doi: 10.3934/dcdss.2020373

Observability of switched Boolean control networks using algebraic forms

1. 

College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China

2. 

School of Information Engineering, Huzhou University, Huzhou, China

3. 

College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, China

* Corresponding author: Zhen Wang

Received  October 2019 Revised  February 2020 Published  May 2020

This paper addresses the observability of a switched Boolean control network (SBCN) using semi-tensor product (STP) of matrices. First, the observability of the SBCN is determined under desirable switching signals and arbitrary switching signals by encoding the switching signal as a boolean input. Then an algorithm is designed for determining the observability. Furthermore, feedback control laws are obtained to guarantee the observability of SBCNs. Examples and corresponding state trajectory graphs are given to illustrate the effectiveness of the given results.

Citation: Yvjing Yang, Yang Liu, Jungang Lou, Zhen Wang. Observability of switched Boolean control networks using algebraic forms. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020373
References:
[1]

D. Cheng, H. Qi and Z. Li, Analysis and Control of Boolean Networks: A Semi-tensor, Springer Science & Business Media, 2010. Google Scholar

[2]

D. Cheng and H. Qi, Controllability and observability of Boolean control networks, Automatica, 45 (2009), 1659-1667.  doi: 10.1016/j.automatica.2009.03.006.  Google Scholar

[3]

H. ChenJ. LiangT. Huang and J. Cao, Synchronization of arbitrarily switched Boolean networks, IEEE Transactions on Neural Networks and Learning Systems, 28 (2017), 612-619.  doi: 10.1109/TNNLS.2015.2497708.  Google Scholar

[4]

S. ChenY. WuM. Macauley and X. Sun, Monostability and bistability of Boolean networks using semi-tensor products, IEEE Transactions on Control of Network Systems, 6 (2019), 1379-1390.  doi: 10.1109/TCNS.2018.2889015.  Google Scholar

[5]

E. H. Davidson and H. Bolouri, A genomic regulatory network for development, Science, 295 (2002), 1669-1678.  doi: 10.1126/science.1069883.  Google Scholar

[6]

E. Fornasini and M. E. Valcher, Observability, reconstructibility and state observers of Boolean control networks, IEEE Transactions on Automatic Control, 58 (2013), 1390-1401.  doi: 10.1109/TAC.2012.2231592.  Google Scholar

[7]

E. Fornasini and M. E. Valcher, Fault detection analysis of Boolean control networks, IEEE Transactions on Automatic Control, 60 (2015), 2734-2739.  doi: 10.1109/TAC.2015.2396646.  Google Scholar

[8]

S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology, 22 (1969), 437-467.  doi: 10.1016/0022-5193(69)90015-0.  Google Scholar

[9]

D. Laschov and M. Margaliot, Controllability of Boolean control networks via the Perron–Frobenius theory, Automatica, 48 (2012), 1218-1223.  doi: 10.1016/j.automatica.2012.03.022.  Google Scholar

[10]

H. Li and Y. Wang, On reachability and controllability of switched Boolean control networks, Automatica, 48 (2012), 2917-2922.  doi: 10.1016/j.automatica.2012.08.029.  Google Scholar

[11]

W. LiL. Cui and M. K. Ng, On computation of the steady-state probability distribution of probabilistic Boolean networks with gene perturbation, Journal of Computational and Applied Mathematics, 236 (2012), 4067-4081.  doi: 10.1016/j.cam.2012.02.022.  Google Scholar

[12]

R. LiM. Yang and T. Chu, State feedback stabilization for Boolean control networks, IEEE Transactions on Automatic Control, 58 (2013), 1853-1857.  doi: 10.1109/TAC.2013.2238092.  Google Scholar

[13]

H. LiY. Wang and Z. Liu, Simultaneous stabilization for a set of Boolean control networks, Systems & Control Letters, 62 (2013), 1168-1174.  doi: 10.1016/j.sysconle.2013.09.008.  Google Scholar

[14]

H. LiY. Wang and Z. Liu, Stability analysis for switched Boolean networks under arbitrary switching signals, IEEE Transactions on Automatic Control, 59 (2014), 1978-1982.  doi: 10.1109/TAC.2014.2298731.  Google Scholar

[15]

Y. LiuB. LiH. Chen and J. Cao, Function perturbations on singular Boolean networks, Automatica, 84 (2017), 36-42.  doi: 10.1016/j.automatica.2017.06.035.  Google Scholar

[16]

Y. LiuB. LiJ. Lu and J. Cao, Pinning control for the disturbance decoupling problem of Boolean networks, IEEE Transactions on Automatic Control, 62 (2017), 6595-6601.  doi: 10.1109/TAC.2017.2715181.  Google Scholar

[17]

F. Li and Y. Tang, Set stabilization for switched Boolean control networks, Automatica, 78 (2017), 223-230.  doi: 10.1016/j.automatica.2016.12.007.  Google Scholar

[18]

Y. Li, J. Zhong, J. Lu and Z. Wang, On robust synchronization of drive-response Boolean control networks with disturbances, Mathematical Problems in Engineering, 2018 (2018), Art. ID 1737685, 9 pp. doi: 10.1155/2018/1737685.  Google Scholar

[19]

Y. LiJ. LouZ. Wang and F. E. Alsaadi, Synchronization of nonlinearly coupled dynamical networks under hybrid pinning impulsive controllers, Journal of the Franklin Institute, 355 (2018), 6520-6530.  doi: 10.1016/j.jfranklin.2018.06.021.  Google Scholar

[20]

H. Li and Y. Zhen, Algebraic formulation and topological structure of Boolean networks with state-dependent delay, Journal of Computational and Applied Mathematics, 350 (2019), 87-97.  doi: 10.1016/j.cam.2018.10.003.  Google Scholar

[21]

H. LiuY. Liu and J. Cao, Observability of SBCNs under arbitrary switching signals, 2018 37th Chinese Control Conference (CCC), 2019 (2019), 6299-6302.  doi: 10.23919/ChiCC.2018.8483499.  Google Scholar

[22]

B. Li, J. Lou, Y. Liu and Z. Wang, Robust invariant set analysis of boolean networks, Complexity, 2019 (2019), Article ID 2731395, 8pp. doi: 10.1155/2019/2731395.  Google Scholar

[23]

M. MengL. Liu and G. Feng, Stability and $L_1$ gain analysis of Boolean networks with markovian jump parameter, IEEE Transactions on Automatic Control, 62 (2017), 4222-4228.  doi: 10.1109/TAC.2017.2679903.  Google Scholar

[24]

J. J. TysonA. Csikasz-Nagy and B. Novak, The dynamics of cell cycle regulation, Bioessays, 24 (2002), 1095-1109.  doi: 10.1002/bies.10191.  Google Scholar

[25]

L. TongY. LiuY. LiJ. Lu and Z. Wang, Robust control invariance of probabilistic Boolean control networks via event-triggered control, IEEE Access, 6 (2018), 37767-37774.  doi: 10.1109/ACCESS.2018.2828128.  Google Scholar

[26]

Y. Wu, J. Xu and X. Sun, Observability of Boolean multiplex control networks, Scientific Reports, 7 (2017), 46495. doi: 10.1038/srep46495.  Google Scholar

[27]

S. Wang, J. Feng, Y. Yu and J. Zhao, Further results on dynamic-algebraic Boolean control networks, Science China Information Sciences, 62 (2019), 12208, 14pp. doi: 10.1007/s11432-018-9447-4.  Google Scholar

[28]

Y. WuX. Sun and X. Zhao, Optimal control of Boolean control networks with average cost: A policy iteration approach, Automatica, 100 (2019), 378-387.  doi: 10.1016/j.automatica.2018.11.036.  Google Scholar

[29]

X. YangX. LiQ. Xi and P. Duan, Review of stability and stabilization for impulsive delayed systems, Mathematical Biosciences and Engineering, 15 (2018), 1495-1515.  doi: 10.3934/mbe.2018069.  Google Scholar

[30]

D. YangX. LiJ. Shen and Z. Zhou, State-dependent switching control of delayed switched systems with stable and unstable modes, Mathematical Methods in the Applied Sciences, 41 (2018), 6968-6983.  doi: 10.1002/mma.5209.  Google Scholar

[31]

Y. YuB. Wang and J. Feng, Input observability of Boolean control networks, Neurocomputing, 333 (2019), 22-28.  doi: 10.1016/j.neucom.2018.12.014.  Google Scholar

[32]

D. YangX. Li and J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Analysis: Hybrid Systems, 32 (2019), 294-305.  doi: 10.1016/j.nahs.2019.01.006.  Google Scholar

[33]

L. ZhangJ. Feng and J. Yao, Controllability and observability of switched Boolean control networks, IET Control Theory & Applications, 6 (2012), 2477-2484.  doi: 10.1049/iet-cta.2012.0362.  Google Scholar

[34]

K. ZhangL. Zhang and L. Xie, Finite automata approach to observability of switched Boolean control networks, Nonlinear Analysis: Hybrid Systems, 19 (2016), 186-197.  doi: 10.1016/j.nahs.2015.10.002.  Google Scholar

[35]

K. Zhang and L. Zhang, Observability of Boolean control networks: A unified approach based on finite automata, IEEE Transactions on Automatic Control, 61 (2016), 2733-2738.  doi: 10.1109/TAC.2015.2501365.  Google Scholar

[36]

J. ZhongJ. LuT. Huang and D. W. C. Ho, Controllability and synchronization analysis of Identical-Hierarchy mixed-valued logical control networks, IEEE Transactions on Cybernetics, 47 (2017), 3482-3493.  doi: 10.1109/TCYB.2016.2560240.  Google Scholar

[37]

Q. Zhu, Y. Liu, J. Lu and J. Cao, Observability of Boolean control networks, Science China Information Sciences, 61 (2018), 092201, 12pp. doi: 10.1007/s11432-017-9135-4.  Google Scholar

[38]

J. Zhang and J. Sun, Exponential synchronization of complex networks with continuous dynamics and Boolean mechanism, Neurocomputing, 307 (2018), 146-152.  doi: 10.1016/j.neucom.2018.03.061.  Google Scholar

[39]

S. Zhu, J. Lou, Y. Liu, Y. Li and Z. Wang, Event-Triggered control for the stabilization of probabilistic Boolean control networks, Complexity, 2018 (2018), Article ID 9259348, 7pp. doi: 10.1155/2018/9259348.  Google Scholar

[40]

Q. ZhuY. LiuJ. Lu and J. Cao, On the optimal control of Boolean control networks, SIAM J. on Control and Optimization, 56 (2018), 1321-1341.  doi: 10.1137/16M1070281.  Google Scholar

[41]

Q. ZhuY. LiuJ. Lu and J. Cao, Further results on the controllability of Boolean control networks, IEEE Transactions on Automatic Control, 64 (2019), 440-442.  doi: 10.1109/TAC.2018.2830642.  Google Scholar

[42]

J. ZhongY. LiuK. Ia. KouL. Sun and J. Cao, On the ensemble controllability of Boolean control networks using STP method, Applied Mathematics and Computation, 358 (2019), 51-62.  doi: 10.1016/j.amc.2019.03.059.  Google Scholar

[43]

J. ZhongB. LiY. Liu and W. Gui, Output feedback stabilizer design of Boolean networks based on network structure, Frontiers of Information Technology & Electronic Engineering, 21 (2020), 247-259.  doi: 10.1631/FITEE.1900229.  Google Scholar

show all references

References:
[1]

D. Cheng, H. Qi and Z. Li, Analysis and Control of Boolean Networks: A Semi-tensor, Springer Science & Business Media, 2010. Google Scholar

[2]

D. Cheng and H. Qi, Controllability and observability of Boolean control networks, Automatica, 45 (2009), 1659-1667.  doi: 10.1016/j.automatica.2009.03.006.  Google Scholar

[3]

H. ChenJ. LiangT. Huang and J. Cao, Synchronization of arbitrarily switched Boolean networks, IEEE Transactions on Neural Networks and Learning Systems, 28 (2017), 612-619.  doi: 10.1109/TNNLS.2015.2497708.  Google Scholar

[4]

S. ChenY. WuM. Macauley and X. Sun, Monostability and bistability of Boolean networks using semi-tensor products, IEEE Transactions on Control of Network Systems, 6 (2019), 1379-1390.  doi: 10.1109/TCNS.2018.2889015.  Google Scholar

[5]

E. H. Davidson and H. Bolouri, A genomic regulatory network for development, Science, 295 (2002), 1669-1678.  doi: 10.1126/science.1069883.  Google Scholar

[6]

E. Fornasini and M. E. Valcher, Observability, reconstructibility and state observers of Boolean control networks, IEEE Transactions on Automatic Control, 58 (2013), 1390-1401.  doi: 10.1109/TAC.2012.2231592.  Google Scholar

[7]

E. Fornasini and M. E. Valcher, Fault detection analysis of Boolean control networks, IEEE Transactions on Automatic Control, 60 (2015), 2734-2739.  doi: 10.1109/TAC.2015.2396646.  Google Scholar

[8]

S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology, 22 (1969), 437-467.  doi: 10.1016/0022-5193(69)90015-0.  Google Scholar

[9]

D. Laschov and M. Margaliot, Controllability of Boolean control networks via the Perron–Frobenius theory, Automatica, 48 (2012), 1218-1223.  doi: 10.1016/j.automatica.2012.03.022.  Google Scholar

[10]

H. Li and Y. Wang, On reachability and controllability of switched Boolean control networks, Automatica, 48 (2012), 2917-2922.  doi: 10.1016/j.automatica.2012.08.029.  Google Scholar

[11]

W. LiL. Cui and M. K. Ng, On computation of the steady-state probability distribution of probabilistic Boolean networks with gene perturbation, Journal of Computational and Applied Mathematics, 236 (2012), 4067-4081.  doi: 10.1016/j.cam.2012.02.022.  Google Scholar

[12]

R. LiM. Yang and T. Chu, State feedback stabilization for Boolean control networks, IEEE Transactions on Automatic Control, 58 (2013), 1853-1857.  doi: 10.1109/TAC.2013.2238092.  Google Scholar

[13]

H. LiY. Wang and Z. Liu, Simultaneous stabilization for a set of Boolean control networks, Systems & Control Letters, 62 (2013), 1168-1174.  doi: 10.1016/j.sysconle.2013.09.008.  Google Scholar

[14]

H. LiY. Wang and Z. Liu, Stability analysis for switched Boolean networks under arbitrary switching signals, IEEE Transactions on Automatic Control, 59 (2014), 1978-1982.  doi: 10.1109/TAC.2014.2298731.  Google Scholar

[15]

Y. LiuB. LiH. Chen and J. Cao, Function perturbations on singular Boolean networks, Automatica, 84 (2017), 36-42.  doi: 10.1016/j.automatica.2017.06.035.  Google Scholar

[16]

Y. LiuB. LiJ. Lu and J. Cao, Pinning control for the disturbance decoupling problem of Boolean networks, IEEE Transactions on Automatic Control, 62 (2017), 6595-6601.  doi: 10.1109/TAC.2017.2715181.  Google Scholar

[17]

F. Li and Y. Tang, Set stabilization for switched Boolean control networks, Automatica, 78 (2017), 223-230.  doi: 10.1016/j.automatica.2016.12.007.  Google Scholar

[18]

Y. Li, J. Zhong, J. Lu and Z. Wang, On robust synchronization of drive-response Boolean control networks with disturbances, Mathematical Problems in Engineering, 2018 (2018), Art. ID 1737685, 9 pp. doi: 10.1155/2018/1737685.  Google Scholar

[19]

Y. LiJ. LouZ. Wang and F. E. Alsaadi, Synchronization of nonlinearly coupled dynamical networks under hybrid pinning impulsive controllers, Journal of the Franklin Institute, 355 (2018), 6520-6530.  doi: 10.1016/j.jfranklin.2018.06.021.  Google Scholar

[20]

H. Li and Y. Zhen, Algebraic formulation and topological structure of Boolean networks with state-dependent delay, Journal of Computational and Applied Mathematics, 350 (2019), 87-97.  doi: 10.1016/j.cam.2018.10.003.  Google Scholar

[21]

H. LiuY. Liu and J. Cao, Observability of SBCNs under arbitrary switching signals, 2018 37th Chinese Control Conference (CCC), 2019 (2019), 6299-6302.  doi: 10.23919/ChiCC.2018.8483499.  Google Scholar

[22]

B. Li, J. Lou, Y. Liu and Z. Wang, Robust invariant set analysis of boolean networks, Complexity, 2019 (2019), Article ID 2731395, 8pp. doi: 10.1155/2019/2731395.  Google Scholar

[23]

M. MengL. Liu and G. Feng, Stability and $L_1$ gain analysis of Boolean networks with markovian jump parameter, IEEE Transactions on Automatic Control, 62 (2017), 4222-4228.  doi: 10.1109/TAC.2017.2679903.  Google Scholar

[24]

J. J. TysonA. Csikasz-Nagy and B. Novak, The dynamics of cell cycle regulation, Bioessays, 24 (2002), 1095-1109.  doi: 10.1002/bies.10191.  Google Scholar

[25]

L. TongY. LiuY. LiJ. Lu and Z. Wang, Robust control invariance of probabilistic Boolean control networks via event-triggered control, IEEE Access, 6 (2018), 37767-37774.  doi: 10.1109/ACCESS.2018.2828128.  Google Scholar

[26]

Y. Wu, J. Xu and X. Sun, Observability of Boolean multiplex control networks, Scientific Reports, 7 (2017), 46495. doi: 10.1038/srep46495.  Google Scholar

[27]

S. Wang, J. Feng, Y. Yu and J. Zhao, Further results on dynamic-algebraic Boolean control networks, Science China Information Sciences, 62 (2019), 12208, 14pp. doi: 10.1007/s11432-018-9447-4.  Google Scholar

[28]

Y. WuX. Sun and X. Zhao, Optimal control of Boolean control networks with average cost: A policy iteration approach, Automatica, 100 (2019), 378-387.  doi: 10.1016/j.automatica.2018.11.036.  Google Scholar

[29]

X. YangX. LiQ. Xi and P. Duan, Review of stability and stabilization for impulsive delayed systems, Mathematical Biosciences and Engineering, 15 (2018), 1495-1515.  doi: 10.3934/mbe.2018069.  Google Scholar

[30]

D. YangX. LiJ. Shen and Z. Zhou, State-dependent switching control of delayed switched systems with stable and unstable modes, Mathematical Methods in the Applied Sciences, 41 (2018), 6968-6983.  doi: 10.1002/mma.5209.  Google Scholar

[31]

Y. YuB. Wang and J. Feng, Input observability of Boolean control networks, Neurocomputing, 333 (2019), 22-28.  doi: 10.1016/j.neucom.2018.12.014.  Google Scholar

[32]

D. YangX. Li and J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Analysis: Hybrid Systems, 32 (2019), 294-305.  doi: 10.1016/j.nahs.2019.01.006.  Google Scholar

[33]

L. ZhangJ. Feng and J. Yao, Controllability and observability of switched Boolean control networks, IET Control Theory & Applications, 6 (2012), 2477-2484.  doi: 10.1049/iet-cta.2012.0362.  Google Scholar

[34]

K. ZhangL. Zhang and L. Xie, Finite automata approach to observability of switched Boolean control networks, Nonlinear Analysis: Hybrid Systems, 19 (2016), 186-197.  doi: 10.1016/j.nahs.2015.10.002.  Google Scholar

[35]

K. Zhang and L. Zhang, Observability of Boolean control networks: A unified approach based on finite automata, IEEE Transactions on Automatic Control, 61 (2016), 2733-2738.  doi: 10.1109/TAC.2015.2501365.  Google Scholar

[36]

J. ZhongJ. LuT. Huang and D. W. C. Ho, Controllability and synchronization analysis of Identical-Hierarchy mixed-valued logical control networks, IEEE Transactions on Cybernetics, 47 (2017), 3482-3493.  doi: 10.1109/TCYB.2016.2560240.  Google Scholar

[37]

Q. Zhu, Y. Liu, J. Lu and J. Cao, Observability of Boolean control networks, Science China Information Sciences, 61 (2018), 092201, 12pp. doi: 10.1007/s11432-017-9135-4.  Google Scholar

[38]

J. Zhang and J. Sun, Exponential synchronization of complex networks with continuous dynamics and Boolean mechanism, Neurocomputing, 307 (2018), 146-152.  doi: 10.1016/j.neucom.2018.03.061.  Google Scholar

[39]

S. Zhu, J. Lou, Y. Liu, Y. Li and Z. Wang, Event-Triggered control for the stabilization of probabilistic Boolean control networks, Complexity, 2018 (2018), Article ID 9259348, 7pp. doi: 10.1155/2018/9259348.  Google Scholar

[40]

Q. ZhuY. LiuJ. Lu and J. Cao, On the optimal control of Boolean control networks, SIAM J. on Control and Optimization, 56 (2018), 1321-1341.  doi: 10.1137/16M1070281.  Google Scholar

[41]

Q. ZhuY. LiuJ. Lu and J. Cao, Further results on the controllability of Boolean control networks, IEEE Transactions on Automatic Control, 64 (2019), 440-442.  doi: 10.1109/TAC.2018.2830642.  Google Scholar

[42]

J. ZhongY. LiuK. Ia. KouL. Sun and J. Cao, On the ensemble controllability of Boolean control networks using STP method, Applied Mathematics and Computation, 358 (2019), 51-62.  doi: 10.1016/j.amc.2019.03.059.  Google Scholar

[43]

J. ZhongB. LiY. Liu and W. Gui, Output feedback stabilizer design of Boolean networks based on network structure, Frontiers of Information Technology & Electronic Engineering, 21 (2020), 247-259.  doi: 10.1631/FITEE.1900229.  Google Scholar

Figure 1.  The state trajectory graph of $ \delta_{64}^{2} $, $ \delta_{64}^{20} $, $ \delta_{64}^{38} $, $ \delta_{64}^{56} $, where $ \delta_{64}^0 $ is a virtual state, number $ i $ in each cycle denote state $ \delta_{64}^i $, number $ j $ beside each edge stand for wight $ \delta_8^j $, and $ c\in\Lambda_0 $
Figure 2.  The state trajectory graph of $ \delta_{64}^{6} $, $ \delta_{64}^{15} $, $ \delta_{64}^{29} $, $ \delta_{64}^{23} $, $ \delta_{64}^{11} $, where number $ s $ in each cycle denote state $ \delta_{64}^s $, weight $ (i,j) $ beside each edge stands for weight $ (\delta_2^i, j) $, $ \delta_2^i $ refers to input, and $ j $ means the $ jth $ subsystem
[1]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165

[6]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[7]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

[8]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[9]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[10]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[11]

Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021001

[12]

Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021001

[13]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[14]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[15]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[16]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[17]

Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054

[18]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021010

[19]

Sugata Gangopadhyay, Constanza Riera, Pantelimon Stănică. Gowers $ U_2 $ norm as a measure of nonlinearity for Boolean functions and their generalizations. Advances in Mathematics of Communications, 2021, 15 (2) : 241-256. doi: 10.3934/amc.2020056

[20]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020121

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]