\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A simple digital spiking neural network: Synchronization and spike-train approximation

  • * Corresponding author: Toshimichi Saito

    * Corresponding author: Toshimichi Saito
This work is supported in part by JSPS KAKENHI 18K11480
Abstract / Introduction Full Text(HTML) Figure(12) / Table(2) Related Papers Cited by
  • This paper studies synchronization phenomena of spike-trains and approximation of target spike-trains in a simple network of digital spiking neurons. Repeating integrate-and-fire behavior between a periodic base signal and constant firing threshold, the neurons can generate various spike-trains. Connecting multiple neurons by cross-firing with delay, the network is constructed. The network can exhibit multi-phase synchronization of various spike-trains. Stability of the synchronization phenomena can be guaranteed theoretically. Applying a simple winner-take-all switching, the network can approximate target spike-trains automatically. In order to evaluate the approximation performance, we present two metrics: spike-position error and spike missing rate. Using the metrics, approximation capability of the network is investigated in typical target signals. Presenting an FPGA based hardware prototype, typical synchronization phenomenon and spike-train approximation are confirmed experimentally.

    Mathematics Subject Classification: Primary: 37B15; Secondary: 93C62, 92B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  DSNs and Dmaps for $ T_p = 18 $. (a) A PST with period $ 6T_p $ and corresponding PEO with period 6. $ \delta = (16,17,18,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15) $. (b) A direct stable PST with period $ 6T_p $ and corresponding PEO with period 6. $ \delta = (17,17,17,2,2,2,5,5,5,8,8,8,11,11,11,14,14,14) $

    Figure 2.  Digital spiking neural network (DSNN) in a ladder form

    Figure 3.  Cross-firing

    Figure 4.  6-phase synchronization of PSTs with period 6 in DSNN

    Figure 5.  Stability of master-slave synchronization

    Figure 6.  WTA switching for $ M = 6 $. (a) WTA switching. (b) Target spike-train $ y_t $ and approximated spike-train $ y_a $

    Figure 7.  Dmap for each DSN in the DSNN for $ T_p = 36 $ and $ M = 12 $. $ \delta = (35,35,35,2,2,2,5,5,5,8,8,8,11,11,11,14, $ $ 14,14,17,17,17,20,20,20,23,23,23,26,26,26,29,29,29,32,32,32) $. The PEO with period 12 corresponds to the PST with period $ 12T_p $

    Figure 8.  Target PST $ y_t $, approximated PST $ y_a $, and 12-phase synchronization of of PSTs $ y_1 \sim y_{12} $ with period $ 12 $. Verilog simulation of DSNN for $ M = 12 $

    Figure 9.  Discrete exponential distribution for target PSTs

    Figure 10.  Selection of activated DSNs from 6DSNs. (a) Selection of spike missing: the 1st, the 2nd, and the 3rd DSNs. (b) Selection of no spike missing: the 1st, the 3rd, and the 5th DSNs

    Figure 11.  Circuit design of DSNN with the WTA

    Figure 12.  Target spike-train, approximated spike-train and multi-phase synchronization in an FPGA board

    Table 1.  Case 1 results

    #DSN AVG $ \varepsilon_p $ SD $ \varepsilon_p $ SMR
    3 6.60 1.35 30.3
    4 5.17 0.74 17, 5
    5 4.19 0.43 10.1
    6 3.56 0.31 5.10
    7 3.02 0.30 0.82
    8 2.63 0.24 0
    9 2.43 0.19 0
    10 2.25 0.18 0
    11 2.11 0.14 0
    12 2.02 0.10 0
     | Show Table
    DownLoad: CSV

    Table 2.  Case 2 results

    #DSN AVG $\varepsilon_p$ SD $\varepsilon_p$ SMR
    3 8.91 1.84 44.5
    4 6.22 0.90 21.7
    5 5.12 0.74 10.8
    6 4.18 0.46 2.78
    7 3.62 0.44 1.09
    8 3.22 0.30 0.27
    9 2.91 0.29 0
    10 2.59 0.22 0
    11 2.28 0.14 0
    12 2.03 0.11 0
     | Show Table
    DownLoad: CSV
  • [1] L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso and I. Fischer, Information processing using a single dynamical node as complex system, Nat. Commun., 2 (2011), Article number: 468. doi: 10.1038/ncomms1476.
    [2] S. R. CampbellD. L. Wang and C. Jayaprakash, Synchrony and desynchrony in integrate-and-fire oscillators, Neural Comput., 11 (1999), 1595-1619.  doi: 10.1109/IJCNN.1998.685998.
    [3] L. O. Chua, A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science I, World Scientific, 2006.
    [4] T. Iguchi, A. Hirata and H. Torikai, Theoretical and heuristic synthesis of digital spiking neurons for spike-pattern-division multiplexing, IEICE Trans. Fundam., E93-A (2010), 1486–1496. doi: 10.1587/transfun.E93.A.1486.
    [5] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise, second edition, Springer-Verlag, 1994. doi: 10.1007/978-1-4612-4286-4.
    [6] G. Lee and N. H. Farhat, The bifurcating neuron network 1, Neural networks, 14 (2001), 115-131.  doi: 10.1016/S0893-6080(00)00083-6.
    [7] A. Lozano, M. Rodriguez and R. Barrio, Control strategies of 3-cell central pattern generator via global stimuli, Sci. Rep., 6 (2016), 23622. doi: 10.1038/srep23622.
    [8] A. Matoba, N. Horimoto and T. Saito, Basic dynamics of the digital logistic map, IEICE Trans. Fundam., E96-A (2013), 1808–1811. doi: 10.1587/transfun.E96.A.1808.
    [9] R. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. 
    [10] E. OttChaos in Dynamical Systems,, Second edition, Cambridge University Press, Cambridge, 2002.  doi: 10.1017/CBO9780511803260.
    [11] R. Perez and L. Glass, Bistability, period doubling bifurcations and chaos in a periodically forced oscillator, Phys. Lett. A, 90 (1982), 441-443.  doi: 10.1016/0375-9601(82)90391-7.
    [12] R. Sato and T. Saito, Stabilization of desired periodic orbits in dynamic binary neural networks, Neurocomputing, 248 (2017), 19-27.  doi: 10.1016/j.neucom.2016.10.084.
    [13] M. Schüle and R. Stoop, A full computation-relevant topological dynamics classification of elementary cellular automata, Chaos, 22 (2012), 043143, 10pp. doi: 10.1063/1.4771662.
    [14] G. TanakaT. YamaneJ. B. HérouxR. NakaneN. KanazawaS. TakedaH. NumataD. Nakano and A. Hirose, Recent advances in physical reservoir computing: A review, Neural Networks, 115 (2019), 100-123.  doi: 10.1016/j.neunet.2019.03.005.
    [15] H. Torikai and T. Saito, Resonance phenomenon of interspike intervals from a spiking oscillator with two periodic inputs, IEEE Trans. Circuits Syst. Ⅰ, 48 (2001), 1198-1204. doi: 10.1109/81.788809.
    [16] H. Torikai and T. Saito, Analysis of a quantized chaotic system, Int'l J. of Bifurcation and Chaos, 12 (2002), 1207-1218.  doi: 10.1142/S0218127402005054.
    [17] H. Torikai and T. Saito, Synchronization phenomena in pulse-coupled networks driven by spike-train inputs, IEEE Trans. Neural Networks, 15 (2004), 337-347.  doi: 10.1109/TNN.2004.824403.
    [18] H. TorikaiH. Hamanaka and T. Saito, Reconfigurable spiking neuron and its pulse-coupled networks: basic characteristics and potential applications, IEEE Trans. Circuits Syst. Ⅱ, 53 (2006), 734-738.  doi: 10.1109/TCSII.2006.876381.
    [19] H. TorikaiA. Funew and T. Saito, Digital spiking neuron and its learning for approximation of various spike-trains, Neural Networks, 21 (2008), 140-149.  doi: 10.1016/j.neunet.2007.12.045.
    [20] H. Uchida and T. Saito, Multi-phase synchronization phenomena in a ring-coupled system of digital spiking neurons, IEICE Trans. Fundam., E102-A (2019), 235-241.  doi: 10.1587/transfun.E102.A.235.
    [21] W. WadaJ. Kuroiwa and S. Nara, Completely reproducible description of digital sound data with cellular automata, Phys. Lett. A, 306 (2002), 110-115.  doi: 10.1016/S0375-9601(01)00610-7.
    [22] D. L. Wang and D. Terman, Locally excitatory globally inhibitory oscillator networks, IEEE Trans. Neural Networks, 6 (1995), 283-286.  doi: 10.4249/scholarpedia.1620.
    [23] S. Wolfram, A New Kind of Science, Wolfram Media, 2002.
    [24] H. Yamaoka and T. Saito, Steady-versus-transient plot for analysis of digital maps, IEICE Trans. Fundam., E99-A (2016), 1806-1812.  doi: 10.1587/transfun.E99.A.1806.
  • 加载中

Figures(12)

Tables(2)

SHARE

Article Metrics

HTML views(2696) PDF downloads(457) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return