April  2021, 14(4): 1259-1272. doi: 10.3934/dcdss.2020372

Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator

1. 

School of Mathematics and Statistics, Changsha University of Science and Technology, Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering, Changsha 410114, Hunan, China

2. 

School of Mathematics, Southeast University, Nanjing 211189, China

* Corresponding author: Chuangxia Huang and Jinde Cao

Received  October 2019 Revised  December 2019 Published  April 2021 Early access  May 2020

Fund Project: The work is partially supported by the National Natural Science Foundation of China (Nos. 11971076, 51839002); International Cooperation and Expansion Project of "Double First-class" (No. 2019IC37)

Taking into account the effects of multi-proportional delays and D operator, this paper investigates the stability issue of a general class of neutral-type SICNNs (shunting inhibitory cellular neural networks). With the help of fixed point theorem and some novel differential inequality techniques, we derive a new sufficient conditions to ensure the existence, uniqueness and exponential stability of weighted pseudo almost periodic solutions (WPAPS) of the considered model. The obtained main results are totally new and generalize some published results. At the end of this work, we also give some numerical simulations to support the proposed approach and demonstrate the correctness of the main conclusions.

Citation: Chuangxia Huang, Hedi Yang, Jinde Cao. Weighted pseudo almost periodicity of multi-proportional delayed shunting inhibitory cellular neural networks with D operator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1259-1272. doi: 10.3934/dcdss.2020372
References:
[1]

N. S. Al-IslamS. M. Alsulami and T. Diagana, Existence of weighted pseudo anti-periodic solutions to some non-autonomous differential equations, Applied Mathematics and Computation, 218 (2012), 6536-6548.  doi: 10.1016/j.amc.2011.12.026.

[2]

A. Bouzerdoum and R. B. Pinter, Analysis and analog implementation of directionally sensitive shunting inhibitory cellular neural networks, in: Visual Information Processing: From Neurons to Chips, in: SPIE, (1991), 29–38.

[3]

A. Bouzerdoum and R. B. Pinter, Nonlinear lateral inhibition applied to motion detection in the fly visual system, in: R.B. Pinter, B. Nabet (Eds.), Nonlinear Vision, CRC Press, Boca Raton, FL, (1992), 423–450.

[4]

A. Bouzerdoum and R. B. Pinter, Shunting inhibitory cellular neural networks: Derivation and stability analysis, IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 40 (1993), 215-221.  doi: 10.1109/81.222804.

[5]

F. Ch$\acute{e}$rif, Existence and global exponential stability of pseudo almost periodic solution for SICNNs with mixed delays, Journal of Applied Mathematics and Computing, 39 (2012), 235-251. 

[6]

D. Chen, W. Zhang, J. Cao and C. Huang, Fixed time synchronization of delayed quaternion-valued memristor-based neural networks, Advances in Difference Equations, 2020 (2020), Paper No. 92, 16 pp. doi: 10.1186/s13662-020-02560-w.

[7]

Z. Chen and A. Zhang, Weighted pseudo almost periodic shunting inhibitory cellular neural networks with multi-proportional delays, Neural Processing Letters, 50 (2019), 1831-1843.  doi: 10.1007/s11063-018-9961-y.

[8]

T. Diagana, Weighted pseudo almost periodic functions and applications, Comptes Rendus Mathematique, 343 (2006), 643-646.  doi: 10.1016/j.crma.2006.10.008.

[9]

T. Diagana, Weighted pseudo-almost periodic solutions to some differential equations, Nonlinear Analysis: Theory, Methods and Applications, 68 (2008), 2250-2260.  doi: 10.1016/j.na.2007.01.054.

[10]

J. K. Hale, Ordinary Differential Equations, Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., Florida, 1980.

[11]

H. Hu and X. Zou, Existence of an extinction wave in the fisher equation with a shifting habitat, Proceedings of the American Mathematical Society, 145 (2017), 4763-4771.  doi: 10.1090/proc/13687.

[12]

H. HuT. Yi and X. Zou, On spatial-temporal dynamics of a Fisher-KPP equation with a shifting environment, Proceedings of the American Mathematical Society, 148 (2020), 213-221.  doi: 10.1090/proc/14659.

[13]

H. HuX. YuanL. Huang and C. Huang, Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks, Mathematical Biosciences and Engineering, 16 (2019), 5729-5749.  doi: 10.3934/mbe.2019286.

[14]

C. Huang and B. Liu, New studies on dynamic analysis of inertial neural networks involving non-reduced order method, Neurocomputing, 325 (2019), 283-287.  doi: 10.1016/j.neucom.2018.09.065.

[15]

C. HuangL. Yang and J. Cao, Asymptotic behavior for a class of population dynamics, AIMS Mathematics, 5 (2020), 3378-3390.  doi: 10.3934/math.2020218.

[16]

C. HuangH. Zhang and L. Huang, Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term, Communications on Pure and Applied Analysis, 18 (2019), 3337-3349.  doi: 10.3934/cpaa.2019150.

[17]

C. HuangB. LiuX. TianL. Yang and X. Zhang, Global convergence on asymptotically almost periodic sicnns with nonlinear decay functions, Neural Processing Letters, 49 (2019), 625-641.  doi: 10.1007/s11063-018-9835-3.

[18]

C. Huang, J. Cao, F. Wen and X. Yang, Stability analysis of sir model with distributed delay on complex networks, Plos One, 11 (2016), e0158813. doi: 10.1371/journal.pone.0158813.

[19]

C. HuangZ. YangT. Yi and X. Zou, On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, Journal of Differential Equations, 256 (2014), 2101-2114.  doi: 10.1016/j.jde.2013.12.015.

[20]

C. Huang, H. Zhang, J. Cao and H. Hu, Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator, International Journal of Bifurcation and Chaos, 29 (2019), 1950091, 23 Pages. doi: 10.1142/S0218127419500913.

[21]

C. HuangX. LongL. Huang and S. Fu, Stability of almost periodic Nicholson's blowflies model involving patch structure and mortality terms, Canadian Mathematical Bulletin, 63 (2020), 405-422.  doi: 10.4153/S0008439519000511.

[22]

C. HuangX. Long and J. Cao, Stability of anti-periodic recurrent neural networks with multi-proportional delays, Mathematical Methods in the Applied Sciences, 43 (2020), 6093-6102.  doi: 10.1002/mma.6350.

[23]

C. HuangX. Yang and J. Cao, Stability analysis of Nicholson's blowflies equation with two different delays, Mathematics and Computers in Simulation, 171 (2020), 201-206.  doi: 10.1016/j.matcom.2019.09.023.

[24]

C. Huang, Y. Qiao, L. Huang and R. Agarwal, Dynamical behaviors of a food-chain model with stage structure and time delays, Advances in Difference Equations, 2018 (2018), Paper No. 186, 26 pp. doi: 10.1186/s13662-018-1589-8.

[25]

C. HuangS. Wen and L. Huang, Dynamics of anti-periodic solutions on shunting inhibitory cellular neural networks with multi-proportional delays, Neurocomputing, 357 (2019), 47-52. 

[26]

C. HuangR. SuJ. Cao and S. Xiao, Asymptotically stable high-order neutral cellular neural networks with proportional delays and D operators, Mathematics and Computers in Simulation, 171 (2020), 127-135.  doi: 10.1016/j.matcom.2019.06.001.

[27]

S. KumariR. ChughJ. Cao and C. Huang, On the construction, properties and Hausdorff dimension of random Cantor one $p^th$ set, AIMS Mathematics, 5 (2020), 3138-3155. 

[28]

X. LiX. Yang and T. Huang, Persistence of delayed cooperative models: Impulsive control method, Applied Mathematics and Computation, 342 (2019), 130-146.  doi: 10.1016/j.amc.2018.09.003.

[29]

X. Longn and S. Gong, New results on stability of Nicholson's blowflies equation with multiple pairs of time-varying delays, Applied Mathematics Letters, 100 (2020), 106027, 6 pp. doi: 10.1016/j.aml.2019.106027.

[30]

C. Qian and Y. Hu, Novel stability criteria on nonlinear density-dependent mortality Nicholson's blowflies systems in asymptotically almost periodic environments, Journal of Inequalities and Applications, 2020 (2020), Paper No. 13. doi: 10.1186/s13660-019-2275-4.

[31]

G. Rajchakit, A. Pratap, R. Raja, J. Cao, J. Alzabut and C. Huang, Hybrid control scheme for projective lag synchronization of riemann–liouville sense fractional order memristive bam neural networks with mixed delays,, Mathematics, 7 (2019), 759. doi: 10.3390/math7080759.

[32]

C. Song, S. Fei, J. Cao and C. Huang, Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control, Mathematics, 7 (2019), 599. doi: 10.3390/math7070599.

[33]

Y. TanC. HuangB. Sun and Tao. Wang, Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition, Journal of Mathematical Analysis and Applications, 458 (2018), 1115-1130.  doi: 10.1016/j.jmaa.2017.09.045.

[34]

Y. Tang, Pseudo almost periodic shunting inhibitory cellular neural networks with multi-proportional delays, Neural Processing Letters, 48 (2018), 167-177.  doi: 10.1007/s11063-017-9708-1.

[35]

J. WangC. Huang and L. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Analysis: Hybrid Systems, 33 (2019), 162-178.  doi: 10.1016/j.nahs.2019.03.004.

[36]

W. Wang, C. Huang, C. Huang, J. Cao, J. Lu and L. Wang, Bipartite formation problem of second-order nonlinear multi-agent systems with hybrid impulses, Applied Mathematics and Computation, 370 (2020), 124926, 17 pp. doi: 10.1016/j.amc.2019.124926.

[37]

S. Xiao, Global Exponential Convergence of HCNNs with Neutral Type Proportional Delays and D Operator, Neural Processing Letters, 49 (2019), 347-356.  doi: 10.1007/s11063-018-9817-5.

[38]

Y. Xu, Exponential stability of weighted pseudo almost periodic solutions for HCNNs with mixed delays, Neural Processing Letters, 46 (2017), 507-519.  doi: 10.1007/s11063-017-9595-5.

[39]

D. YangX. Li and J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Analysis: Hybrid Systems, 32 (2019), 294-305.  doi: 10.1016/j.nahs.2019.01.006.

[40]

X. YangX. LiQ. Xi and P. Duan, Review of stability and stabilization for impulsive delayed systems, Mathematical Biosciences and Engineering, 15 (2018), 1495-1515.  doi: 10.3934/mbe.2018069.

[41]

G. Yang and W. Wan, Weighted Pseudo Almost Periodic Solutions for Cellular Neural Networks with Multi-proportional Delays, Neural Processing Letters, 49 (2019), 1125-1138.  doi: 10.1007/s11063-018-9851-3.

[42]

A. Zhang, Almost periodic solutions for SICNNs with neutral type proportional delays and D operators, Neural Processing Letters, 47 (2018), 57-70.  doi: 10.1007/s11063-017-9631-5.

[43]

J. Zhang and C. Huang, Dynamics analysis on a class of delayed neural networks involving inertial terms, Advances in Difference Equations, 2020 (2020), Paper No. 120. doi: 10.1186/s13662-020-02566-4.

[44]

Y. Zhou, X. Wan, C. Huang and X. Yang, Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control, Applied Mathematics and Computation, 376 (2020), 125157. doi: 10.1016/j.amc.2020.125157.

show all references

References:
[1]

N. S. Al-IslamS. M. Alsulami and T. Diagana, Existence of weighted pseudo anti-periodic solutions to some non-autonomous differential equations, Applied Mathematics and Computation, 218 (2012), 6536-6548.  doi: 10.1016/j.amc.2011.12.026.

[2]

A. Bouzerdoum and R. B. Pinter, Analysis and analog implementation of directionally sensitive shunting inhibitory cellular neural networks, in: Visual Information Processing: From Neurons to Chips, in: SPIE, (1991), 29–38.

[3]

A. Bouzerdoum and R. B. Pinter, Nonlinear lateral inhibition applied to motion detection in the fly visual system, in: R.B. Pinter, B. Nabet (Eds.), Nonlinear Vision, CRC Press, Boca Raton, FL, (1992), 423–450.

[4]

A. Bouzerdoum and R. B. Pinter, Shunting inhibitory cellular neural networks: Derivation and stability analysis, IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 40 (1993), 215-221.  doi: 10.1109/81.222804.

[5]

F. Ch$\acute{e}$rif, Existence and global exponential stability of pseudo almost periodic solution for SICNNs with mixed delays, Journal of Applied Mathematics and Computing, 39 (2012), 235-251. 

[6]

D. Chen, W. Zhang, J. Cao and C. Huang, Fixed time synchronization of delayed quaternion-valued memristor-based neural networks, Advances in Difference Equations, 2020 (2020), Paper No. 92, 16 pp. doi: 10.1186/s13662-020-02560-w.

[7]

Z. Chen and A. Zhang, Weighted pseudo almost periodic shunting inhibitory cellular neural networks with multi-proportional delays, Neural Processing Letters, 50 (2019), 1831-1843.  doi: 10.1007/s11063-018-9961-y.

[8]

T. Diagana, Weighted pseudo almost periodic functions and applications, Comptes Rendus Mathematique, 343 (2006), 643-646.  doi: 10.1016/j.crma.2006.10.008.

[9]

T. Diagana, Weighted pseudo-almost periodic solutions to some differential equations, Nonlinear Analysis: Theory, Methods and Applications, 68 (2008), 2250-2260.  doi: 10.1016/j.na.2007.01.054.

[10]

J. K. Hale, Ordinary Differential Equations, Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., Florida, 1980.

[11]

H. Hu and X. Zou, Existence of an extinction wave in the fisher equation with a shifting habitat, Proceedings of the American Mathematical Society, 145 (2017), 4763-4771.  doi: 10.1090/proc/13687.

[12]

H. HuT. Yi and X. Zou, On spatial-temporal dynamics of a Fisher-KPP equation with a shifting environment, Proceedings of the American Mathematical Society, 148 (2020), 213-221.  doi: 10.1090/proc/14659.

[13]

H. HuX. YuanL. Huang and C. Huang, Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks, Mathematical Biosciences and Engineering, 16 (2019), 5729-5749.  doi: 10.3934/mbe.2019286.

[14]

C. Huang and B. Liu, New studies on dynamic analysis of inertial neural networks involving non-reduced order method, Neurocomputing, 325 (2019), 283-287.  doi: 10.1016/j.neucom.2018.09.065.

[15]

C. HuangL. Yang and J. Cao, Asymptotic behavior for a class of population dynamics, AIMS Mathematics, 5 (2020), 3378-3390.  doi: 10.3934/math.2020218.

[16]

C. HuangH. Zhang and L. Huang, Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term, Communications on Pure and Applied Analysis, 18 (2019), 3337-3349.  doi: 10.3934/cpaa.2019150.

[17]

C. HuangB. LiuX. TianL. Yang and X. Zhang, Global convergence on asymptotically almost periodic sicnns with nonlinear decay functions, Neural Processing Letters, 49 (2019), 625-641.  doi: 10.1007/s11063-018-9835-3.

[18]

C. Huang, J. Cao, F. Wen and X. Yang, Stability analysis of sir model with distributed delay on complex networks, Plos One, 11 (2016), e0158813. doi: 10.1371/journal.pone.0158813.

[19]

C. HuangZ. YangT. Yi and X. Zou, On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities, Journal of Differential Equations, 256 (2014), 2101-2114.  doi: 10.1016/j.jde.2013.12.015.

[20]

C. Huang, H. Zhang, J. Cao and H. Hu, Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator, International Journal of Bifurcation and Chaos, 29 (2019), 1950091, 23 Pages. doi: 10.1142/S0218127419500913.

[21]

C. HuangX. LongL. Huang and S. Fu, Stability of almost periodic Nicholson's blowflies model involving patch structure and mortality terms, Canadian Mathematical Bulletin, 63 (2020), 405-422.  doi: 10.4153/S0008439519000511.

[22]

C. HuangX. Long and J. Cao, Stability of anti-periodic recurrent neural networks with multi-proportional delays, Mathematical Methods in the Applied Sciences, 43 (2020), 6093-6102.  doi: 10.1002/mma.6350.

[23]

C. HuangX. Yang and J. Cao, Stability analysis of Nicholson's blowflies equation with two different delays, Mathematics and Computers in Simulation, 171 (2020), 201-206.  doi: 10.1016/j.matcom.2019.09.023.

[24]

C. Huang, Y. Qiao, L. Huang and R. Agarwal, Dynamical behaviors of a food-chain model with stage structure and time delays, Advances in Difference Equations, 2018 (2018), Paper No. 186, 26 pp. doi: 10.1186/s13662-018-1589-8.

[25]

C. HuangS. Wen and L. Huang, Dynamics of anti-periodic solutions on shunting inhibitory cellular neural networks with multi-proportional delays, Neurocomputing, 357 (2019), 47-52. 

[26]

C. HuangR. SuJ. Cao and S. Xiao, Asymptotically stable high-order neutral cellular neural networks with proportional delays and D operators, Mathematics and Computers in Simulation, 171 (2020), 127-135.  doi: 10.1016/j.matcom.2019.06.001.

[27]

S. KumariR. ChughJ. Cao and C. Huang, On the construction, properties and Hausdorff dimension of random Cantor one $p^th$ set, AIMS Mathematics, 5 (2020), 3138-3155. 

[28]

X. LiX. Yang and T. Huang, Persistence of delayed cooperative models: Impulsive control method, Applied Mathematics and Computation, 342 (2019), 130-146.  doi: 10.1016/j.amc.2018.09.003.

[29]

X. Longn and S. Gong, New results on stability of Nicholson's blowflies equation with multiple pairs of time-varying delays, Applied Mathematics Letters, 100 (2020), 106027, 6 pp. doi: 10.1016/j.aml.2019.106027.

[30]

C. Qian and Y. Hu, Novel stability criteria on nonlinear density-dependent mortality Nicholson's blowflies systems in asymptotically almost periodic environments, Journal of Inequalities and Applications, 2020 (2020), Paper No. 13. doi: 10.1186/s13660-019-2275-4.

[31]

G. Rajchakit, A. Pratap, R. Raja, J. Cao, J. Alzabut and C. Huang, Hybrid control scheme for projective lag synchronization of riemann–liouville sense fractional order memristive bam neural networks with mixed delays,, Mathematics, 7 (2019), 759. doi: 10.3390/math7080759.

[32]

C. Song, S. Fei, J. Cao and C. Huang, Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control, Mathematics, 7 (2019), 599. doi: 10.3390/math7070599.

[33]

Y. TanC. HuangB. Sun and Tao. Wang, Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition, Journal of Mathematical Analysis and Applications, 458 (2018), 1115-1130.  doi: 10.1016/j.jmaa.2017.09.045.

[34]

Y. Tang, Pseudo almost periodic shunting inhibitory cellular neural networks with multi-proportional delays, Neural Processing Letters, 48 (2018), 167-177.  doi: 10.1007/s11063-017-9708-1.

[35]

J. WangC. Huang and L. Huang, Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type, Nonlinear Analysis: Hybrid Systems, 33 (2019), 162-178.  doi: 10.1016/j.nahs.2019.03.004.

[36]

W. Wang, C. Huang, C. Huang, J. Cao, J. Lu and L. Wang, Bipartite formation problem of second-order nonlinear multi-agent systems with hybrid impulses, Applied Mathematics and Computation, 370 (2020), 124926, 17 pp. doi: 10.1016/j.amc.2019.124926.

[37]

S. Xiao, Global Exponential Convergence of HCNNs with Neutral Type Proportional Delays and D Operator, Neural Processing Letters, 49 (2019), 347-356.  doi: 10.1007/s11063-018-9817-5.

[38]

Y. Xu, Exponential stability of weighted pseudo almost periodic solutions for HCNNs with mixed delays, Neural Processing Letters, 46 (2017), 507-519.  doi: 10.1007/s11063-017-9595-5.

[39]

D. YangX. Li and J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Analysis: Hybrid Systems, 32 (2019), 294-305.  doi: 10.1016/j.nahs.2019.01.006.

[40]

X. YangX. LiQ. Xi and P. Duan, Review of stability and stabilization for impulsive delayed systems, Mathematical Biosciences and Engineering, 15 (2018), 1495-1515.  doi: 10.3934/mbe.2018069.

[41]

G. Yang and W. Wan, Weighted Pseudo Almost Periodic Solutions for Cellular Neural Networks with Multi-proportional Delays, Neural Processing Letters, 49 (2019), 1125-1138.  doi: 10.1007/s11063-018-9851-3.

[42]

A. Zhang, Almost periodic solutions for SICNNs with neutral type proportional delays and D operators, Neural Processing Letters, 47 (2018), 57-70.  doi: 10.1007/s11063-017-9631-5.

[43]

J. Zhang and C. Huang, Dynamics analysis on a class of delayed neural networks involving inertial terms, Advances in Difference Equations, 2020 (2020), Paper No. 120. doi: 10.1186/s13662-020-02566-4.

[44]

Y. Zhou, X. Wan, C. Huang and X. Yang, Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control, Applied Mathematics and Computation, 376 (2020), 125157. doi: 10.1016/j.amc.2020.125157.

Figure 1.  Numerical solutions of model (3.1), take the initial value (0.5, -0.7, 1, -0.5), (0.6, -0.3, 0.4, -0.6), (-0.5, 0.7, -0.2, 0.4)
[1]

Lilun Zhang, Le Li, Chuangxia Huang. Positive stability analysis of pseudo almost periodic solutions for HDCNNs accompanying $ D $ operator. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1651-1667. doi: 10.3934/dcdss.2021160

[2]

Benedetta Lisena. Average criteria for periodic neural networks with delay. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 761-773. doi: 10.3934/dcdsb.2014.19.761

[3]

Yongkun Li, Bing Li. Pseudo compact almost automorphy of neutral type Clifford-valued neural networks with mixed delays. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021248

[4]

Rui Zhang, Yong-Kui Chang, G. M. N'Guérékata. Weighted pseudo almost automorphic mild solutions to semilinear integral equations with $S^{p}$-weighted pseudo almost automorphic coefficients. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5525-5537. doi: 10.3934/dcds.2013.33.5525

[5]

Leong-Kwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control and Optimization, 2014, 4 (3) : 193-207. doi: 10.3934/naco.2014.4.193

[6]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, 2021, 29 (5) : 2973-2985. doi: 10.3934/era.2021022

[7]

Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301

[8]

Yong Zhao, Qishao Lu. Periodic oscillations in a class of fuzzy neural networks under impulsive control. Conference Publications, 2011, 2011 (Special) : 1457-1466. doi: 10.3934/proc.2011.2011.1457

[9]

Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022

[10]

Leong-Kwan Li, Sally Shao, K. F. Cedric Yiu. Nonlinear dynamical system modeling via recurrent neural networks and a weighted state space search algorithm. Journal of Industrial and Management Optimization, 2011, 7 (2) : 385-400. doi: 10.3934/jimo.2011.7.385

[11]

Ningning Ye, Zengyun Hu, Zhidong Teng. Periodic solution and extinction in a periodic chemostat model with delay in microorganism growth. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1361-1384. doi: 10.3934/cpaa.2022022

[12]

Jianping Zhou, Yamin Liu, Ju H. Park, Qingkai Kong, Zhen Wang. Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1569-1589. doi: 10.3934/dcdss.2020357

[13]

Ying Sue Huang. Resynchronization of delayed neural networks. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 397-401. doi: 10.3934/dcds.2001.7.397

[14]

Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263

[15]

Xilin Fu, Zhang Chen. New discrete analogue of neural networks with nonlinear amplification function and its periodic dynamic analysis. Conference Publications, 2007, 2007 (Special) : 391-398. doi: 10.3934/proc.2007.2007.391

[16]

Yong Ren, Huijin Yang, Wensheng Yin. Weighted exponential stability of stochastic coupled systems on networks with delay driven by $ G $-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3379-3393. doi: 10.3934/dcdsb.2018325

[17]

Xiang Li, Zhixiang Li. Kernel sections and (almost) periodic solutions of a non-autonomous parabolic PDE with a discrete state-dependent delay. Communications on Pure and Applied Analysis, 2011, 10 (2) : 687-700. doi: 10.3934/cpaa.2011.10.687

[18]

Quan Hai, Shutang Liu. Mean-square delay-distribution-dependent exponential synchronization of chaotic neural networks with mixed random time-varying delays and restricted disturbances. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3097-3118. doi: 10.3934/dcdsb.2020221

[19]

Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139

[20]

Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $ 2 $D Ricker map. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1263-1284. doi: 10.3934/dcdsb.2021089

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (571)
  • HTML views (338)
  • Cited by (6)

Other articles
by authors

[Back to Top]