D. XieH. PengL. Li and Y. Yang, Semi-tensor compressed sensing, Digital Signal Processing, 58 (2016), 85-92.  doi: 10.1016/j.dsp.2016.07.003.  Google Scholar

[152]

F. XuL. DongD. WangX. Li and R. Rakkiyappan, Globally exponential stability of nonlinear impulsive switched systems, Mathematical Notes, 97 (2015), 803-810.  doi: 10.1134/S0001434615050156.  Google Scholar

[153]

M. Xu, Y. Liu, J. Lou, Z.-G. Wu and J. Zhong, Set stabilization of probabilistic boolean control networks: A sampled-data control approach, IEEE Transactions on Cybernetics, (2019), 1–8. doi: 10.1109/TCYB.2019.2940654.  Google Scholar

[154]

J. YangJ. LuL. LiY. LiuZ. Wang and F. Alsaadi, Event-triggered control for the synchronization of Boolean control networks, Nonlinear Dynamics, 96 (2019), 1335-1344.  doi: 10.1007/s11071-019-04857-2.  Google Scholar

[155]

M. YangR. Li and T. Chu, Controller design for disturbance decoupling of Boolean control networks, Automatica, 49 (2013), 273-277.  doi: 10.1016/j.automatica.2012.10.010.  Google Scholar

[156]

T. Yang, Impulsive Control Theory Lecture Notes in Control and Information Sciences, Springer Science and Business Media, 2001.  Google Scholar

[157]

X. YangB. ChenY. LiY. Liu and F. E. Alsaadi, Stabilization of dynamic-algebraic Boolean control networks via state feedback control, Journal of the Franklin Institute, 355 (2018), 5520-5533.  doi: 10.1016/j.jfranklin.2018.05.049.  Google Scholar

[158]

X. Yang and J. Lu, Finite-time synchronization of coupled networks with markovian topology and impulsive effects, IEEE Transactions on Automatic Control, 61 (2016), 2256-2261.  doi: 10.1109/TAC.2015.2484328.  Google Scholar

[159]

Z. Yang and D. Xu, Stability analysis and design of impulsive control systems with time delay, IEEE Transactions on Automatic Control, 52 (2007), 1448-1454.  doi: 10.1109/TAC.2007.902748.  Google Scholar

[160]

Y. YuJ. FengJ. Pan and D. Cheng, Block decoupling of Boolean control networks, IEEE Transactions on Automatic Control, 64 (2019), 3129-3140.  doi: 10.1109/TAC.2018.2880411.  Google Scholar

[161]

K. Zhang and L. Zhang, Observability of Boolean control networks: A unified approach based on finite automata, IEEE Transactions on Automatic Control, 61 (2016), 2733-2738.  doi: 10.1109/TAC.2015.2501365.  Google Scholar

[162]

K. ZhangL. Zhang and L. Xie, Finite automata approach to observability of switched Boolean control networks, Nonlinear Analysis: Hybrid Systems, 19 (2016), 186-197.  doi: 10.1016/j.nahs.2015.10.002.  Google Scholar

[163]

L. Zhang and K. Zhang, Controllability and observability of Boolean control networks with time-variant delays in states, IEEE Transactions on Neural Networks and Learning Systems, 24 (2013), 1478-1484.  doi: 10.1109/TNNLS.2013.2246187.  Google Scholar

[164]

W. ZhangC. LiT. Huang and X. He, Synchronization of memristor-based coupling recurrent neural networks with time-varying delays and impulses, IEEE Transactions on Neural Networks and Learning Systems, 26 (2015), 3308-3313.  doi: 10.1109/TNNLS.2015.2435794.  Google Scholar

[165]

X. Zhang and X. Li, Input-to-state stability of nonlinear systems with distributed-delayed impulses, IET Control Theory and Applications, 11 (2017), 81–89. doi: 10.1049/iet-cta.2016.0469.  Google Scholar

[166]

Y. Zhang and Y. Liu, Nonlinear second-order multi-agent systems subject to antagonistic interactions without velocity constraints, Applied Mathematics and Computation, 364 (2020), 124667, 14 pp. doi: 10.1016/j.amc.2019.124667.  Google Scholar

[167]

J. ZhongD. HoJ. Lu and W. Xu, Global robust stability and stabilization of Boolean network with disturbances, Automatica, 84 (2017), 142-148.  doi: 10.1016/j.automatica.2017.07.013.  Google Scholar

[168]

J. ZhongB. LiY. Liu and W. Gui, Output feedback stabilizer design of Boolean networks based on network structure, Frontiers of Information Technology & Electronic Engineering, 21 (2020), 247-259.  doi: 10.1631/FITEE.1900229.  Google Scholar

[169]

J. Zhong and D. Lin, Stability of nonlinear feedback shift registers, Science China Information Sciences, 59 (2016), 1-12.  doi: 10.1109/ICInfA.2014.6932738.  Google Scholar

[170]

J. Zhong and D. Lin, On minimum period of nonlinear feedback shift registers in grain-like structure, IEEE Transactions on Information Theory, 64 (2018), 6429-6442.  doi: 10.1109/TIT.2018.2849392.  Google Scholar

[171]

J. ZhongY. LiuK. KouL. Sun and J. Cao, On the ensemble controllability of Boolean control networks using STP method, Applied Mathematics and Computation, 358 (2019), 51-62.  doi: 10.1016/j.amc.2019.03.059.  Google Scholar

[172]

J. ZhongJ. LuT. Huang and D. Ho, Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks, IEEE Transactions on Cybernetics, 47 (2017), 3482-3493.  doi: 10.1109/TCYB.2016.2560240.  Google Scholar

[173]

J. ZhongJ. LuY. Liu and J. Cao, Synchronization in an array of output-coupled Boolean networks with time delay, IEEE Transactions on Neural Networks and Learning Systems, 25 (2014), 2288-2294.  doi: 10.1109/TNNLS.2014.2305722.  Google Scholar

[174]

B. ZhuX. Xia and Z. Wu, Evolutionary game theoretic demand-side management and control for a class of networked smart grid, Automatica, 70 (2016), 94-100.  doi: 10.1016/j.automatica.2016.03.027.  Google Scholar

[175]

Q. Zhu, Y. Liu, J. Lu and J. Cao, Observability of Boolean control networks, Science China Information Sciences, 61 (2018), 092201, 12 pp. doi: 10.1007/s11432-017-9135-4.  Google Scholar

[176]

Q. ZhuY. LiuJ. Lu and J. Cao, On the optimal control of Boolean control networks, SIAM Journal on Control and Optimization, 56 (2018), 1321-1341.  doi: 10.1137/16M1070281.  Google Scholar

[177]

Q. ZhuY. LiuJ. Lu and J. Cao, Further results on the controllability of Boolean control networks, IEEE Transactions on Automatic Control, 64 (2019), 440-442.  doi: 10.1109/TAC.2018.2830642.  Google Scholar

[178]

S. ZhuY. LiuJ. LouJ. Lu and F. Alsaadi, Sampled-data state feedback control for the set stabilization of Boolean control networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50 (2020), 1580-1589.  doi: 10.1109/TSMC.2018.2852703.  Google Scholar

[179]

S. ZhuJ. LouY. LiuY. Li and Z. Wang, Event-triggered control for the stabilization of probabilistic Boolean control networks, Complexity, 2018 (2018), 1-7.  doi: 10.1155/2018/9259348.  Google Scholar

[180]

S. ZhuJ. Lu and Y. Liu, Asymptotical stability of probabilistic Boolean networks with state delays, IEEE Transactions on Automatic Control, 65 (2020), 1779-1784.  doi: 10.1109/TAC.2019.2934532.  Google Scholar

show all references

References:
[1]

T. AkutsuM. HayashidaW. Ching and M. Ng, Control of Boolean networks: Hardness results and algorithms for tree structured networks, Journal of Theoretical Biology, 244 (2007), 670-679.  doi: 10.1016/j.jtbi.2006.09.023.  Google Scholar

[2]

J. Benford and J. Swegle, Applications of high power microwaves, 1992 9th International Conference on High-Power Particle Beams, (1992). doi: 10.1109/PLASMA.1992.697928.  Google Scholar

[3]

H. Chen and J. Liang, Local synchronization of interconnected Boolean networks with stochastic disturbances, IEEE Transactions on Neural Networks and Learning Systems, 31 (2019), 452-463.   Google Scholar

[4]

W.-H. ChenS. Luo and W. X. Zheng, Impulsive synchronization of reaction–diffusion neural networks with mixed delays and its application to image encryption, IEEE Transactions on Neural Networks and Learning Systems, 27 (2016), 2696-2710.  doi: 10.1109/TNNLS.2015.2512849.  Google Scholar

[5]

W.-H. ChenD. Wei and W. Zheng, Delayed impulsive control of Takagi-Sugeno fuzzy delay systems, IEEE Transactions on Fuzzy Systems, 21 (2013), 516-526.  doi: 10.1109/TFUZZ.2012.2217147.  Google Scholar

[6]

W.-H. Chen and W.-X. Zheng, Exponential stability of nonlinear time-delay systems with delayed impulse effects, Automatica, 47 (2011), 1075-1083.  doi: 10.1016/j.automatica.2011.02.031.  Google Scholar

[7]

D. Cheng, Semi-tensor product of matrices and its application to Morgens problem, Science in China Series: Information Sciences, 44 (2001), 195-212.   Google Scholar

[8]

D. Cheng, Disturbance decoupling of Boolean control networks, IEEE Transactions on Automatic Control, 56 (2011), 2-10.  doi: 10.1109/TAC.2010.2050161.  Google Scholar

[9]

D. ChengF. HeH. Qi and T. Xu, Modeling, analysis and control of networked evolutionary games, IEEE Transactions on Automatic Control, 60 (2015), 2402-2415.  doi: 10.1109/TAC.2015.2404471.  Google Scholar

[10]

D. ChengC. Li and F. He, Observability of Boolean networks via set controllability approach, Systems & Control Letters, 115 (2018), 22-25.  doi: 10.1016/j.sysconle.2018.03.004.  Google Scholar

[11]

D. Cheng and H. Qi, Controllability and observability of Boolean control networks, Automatica, 45 (2009), 1659-1667.  doi: 10.1016/j.automatica.2009.03.006.  Google Scholar

[12]

D. ChengH. QiZ. Li and J. Liu, Stability and stabilization of Boolean networks, International Journal of Robust and Nonlinear Control, 21 (2011), 134-156.  doi: 10.1002/rnc.1581.  Google Scholar

[13]

D. Cheng, H. Qi and Z. Liu, From STP to game-based control, Science China Information Sciences, 61 (2018), 010201. doi: 10.1007/s11432-017-9265-2.  Google Scholar

[14]

W. ChingS. ZhangY. JiaoT. AkutsuN. Tsing and A. Wong, Optimal control policy for probabilistic Boolean networks with hard constraints, IET Systems Biology, 3 (2009), 90-99.  doi: 10.1049/iet-syb.2008.0120.  Google Scholar

[15]

S. Dashkovskiy and P. Feketa, Input-to-state stability of impulsive systems and their networks, Nonlinear Analysis: Hybrid Systems, 26 (2017), 190-200.  doi: 10.1016/j.nahs.2017.06.004.  Google Scholar

[16]

S. Dashkovskiy and A. Mironchenko, Input-to-state stability of nonlinear impulsive systems, SIAM Journal on Control and Optimization, 51 (2013), 1962–1987. doi: 10.1137/120881993.  Google Scholar

[17]

E. Dubrova, Finding matching initial states for equivalent NLFSRs in the Fibonacci and the Galois configurations, IEEE Transactions on Information Theory, 56 (2010), 2961-2966.  doi: 10.1109/TIT.2010.2046250.  Google Scholar

[18]

B. FaryabiA. Datta and E. Dougherty, On approximate stochastic control in genetic regulatory networks, IET Systems Biology, 1 (2007), 361-368.  doi: 10.1049/iet-syb:20070015.  Google Scholar

[19]

E. Fornasini and M. Valcher, Observability, reconstructibility and state observers of Boolean control networks, IEEE Transactions on Automatic Control, 58 (2013), 1390-1401.  doi: 10.1109/TAC.2012.2231592.  Google Scholar

[20]

L. GaoD. Wang and G. Wang, Further results on exponential stability for impulsive switched nonlinear time-delay systems with delayed impulse effects, Applied Mathematics and Computation, 268 (2015), 186-200.  doi: 10.1016/j.amc.2015.06.023.  Google Scholar

[21]

K. Gopalsamy and B. Zhang, On delay differential equations with impulses, Journal of Mathematical Analysis and Applications, 139 (1989), 110-122.  doi: 10.1016/0022-247X(89)90232-1.  Google Scholar

[22]

Z.-H. GuanG. Chen and T. Ueta, On impulsive control of a periodically forced chaotic pendulum system, IEEE Transactions on Automatic Control, 45 (2000), 1724-1727.  doi: 10.1109/9.880633.  Google Scholar

[23]

Z.-H. Guan and N. Liu, Generating chaos for discrete time-delayed systems via impulsive control, Chaos, 20 (2010), 013135. doi: 10.1063/1.3266929.  Google Scholar

[24]

Z.-H. GuanZ.-W. LiuG. Feng and W. Yan-Wu, Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control, IEEE Transactions on Circuits and Systems I: Regular Papers, 57 (2010), 2182-2195.   Google Scholar

[25]

G. ZhaoY. Wang and H. Li, A matrix approach to the modeling and analysis of networked evolutionary games with finite memories, IEEE/CAA Journal of Automatica Sinica, 5 (2018), 818-826.  doi: 10.1109/JAS.2016.7510259.  Google Scholar

[26]

Y. Guo, Observability of Boolean control networks using parallel extension and set reachability, IEEE Transactions on Neural Networks and Learning Systems, 29 (2018), 6402-6408.  doi: 10.1109/TNNLS.2018.2826075.  Google Scholar

[27]

Y. GuoP. WangW. Gui and C. Yang, Set stability and set stabilization of Boolean control networks based on invariant subsets, Automatica, 61 (2015), 106-112.  doi: 10.1016/j.automatica.2015.08.006.  Google Scholar

[28]

D. Haltara and G. Ankhbayar, Using the maximum principle of impulse control for ecology-economical models, Ecological Modelling, 216 (2008), 150-156.  doi: 10.1016/j.ecolmodel.2008.03.025.  Google Scholar

[29]

W. HeG. ChenQ. L. Han and F. Qian, Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control, Information Sciences, 380 (2017), 145-158.   Google Scholar

[30]

J. P. HespanhaD. Liberzon and A. R. Teel, Lyapunov conditions for input-to-state stability of impulsive systems, Automatica, 44 (2008), 2735-2744.  doi: 10.1016/j.automatica.2008.03.021.  Google Scholar

[31]

J. HuG. SuiX. Lu and X. Li, Fixed-time control of delayed neural networks with impulsive perturbations, Nonlinear Analysis: Modelling and Control, 23 (2018), 904-920.  doi: 10.15388/NA.2018.6.6.  Google Scholar

[32]

M.-J. HuJ.-W. XiaoR.-B. Xiao and W.-H. Chen, Impulsive effects on the stability and stabilization of positive systems with delays, Journal of the Franklin Institute, 354 (2017), 4034-4054.  doi: 10.1016/j.jfranklin.2017.03.019.  Google Scholar

[33]

C. HuangJ. LuD. W. HoG. Zhai and J. Cao, Stabilization of probabilistic Boolean networks via pinning control strategy, Information Sciences, 510 (2020), 205-217.  doi: 10.1016/j.ins.2019.09.029.  Google Scholar

[34]

A. Ignatyev and A. Soliman, Asymptotic stability and instability of the solutions of systems with impulse action, Mathematical Notes, 80 (2006), 491-499.  doi: 10.1007/s11006-006-0167-7.  Google Scholar

[35]

G. JiaM. Meng and J. Feng, Function perturbation of mix-valued logical networks with impacts on limit sets, Neurocomputing, 207 (2016), 428-436.   Google Scholar

[36]

B. JiangJ. LuX. Li and J. Qiu, Input/output-to-state stability of nonlinear impulsive delay systems based on a new impulsive inequality, International Journal of Robust and Nonlinear Control, 29 (2019), 6164-6178.  doi: 10.1002/rnc.4712.  Google Scholar

[37]

B. JiangJ. LuJ. Lou and J. Qiu, Synchronization in an array of coupled neural networks with delayed impulses: Average impulsive delay method, Neural Networks, 121 (2020), 452-460.  doi: 10.1016/j.neunet.2019.09.019.  Google Scholar

[38]

S. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology, 22 (1969), 437-467.  doi: 10.1016/0022-5193(69)90015-0.  Google Scholar

[39]

A. KhadraX. Liu and X. Shen, Impulsively synchronizing chaotic systems with delay and applications to secure communication, Automatica, 41 (2005), 1491-1502.  doi: 10.1016/j.automatica.2005.04.012.  Google Scholar

[40]

J. LadymanJ. Lambert and K. Wiesner, What is a complex system?, European Journal for Philosophy of Science, 3 (2013), 33-67.  doi: 10.1007/s13194-012-0056-8.  Google Scholar

[41]

V. Lakshmikantham and S. Leela, On perturbing Lyapunov functions, Mathematical Systems Theory, 10 (1976), 85-90.  doi: 10.1007/BF01683265.  Google Scholar

[42]

V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6, World Scientific, 1989. doi: 10.1142/0906.  Google Scholar

[43]

D. Laschov and M. Margaliot, Controllability of Boolean control networks via perron-frobenius theory, Automatica J. IFAC, 48 (2012), 1218-1223.  doi: 10.1016/j.automatica.2012.03.022.  Google Scholar

[44]

D. LaschovM. Margaliot and G. Even, Observability of Boolean networks: A graph-theoretic approach, Automatica, 49 (2013), 2351-2362.  doi: 10.1016/j.automatica.2013.04.038.  Google Scholar

[45]

Y.-J. Lee, J. H. Olof and N. Karin, Spatio-temporal dynamics of impulse responses to figure motion in optic flow neurons, Plos One, 10 (2015), e0126265. doi: 10.1371/journal.pone.0126265.  Google Scholar

[46]

B. LiY. LiuK. Kou and L. Yu, Event-triggered control for the disturbance decoupling problem of Boolean control networks, IEEE Transactions on Cybernetics, 48 (2018), 2764-2769.  doi: 10.1109/TCYB.2017.2746102.  Google Scholar

[47]

B. LiY. LiuJ. LouJ. Lu and J. Cao, The robustness of outputs with respect to disturbances for Boolean control networks, IEEE Transactions on Neural Networks and Learning Systems, 31 (2020), 1046-1051.  doi: 10.1109/TNNLS.2019.2910193.  Google Scholar

[48]

B. LiJ. LuY. Liu and Z. Wu, The outputs robustness of Boolean control networks via pinning control, IEEE Transactions on Control of Network Systems, 7 (2020), 201-209.  doi: 10.1109/TCNS.2019.2913543.  Google Scholar

[49]

B. LiJ. LuY. Liu and W. Zheng, The local convergence of Boolean networks with disturbances, IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (2019), 667-671.  doi: 10.1109/TCSII.2018.2857841.  Google Scholar

[50]

B. LiJ. LuJ. Zhong and Y. Liu, Fast-time stability of temporal Boolean networks, IEEE Transactions on Neural Networks and Learning Systems, 30 (2019), 2285-2294.  doi: 10.1109/TNNLS.2018.2881459.  Google Scholar

[51]

F. Li, Pinning control design for the stabilization of Boolean networks, IEEE Transactions on Neural Networks and Learning Systems, 27 (2016), 1585-1590.  doi: 10.1109/TNNLS.2015.2449274.  Google Scholar

[52]

F. Li, Pinning control design for the synchronization of two coupled Boolean networks, IEEE Transactions on Circuits and Systems II: Express Briefs, 63 (2016), 309-313.  doi: 10.1109/TCSII.2015.2482658.  Google Scholar

[53]

F. Li, Stability of Boolean networks with delays using pinning control, IEEE Transactions on Control of Network Systems, 5 (2018), 179-185.  doi: 10.1109/TCNS.2016.2585861.  Google Scholar

[54]

F. LiH. LiL. Xie and Q. Zhou, On stabilization and set stabilization of multivalued logical systems, Automatica, 80 (2017), 41-47.  doi: 10.1016/j.automatica.2017.01.032.  Google Scholar

[55]

F. Li and J. Sun, Observability analysis of Boolean control networks with impulsive effects, IET Control Theory & Applications, 5 (2011), 1609-1616.  doi: 10.1049/iet-cta.2010.0558.  Google Scholar

[56]

F. Li and J. Sun, Stability and stabilization of Boolean networks with impulsive effects, Systems & Control Letters, 61 (2012), 1-5.  doi: 10.1016/j.sysconle.2011.09.019.  Google Scholar

[57]

F. LiJ. Sun and Q. Wu, Observability of Boolean control networks with state time delays, IEEE Transactions on Neural Networks, 22 (2011), 948-954.   Google Scholar

[58]

F. Li and Y. Tang, Set stabilization for switched Boolean control networks, Automatica, 78 (2017), 223-230.  doi: 10.1016/j.automatica.2016.12.007.  Google Scholar

[59]

F. LiH. Yan and H. Karimi, Single-input pinning controller design for reachability of Boolean networks, IEEE Transactions on Neural Networks and Learning Systems, 29 (2018), 3264-3269.   Google Scholar

[60]

H. Li and Y. Wang, Boolean derivative calculation with application to fault detection of combinational circuits via the semi-tensor product method, Automatica, 48 (2012), 688-693.  doi: 10.1016/j.automatica.2012.01.021.  Google Scholar

[61]

H. Li and Y. Wang, Controllability analysis and control design for switched Boolean networks with state and input constraints, SIAM Journal on Control and Optimization, 53 (2015), 2955-2979.  doi: 10.1137/120902331.  Google Scholar

[62]

H. Li and Y. Wang, Further results on feedback stabilization control design of Boolean control networks, Automatica, 83 (2017), 303-308.  doi: 10.1016/j.automatica.2017.06.043.  Google Scholar

[63]

H. Li and Y. Wang, Lyapunov-based stability and construction of Lyapunov functions for Boolean networks, SIAM Journal on Control and Optimization, 55 (2017), 3437-3457.  doi: 10.1137/16M1092581.  Google Scholar

[64]

H. LiY. Wang and Z. Liu, Stability analysis for switched Boolean networks under arbitrary switching signals, IEEE Transactions on Automatic Control, 59 (2014), 1978-1982.  doi: 10.1109/TAC.2014.2298731.  Google Scholar

[65]

H. LiY. Wang and L. Xie, Output tracking control of Boolean control networks via state feedback: Constant reference signal case, Automatica, 59 (2015), 54-59.  doi: 10.1016/j.automatica.2015.06.004.  Google Scholar

[66]

H. LiY. WangL. Xie and D. Cheng, Disturbance decoupling control design for switched Boolean control networks, Systems & Control Letters, 72 (2014), 1-6.  doi: 10.1016/j.sysconle.2014.07.008.  Google Scholar

[67]

P. Guo, Y. Wang and H. Li, Stable degree analysis for strategy profiles of evolutionary networked games, Science China Information Sciences, 59 (2016), 052204. doi: 10.1007/s11432-015-5376-9.  Google Scholar

[68]

H. Li, Y. Wang and P. Guo, Output reachability analysis and output regulation control design of Boolean control networks, Science China Information Sciences, 60 (2017), 022202. doi: 10.1007/s11432-015-0611-4.  Google Scholar

[69]

R. LiM. Yang and T. Chu, State feedback stabilization for Boolean control networks, IEEE Transactions on Automatic Control, 58 (2013), 1853-1857.  doi: 10.1109/TAC.2013.2238092.  Google Scholar

[70]

R. LiM. Yang and T. Chu, State feedback stabilization for probabilistic Boolean networks, Automatica, 50 (2014), 1272-1278.  doi: 10.1016/j.automatica.2014.02.034.  Google Scholar

[71]

S. LiX. Song and A. Li, Strict practical stability of nonlinear impulsive systems by employing two Lyapunov-like functions, Nonlinear Analysis Series B: Real World Applications, 9 (2008), 2262-2269.  doi: 10.1016/j.nonrwa.2007.08.003.  Google Scholar

[72]

X. Li, J. Lu, J. Qiu, X. Chen, X. Li and F. Alsaadi, Set stability for switched Boolean networks with open-loop and closed-loop switching signals, Science China Information Sciences, 61 (2018), 092207. Google Scholar

[73]

X. Li, Further analysis on uniform stability of impulsive infinite delay differential equations, Applied Mathematics Letters, 25 (2012), 133-137.  doi: 10.1016/j.aml.2011.08.001.  Google Scholar

[74]

X. Li and M. Bohner, An impulsive delay differential inequality and applications, Computers & Mathematics with Applications, 64 (2012), 1875-1881.  doi: 10.1016/j.camwa.2012.03.013.  Google Scholar

[75]

X. LiM. Bohner and C. K. Wang, Impulsive differential equations: Periodic solutions and applications, Automatica, 52 (2015), 173-178.  doi: 10.1016/j.automatica.2014.11.009.  Google Scholar

[76]

X. LiJ. Cao and D. W. C. Ho, Impulsive control of nonlinear systems with time-varying delay and applications, IEEE Transactions on Cybernetics, 50 (2020), 2661-2673.  doi: 10.1109/TCYB.2019.2896340.  Google Scholar

[77]

X. Li and F. Deng, Razumikhin method for impulsive functional differential equations of neutral type, Chaos Solitons and Fractals, 101 (2017), 41-49.  doi: 10.1016/j.chaos.2017.05.018.  Google Scholar

[78]

X. LiD. W. C. Ho and J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361-368.  doi: 10.1016/j.automatica.2018.10.024.  Google Scholar

[79]

X. LiP. Li and Q. G. Wang, Input/output-to-state stability of impulsive switched systems, Systems & Control Letters, 116 (2018), 1-7.  doi: 10.1016/j.sysconle.2018.04.001.  Google Scholar

[80]

X. LiD. O'Regan and H. Akca, Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays, IMA Journal of Applied Mathematics, 80 (2015), 85-99.  doi: 10.1093/imamat/hxt027.  Google Scholar

[81]

X. LiR. Rakkiyappan and C. Pradeep, Robust $\mu-$stability analysis of Markovian switching uncertain stochastic genetic regulatory networks with unbounded time-varying delays, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 3894-3905.  doi: 10.1016/j.cnsns.2012.02.008.  Google Scholar

[82]

X. LiJ. Shen and R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Applied Mathematics and Computation, 329 (2018), 14-22.  doi: 10.1016/j.amc.2018.01.036.  Google Scholar

[83]

X. Li and S. Song, Stabilization of delay systems: Delay-dependent impulsive control, IEEE Transactions on Automatic Control, 62 (2017), 406-411.  doi: 10.1109/TAC.2016.2530041.  Google Scholar

[84]

X. LiS. Song and J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Transactions on Automatic Control, 64 (2019), 4024-4034.  doi: 10.1109/TAC.2019.2905271.  Google Scholar

[85]

X. LiX. Yang and T. Huang, Persistence of delayed cooperative models: Impulsive control method, Applied Mathematics and Computation, 342 (2019), 130-146.  doi: 10.1016/j.amc.2018.09.003.  Google Scholar

[86]

X. LiX. Zhang and S. Song, Effect of delayed impulses on input-to-state stability of nonlinear systems, Automatica, 76 (2017), 378-382.  doi: 10.1016/j.automatica.2016.08.009.  Google Scholar

[87]

Y. LiB. LiY. Liu and J. Lu, Set stability and stabilization of switched Boolean networks with state-based switching, IEEE Access, 6 (2018), 35624-35630.  doi: 10.1109/ACCESS.2018.2851391.  Google Scholar

[88]

Y. LiR. LiuJ. LouJ. LuZ. Wang and Y. Liu, Output tracking of Boolean control networks driven by constant reference signal, IEEE Access, 7 (2019), 112572-112577.  doi: 10.1109/ACCESS.2019.2934740.  Google Scholar

[89]

Y. LiH. LiX. Xu and Y. Li, Semi-tensor product approach to minimal-agent consensus control of networked evolutionary games, IET Control Theory & Applications, 12 (2018), 2269-2275.  doi: 10.1049/iet-cta.2018.5230.  Google Scholar

[90]

Y. Li, Impulsive synchronization of stochastic neural networks via controlling partial states, Neural Processing Letters, 46 (2017), 59-69.  doi: 10.1007/s11063-016-9568-0.  Google Scholar

[91]

Y. LiJ. LouZ. Wang and F. E. Alsaadi, Synchronization of dynamical networks with nonlinearly coupling function under hybrid pinning impulsive controllers, Journal of the Franklin Institute, 355 (2018), 6520-6530.  doi: 10.1016/j.jfranklin.2018.06.021.  Google Scholar

[92]

Z. LiW. ZhangG. He and J.-A. Fang, Synchronisation of discrete-time complex networks with delayed heterogeneous impulses, Applications, 9 (2015), 2648-2656.  doi: 10.1049/iet-cta.2014.1281.  Google Scholar

[93]

J. LiangH. Chen and J. Lam, An improved criterion for controllability of boolean control networks, IEEE Transactions on Automatic Control, 62 (2017), 6012-6018.  doi: 10.1109/TAC.2017.2702008.  Google Scholar

[94]

L. LinJ. Cao and L. Rutkowski, Robust event-triggered control invariance of probabilistic Boolean control networks, IEEE Transactions on Neural Networks and Learning Systems, 31 (2020), 1060-1065.  doi: 10.1109/TNNLS.2019.2917753.  Google Scholar

[95]

H. LiuY. LiuY. LiZ. Wang and F. Alsaadi, Observability of Boolean networks via STP and graph methods, IET Control Theory & Applications, 13 (2019), 1031-1037.  doi: 10.1049/iet-cta.2018.5279.  Google Scholar

[96]

J. Liu and Z. Zhao, Multiple solutions for impulsive problems with non-autonomous perturbations $\star$, Applied Mathematics Letters, 64 (2017), 143-149.  doi: 10.1016/j.aml.2016.08.020.  Google Scholar

[97]

J. Liu and X. Li, Impulsive stabilization of high-order nonlinear retarded differential equations, Applications of Mathematics, 58 (2013), 347-367.  doi: 10.1007/s10492-013-0017-3.  Google Scholar

[98]

R. LiuJ. LuY. LiuJ. Cao and Z. Wu, Delayed feedback control for stabilization of Boolean control networks with state delay, IEEE Transactions on Neural Networks and Learning Systems, 29 (2018), 3283-3288.   Google Scholar

[99]

R. Liu, J. Lu, W. Zheng and J. Kurths, Output feedback control for set stabilization of Boolean control networks, IEEE Transactions on Neural Networks and Learning Systems Google Scholar

[100]

X. Liu and J. Zhu, On potential equations of finite games, Automatica, 68 (2016), 245-253.  doi: 10.1016/j.automatica.2016.01.074.  Google Scholar

[101]

X. Liu, Stability results for impulsive differential systems with applications to population growth models, Dynamics and Stability of Systems, 9 (1994), 163-174.  doi: 10.1080/02681119408806175.  Google Scholar

[102]

X. Liu and G. Ballinger, Existence and continuability of solutions for differential equations with delays and state-dependent impulses, Nonlinear Analysis, 51 (2002), 633-647.  doi: 10.1016/S0362-546X(01)00847-1.  Google Scholar

[103]

X. Liu and K. Zhang, Input-to-state stability of time-delay systems with delay-dependent impulses, IEEE Transactions on Automatic Control, 65 (2012), 1676-1682.  doi: 10.1109/TAC.2019.2930239.  Google Scholar

[104]

Y. LiuJ. CaoB. Li and J. Lu, Normalization and solvability of dynamic-algebraic Boolean networks, IEEE Transactions on Neural Networks and Learning Systems, 29 (2018), 3301-3306.   Google Scholar

[105]

Y. LiuJ. CaoL. Sun and J. Lu, Sampled-data state feedback stabilization of Boolean control networks, Neural Computation, 28 (2016), 778-799.  doi: 10.1162/NECO_a_00819.  Google Scholar

[106]

Y. LiuH. ChenJ. Lu and B. Wu, Controllability of probabilistic Boolean control networks based on transition probability matrices, Automatica, 52 (2015), 340-345.  doi: 10.1016/j.automatica.2014.12.018.  Google Scholar

[107]

Y. LiuB. LiH. Chen and J. Cao, Function perturbations on singular Boolean networks, Automatica, 84 (2017), 36-42.  doi: 10.1016/j.automatica.2017.06.035.  Google Scholar

[108]

Y. LiuB. Li and J. Lou, Disturbance decoupling of singular Boolean control networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13 (2016), 1194-1200.  doi: 10.1109/TCBB.2015.2509969.  Google Scholar

[109]

Y. LiuB. LiJ. Lu and J. Cao, Pinning control for the disturbance decoupling problem of Boolean networks, IEEE Transactions on Automatic Control, 62 (2017), 6595-6601.  doi: 10.1109/TAC.2017.2715181.  Google Scholar

[110]

Y. LiuL. SunJ. Lu and J. Liang, Feedback controller design for the synchronization of Boolean control networks, IEEE Transactions on Neural Networks and Learning Systems, 27 (2016), 1991-1996.  doi: 10.1109/TNNLS.2015.2461012.  Google Scholar

[111]

Z. LiuY. Wang and H. Li, New approach to derivative calculation of multi-valued logical functions with application to fault detection of digital circuits, IET ControlTheory & Applications, 8 (2014), 554-560.  doi: 10.1049/iet-cta.2013.0104.  Google Scholar

[112]

J. LuH. LiY. Liu and F. Li, Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems, IET Control Theory & Applications, 11 (2017), 2040-2047.  doi: 10.1049/iet-cta.2016.1659.  Google Scholar

[113]

J. LuM. LiT. HuangY. Liu and J. Cao, The transformation between the Galois NLFSRs and the Fibonacci NLFSRs via semi-tensor product of matrices, Automatica, 96 (2018), 393-397.  doi: 10.1016/j.automatica.2018.07.011.  Google Scholar

[114]

J. Lu, M. Li, Y. Liu, D. Ho and J. Kurths, Nonsingularity of grain-like cascade FSRs via semi-tensor product, Science China Information Sciences, 61 (2018), 010204, 12 pp. doi: 10.1007/s11432-017-9269-6.  Google Scholar

[115]

B. Li and J. Lu, Boolean-network-based approach for the construction of filter generators, Science China Information Sciences, in press. Google Scholar

[116]

J. LuL. SunY. LiuD. Ho and J. Cao, Stabilization of Boolean control networks under aperiodic sampled-data control, SIAM Journal on Control and Optimization, 56 (2018), 4385-4404.  doi: 10.1137/18M1169308.  Google Scholar

[117]

J. LuJ. ZhongD. W. C. HoY. Tang and J. Cao, On controllability of delayed Boolean control networks, SIAM Journal on Control and Optimization, 54 (2016), 475-494.  doi: 10.1137/140991820.  Google Scholar

[118]

J. LuJ. ZhongC. Huang and J. Cao, On pinning controllability of Boolean control networks, IEEE Transactions on Automatic Control, 61 (2016), 1658-1663.  doi: 10.1109/TAC.2015.2478123.  Google Scholar

[119]

J. LuD. W. C. Ho and J. Cao, A unified synchronization criterion for impulsive dynamical networks, Automatica, 46 (2010), 1215-1221.  doi: 10.1016/j.automatica.2010.04.005.  Google Scholar

[120]

J. LuJ. KurthsJ. CaoN. Mahdavi and C. Huang, Synchronization control for nonlinear stochastic dynamical networks: Pinning impulsive strategy, IEEE Transactions on Neural Networks and Learning Systems, 23 (2012), 285-292.   Google Scholar

[121]

J. Lu, R. Liu, J. Lou and Y. Liu, Pinning stabilization of Boolean control networks via a minimum number of controllers, IEEE Transactions on Cybernetics, (2019), 1–9. doi: 10.1109/TCYB.2019.2944659.  Google Scholar

[122]

J. Lu, J. Yang, J. Lou and J. Qiu, Event-triggered sampled feedback synchronization in an array of output-coupled Boolean control networks, IEEE Transactions on Cybernetics, (2019), 1–6. doi: 10.1109/TCYB.2019.2939761.  Google Scholar

[123]

Y. MaoL. WangY. LiuJ. Lu and Z. Wang, Stabilization of evolutionary networked games with length-r information, Applied Mathematics and Computation, 337 (2018), 442-451.  doi: 10.1016/j.amc.2018.05.027.  Google Scholar

[124]

M. MengJ. LamJ. Feng and K. Cheung, Stability and guaranteed cost analysis of time-triggered Boolean networks, IEEE Transactions on Neural Networks and Learning Systems, 29 (2018), 3893-3899.  doi: 10.1109/TNNLS.2017.2737649.  Google Scholar

[125]

M. MengJ. LamJ. Feng and K. Cheung, Stability and stabilization of Boolean networks with stochastic delays, IEEE Transactions on Automatic Control, 64 (2019), 790-796.   Google Scholar

[126]

M. MengL. Liu and G. Feng, Stability and ${L}_1$ gain analysis of Boolean networks with Markovian jump parameters, IEEE Transactions on Automatic Control, 62 (2017), 4222-4228.  doi: 10.1109/TAC.2017.2679903.  Google Scholar

[127]

V. Milman and A. Myshkis, On the stability of motion in the presence of impulses, Sib. Math. J, 1 (1960), 233-237.   Google Scholar

[128]

P. NaghshtabriziJ. P. Hespanha and A. R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems, Systems & Control Letters, 57 (2008), 378-385.  doi: 10.1016/j.sysconle.2007.10.009.  Google Scholar

[129]

P. NaghshtabriziJ. P. Hespanha and A. R. Teel, Stability of delay impulsive systems with application to networked control systems, Transactions of the Institute of Measurement and Control, 32 (2010), 511-528.  doi: 10.1109/ACC.2007.4282847.  Google Scholar

[130]

F. G. Pfeiffer and M. O. Foerg, On the structure of multiple impact systems, Nonlinear Dynamics, 42 (2005), 101-112.  doi: 10.1007/s11071-005-1910-4.  Google Scholar

[131]

I. ShmulevichE. R. DoughertyS. Kim and W. Zhang, Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks, Bioinformatics, 18 (2002), 261-274.  doi: 10.1093/bioinformatics/18.2.261.  Google Scholar

[132]

P. S. Simeonov and D. D. Bainov, Exponential stability of the solutions of singularly perturbed systems with impulse effect, J. Math. Anal. Appl., 151 (1990), 462-487.  doi: 10.1016/0022-247X(90)90161-8.  Google Scholar

[133]

X. Song and A. Li, Stability and boundedness criteria of nonlinear impulsive systems employing perturbing Lyapunov functions $\star$, Applied Mathematics and Computation, 217 (2011), 10166-10174.  doi: 10.1016/j.amc.2011.05.011.  Google Scholar

[134]

E. D. Sontag, Smooth stabilization implies coprime factorization, IEEE Transactions on Automatic Control, 34 (1989), 435-443.  doi: 10.1109/9.28018.  Google Scholar

[135]

E. D. Sontag, Comments on integral variants of ISS, Systems & Control Letters, 34 (1998), 93-100.  doi: 10.1016/S0167-6911(98)00003-6.  Google Scholar

[136]

I. Stamova and G. Stamov, Stability analysis of impulsive functional systems of fractional order, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 702-709.  doi: 10.1016/j.cnsns.2013.07.005.  Google Scholar

[137]

I. M. Stamova and G. T. Stamov, Lyapunov-Razumikhin method for impulsive functional differential equations and applications to the population dynamics, Journal of Computational and Applied Mathematics, 130 (2001), 163-171.  doi: 10.1016/S0377-0427(99)00385-4.  Google Scholar

[138]

J. SunQ. L. Han and X. Jiang, Impulsive control of time-delay systems using delayed impulse and its application to impulsive master-slave synchronization, Physics Letters A, 372 (2008), 6375-6380.  doi: 10.1016/j.physleta.2008.08.067.  Google Scholar

[139]

L. SunJ. Lu and W. Ching, Switching-based stabilization of aperiodic sampled-data Boolean control networks with all modes unstable, Frontiers of Information Technology & Electronic Engineering, 21 (2020), 260-267.  doi: 10.1631/FITEE.1900312.  Google Scholar

[140]

L. TongY. LiuY. LiJ. LuZ. Wang and F. Alsaadi, Robust control invariance of probabilistic Boolean control networks via event-triggered control, IEEE Access, 6 (2018), 37767-37774.  doi: 10.1109/ACCESS.2018.2828128.  Google Scholar

[141]

G. Wang and Y. Shen, Second-order cluster consensus of multi-agent dynamical systems with impulsive effects, Communications in Nonlinear Science and Numerical Simulation, 19 (2014), 3220-3228.  doi: 10.1016/j.cnsns.2014.02.021.  Google Scholar

[142]

N. WangX. LiJ. Lu and F. E. Alsaadi, Unified synchronization criteria in an array of coupled neural networks with hybrid impulses, Neural Networks, 101 (2018), 25-32.  doi: 10.1016/j.neunet.2018.01.017.  Google Scholar

[143]

Y. Wang and H. Li, On definition and construction of lyapunov functions for Boolean networks, in Proceedings of the 10th World Congress on Intelligent Control and Automation, IEEE, (2012), 1247–1252. doi: 10.1109/WCICA.2012.6358072.  Google Scholar

[144]

Y. WangJ. LuJ. LiangJ. Cao and M. Perc, Pinning synchronization of nonlinear coupled Lur'e networks under hybrid impulses, IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (2019), 432-436.   Google Scholar

[145]

Y. WangJ. LuJ. LouC. DingF. E. Alsaadi and T. Hayat, Synchronization of heterogeneous partially coupled networks with heterogeneous impulses, Neural Processing Letters, 48 (2018), 557-575.  doi: 10.1007/s11063-017-9735-y.  Google Scholar

[146]

Y. Wang, J. Lu and Y. Lou, Halanay-type inequality with delayed impulses and its applications, Science China Information Sciences, 62 (2019), 192206, 10 pp. doi: 10.1007/s11432-018-9809-y.  Google Scholar

[147]

E. Weiss and M. Margaliot, A polynomial-time algorithm for solving the minimal observability problem in conjunctive Boolean networks, IEEE Transactions on Automatic Control, 64 (2019), 2727-2736.  doi: 10.1109/TAC.2018.2882154.  Google Scholar

[148]

Q. WuJ. Zhou and L. Xiang, Impulses-induced exponential stability in recurrent delayed neural networks, Neurocomputing, 74 (2011), 3204-3211.  doi: 10.1016/j.neucom.2011.05.001.  Google Scholar

[149]

Y. Wu and T. Shen, Policy iteration approach to control residual gas fraction in ic engines under the framework of stochastic logical dynamics, IEEE Transactions on Control Systems Technology, 25 (2017), 1100-1107.  doi: 10.1109/TCST.2016.2587247.  Google Scholar

[150]

Y. Wu and T. Shen, A finite convergence criterion for the discounted optimal control of stochastic logical networks, IEEE Transactions on Automatic Control, 63 (2018), 262-268.  doi: 10.1109/TAC.2017.2720730.  Google Scholar

[151]

D. XieH. PengL. Li and Y. Yang, Semi-tensor compressed sensing, Digital Signal Processing, 58 (2016), 85-92.  doi: 10.1016/j.dsp.2016.07.003.  Google Scholar

[152]

F. XuL. DongD. WangX. Li and R. Rakkiyappan, Globally exponential stability of nonlinear impulsive switched systems, Mathematical Notes, 97 (2015), 803-810.  doi: 10.1134/S0001434615050156.  Google Scholar

[153]

M. Xu, Y. Liu, J. Lou, Z.-G. Wu and J. Zhong, Set stabilization of probabilistic boolean control networks: A sampled-data control approach, IEEE Transactions on Cybernetics, (2019), 1–8. doi: 10.1109/TCYB.2019.2940654.  Google Scholar

[154]

J. YangJ. LuL. LiY. LiuZ. Wang and F. Alsaadi, Event-triggered control for the synchronization of Boolean control networks, Nonlinear Dynamics, 96 (2019), 1335-1344.  doi: 10.1007/s11071-019-04857-2.  Google Scholar

[155]

M. YangR. Li and T. Chu, Controller design for disturbance decoupling of Boolean control networks, Automatica, 49 (2013), 273-277.  doi: 10.1016/j.automatica.2012.10.010.  Google Scholar

[156]

T. Yang, Impulsive Control Theory Lecture Notes in Control and Information Sciences, Springer Science and Business Media, 2001.  Google Scholar

[157]

X. YangB. ChenY. LiY. Liu and F. E. Alsaadi, Stabilization of dynamic-algebraic Boolean control networks via state feedback control, Journal of the Franklin Institute, 355 (2018), 5520-5533.  doi: 10.1016/j.jfranklin.2018.05.049.  Google Scholar

[158]

X. Yang and J. Lu, Finite-time synchronization of coupled networks with markovian topology and impulsive effects, IEEE Transactions on Automatic Control, 61 (2016), 2256-2261.  doi: 10.1109/TAC.2015.2484328.  Google Scholar

[159]

Z. Yang and D. Xu, Stability analysis and design of impulsive control systems with time delay, IEEE Transactions on Automatic Control, 52 (2007), 1448-1454.  doi: 10.1109/TAC.2007.902748.  Google Scholar

[160]

Y. YuJ. FengJ. Pan and D. Cheng, Block decoupling of Boolean control networks, IEEE Transactions on Automatic Control, 64 (2019), 3129-3140.  doi: 10.1109/TAC.2018.2880411.  Google Scholar

[161]

K. Zhang and L. Zhang, Observability of Boolean control networks: A unified approach based on finite automata, IEEE Transactions on Automatic Control, 61 (2016), 2733-2738.  doi: 10.1109/TAC.2015.2501365.  Google Scholar

[162]

K. ZhangL. Zhang and L. Xie, Finite automata approach to observability of switched Boolean control networks, Nonlinear Analysis: Hybrid Systems, 19 (2016), 186-197.  doi: 10.1016/j.nahs.2015.10.002.  Google Scholar

[163]

L. Zhang and K. Zhang, Controllability and observability of Boolean control networks with time-variant delays in states, IEEE Transactions on Neural Networks and Learning Systems, 24 (2013), 1478-1484.  doi: 10.1109/TNNLS.2013.2246187.  Google Scholar

[164]

W. ZhangC. LiT. Huang and X. He, Synchronization of memristor-based coupling recurrent neural networks with time-varying delays and impulses, IEEE Transactions on Neural Networks and Learning Systems, 26 (2015), 3308-3313.  doi: 10.1109/TNNLS.2015.2435794.  Google Scholar

[165]

X. Zhang and X. Li, Input-to-state stability of nonlinear systems with distributed-delayed impulses, IET Control Theory and Applications, 11 (2017), 81–89. doi: 10.1049/iet-cta.2016.0469.  Google Scholar

[166]

Y. Zhang and Y. Liu, Nonlinear second-order multi-agent systems subject to antagonistic interactions without velocity constraints, Applied Mathematics and Computation, 364 (2020), 124667, 14 pp. doi: 10.1016/j.amc.2019.124667.  Google Scholar

[167]

J. ZhongD. HoJ. Lu and W. Xu, Global robust stability and stabilization of Boolean network with disturbances, Automatica, 84 (2017), 142-148.  doi: 10.1016/j.automatica.2017.07.013.  Google Scholar

[168]

J. ZhongB. LiY. Liu and W. Gui, Output feedback stabilizer design of Boolean networks based on network structure, Frontiers of Information Technology & Electronic Engineering, 21 (2020), 247-259.  doi: 10.1631/FITEE.1900229.  Google Scholar

[169]

J. Zhong and D. Lin, Stability of nonlinear feedback shift registers, Science China Information Sciences, 59 (2016), 1-12.  doi: 10.1109/ICInfA.2014.6932738.  Google Scholar

[170]

J. Zhong and D. Lin, On minimum period of nonlinear feedback shift registers in grain-like structure, IEEE Transactions on Information Theory, 64 (2018), 6429-6442.  doi: 10.1109/TIT.2018.2849392.  Google Scholar

[171]

J. ZhongY. LiuK. KouL. Sun and J. Cao, On the ensemble controllability of Boolean control networks using STP method, Applied Mathematics and Computation, 358 (2019), 51-62.  doi: 10.1016/j.amc.2019.03.059.  Google Scholar

[172]

J. ZhongJ. LuT. Huang and D. Ho, Controllability and synchronization analysis of identical-hierarchy mixed-valued logical control networks, IEEE Transactions on Cybernetics, 47 (2017), 3482-3493.  doi: 10.1109/TCYB.2016.2560240.  Google Scholar

[173]

J. ZhongJ. LuY. Liu and J. Cao, Synchronization in an array of output-coupled Boolean networks with time delay, IEEE Transactions on Neural Networks and Learning Systems, 25 (2014), 2288-2294.  doi: 10.1109/TNNLS.2014.2305722.  Google Scholar

[174]

B. ZhuX. Xia and Z. Wu, Evolutionary game theoretic demand-side management and control for a class of networked smart grid, Automatica, 70 (2016), 94-100.  doi: 10.1016/j.automatica.2016.03.027.  Google Scholar

[175]

Q. Zhu, Y. Liu, J. Lu and J. Cao, Observability of Boolean control networks, Science China Information Sciences, 61 (2018), 092201, 12 pp. doi: 10.1007/s11432-017-9135-4.  Google Scholar

[176]

Q. ZhuY. LiuJ. Lu and J. Cao, On the optimal control of Boolean control networks, SIAM Journal on Control and Optimization, 56 (2018), 1321-1341.  doi: 10.1137/16M1070281.  Google Scholar

[177]

Q. ZhuY. LiuJ. Lu and J. Cao, Further results on the controllability of Boolean control networks, IEEE Transactions on Automatic Control, 64 (2019), 440-442.  doi: 10.1109/TAC.2018.2830642.  Google Scholar

[178]

S. ZhuY. LiuJ. LouJ. Lu and F. Alsaadi, Sampled-data state feedback control for the set stabilization of Boolean control networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50 (2020), 1580-1589.  doi: 10.1109/TSMC.2018.2852703.  Google Scholar

[179]

S. ZhuJ. LouY. LiuY. Li and Z. Wang, Event-triggered control for the stabilization of probabilistic Boolean control networks, Complexity, 2018 (2018), 1-7.  doi: 10.1155/2018/9259348.  Google Scholar

[180]

S. ZhuJ. Lu and Y. Liu, Asymptotical stability of probabilistic Boolean networks with state delays, IEEE Transactions on Automatic Control, 65 (2020), 1779-1784.  doi: 10.1109/TAC.2019.2934532.  Google Scholar

Figure 1.  An example of GAII $ T_{ga} = +\infty $
Figure 2.  Behaviors of IDS (13) with initial value $ x_0 = 0.1 $
Figure 3.  Behaviors of system (20) with different impulsive gain
Figure 4.  Behaviors of System (25) with different values of $ \nu $ and $ h $
Figure 5.  Cryptosystem based on impulsive synchronization
Figure 6.  Two kinds of configurations for FSRs based on BNs
[1]

Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521

[2]

Lingyang Liu, Xu Liu. Controllability and observability of some coupled stochastic parabolic systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 829-854. doi: 10.3934/mcrf.2018037

[3]

Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete & Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138

[4]

Xueyan Yang, Xiaodi Li, Qiang Xi, Peiyong Duan. Review of stability and stabilization for impulsive delayed systems. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1495-1515. doi: 10.3934/mbe.2018069

[5]

Tatsien Li, Bopeng Rao, Zhiqiang Wang. Exact boundary controllability and observability for first order quasilinear hyperbolic systems with a kind of nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 243-257. doi: 10.3934/dcds.2010.28.243

[6]

Honglei Xu, Kok Lay Teo, Weihua Gui. Necessary and sufficient conditions for stability of impulsive switched linear systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1185-1195. doi: 10.3934/dcdsb.2011.16.1185

[7]

Everaldo de Mello Bonotto, Daniela Paula Demuner. Stability and forward attractors for non-autonomous impulsive semidynamical systems. Communications on Pure & Applied Analysis, 2020, 19 (4) : 1979-1996. doi: 10.3934/cpaa.2020087

[8]

David J. Aldous. A stochastic complex network model. Electronic Research Announcements, 2003, 9: 152-161.

[9]

Junyuan Yang, Yuming Chen, Jiming Liu. Stability analysis of a two-strain epidemic model on complex networks with latency. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2851-2866. doi: 10.3934/dcdsb.2016076

[10]

Shengji Li, Chunmei Liao, Minghua Li. Stability analysis of parametric variational systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 317-331. doi: 10.3934/naco.2011.1.317

[11]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[12]

Yacine Chitour, Frédéric Grognard, Georges Bastin. Equilibria and stability analysis of a branched metabolic network with feedback inhibition. Networks & Heterogeneous Media, 2006, 1 (1) : 219-239. doi: 10.3934/nhm.2006.1.219

[13]

Santiago Moral, Victor Chapela, Regino Criado, Ángel Pérez, Miguel Romance. Efficient algorithms for estimating loss of information in a complex network: Applications to intentional risk analysis. Networks & Heterogeneous Media, 2015, 10 (1) : 195-208. doi: 10.3934/nhm.2015.10.195

[14]

Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations & Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014

[15]

Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026

[16]

Alexander Pimenov, Dmitrii I. Rachinskii. Linear stability analysis of systems with Preisach memory. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 997-1018. doi: 10.3934/dcdsb.2009.11.997

[17]

Najwa Najib, Norfifah Bachok, Norihan Md Arifin, Fadzilah Md Ali. Stability analysis of stagnation point flow in nanofluid over stretching/shrinking sheet with slip effect using buongiorno's model. Numerical Algebra, Control & Optimization, 2019, 9 (4) : 423-431. doi: 10.3934/naco.2019041

[18]

Poongodi Rathinasamy, Murugesu Rangasamy, Nirmalkumar Rajendran. Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions. Evolution Equations & Control Theory, 2017, 6 (4) : 599-613. doi: 10.3934/eect.2017030

[19]

Giovanni Panti. Dynamical properties of logical substitutions. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 237-258. doi: 10.3934/dcds.2006.15.237

[20]

El Houcein El Abdalaoui, Sylvain Bonnot, Ali Messaoudi, Olivier Sester. On the Fibonacci complex dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2449-2471. doi: 10.3934/dcds.2016.36.2449

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]