#DSN | AVG |
SD |
SMR |
3 | 6.60 | 1.35 | 30.3 |
4 | 5.17 | 0.74 | 17, 5 |
5 | 4.19 | 0.43 | 10.1 |
6 | 3.56 | 0.31 | 5.10 |
7 | 3.02 | 0.30 | 0.82 |
8 | 2.63 | 0.24 | 0 |
9 | 2.43 | 0.19 | 0 |
10 | 2.25 | 0.18 | 0 |
11 | 2.11 | 0.14 | 0 |
12 | 2.02 | 0.10 | 0 |
This paper studies synchronization phenomena of spike-trains and approximation of target spike-trains in a simple network of digital spiking neurons. Repeating integrate-and-fire behavior between a periodic base signal and constant firing threshold, the neurons can generate various spike-trains. Connecting multiple neurons by cross-firing with delay, the network is constructed. The network can exhibit multi-phase synchronization of various spike-trains. Stability of the synchronization phenomena can be guaranteed theoretically. Applying a simple winner-take-all switching, the network can approximate target spike-trains automatically. In order to evaluate the approximation performance, we present two metrics: spike-position error and spike missing rate. Using the metrics, approximation capability of the network is investigated in typical target signals. Presenting an FPGA based hardware prototype, typical synchronization phenomenon and spike-train approximation are confirmed experimentally.
Citation: |
Figure 1.
DSNs and Dmaps for
Table 1. Case 1 results
#DSN | AVG |
SD |
SMR |
3 | 6.60 | 1.35 | 30.3 |
4 | 5.17 | 0.74 | 17, 5 |
5 | 4.19 | 0.43 | 10.1 |
6 | 3.56 | 0.31 | 5.10 |
7 | 3.02 | 0.30 | 0.82 |
8 | 2.63 | 0.24 | 0 |
9 | 2.43 | 0.19 | 0 |
10 | 2.25 | 0.18 | 0 |
11 | 2.11 | 0.14 | 0 |
12 | 2.02 | 0.10 | 0 |
Table 2. Case 2 results
#DSN | AVG |
SD |
SMR |
3 | 8.91 | 1.84 | 44.5 |
4 | 6.22 | 0.90 | 21.7 |
5 | 5.12 | 0.74 | 10.8 |
6 | 4.18 | 0.46 | 2.78 |
7 | 3.62 | 0.44 | 1.09 |
8 | 3.22 | 0.30 | 0.27 |
9 | 2.91 | 0.29 | 0 |
10 | 2.59 | 0.22 | 0 |
11 | 2.28 | 0.14 | 0 |
12 | 2.03 | 0.11 | 0 |
[1] | L. Appeltant, M. C. Soriano, G. Van der Sande, J. Danckaert, S. Massar, J. Dambre, B. Schrauwen, C. R. Mirasso and I. Fischer, Information processing using a single dynamical node as complex system, Nat. Commun., 2 (2011), Article number: 468. doi: 10.1038/ncomms1476. |
[2] | S. R. Campbell, D. L. Wang and C. Jayaprakash, Synchrony and desynchrony in integrate-and-fire oscillators, Neural Comput., 11 (1999), 1595-1619. doi: 10.1109/IJCNN.1998.685998. |
[3] | L. O. Chua, A Nonlinear Dynamics Perspective of Wolfram's New Kind of Science I, World Scientific, 2006. |
[4] | T. Iguchi, A. Hirata and H. Torikai, Theoretical and heuristic synthesis of digital spiking neurons for spike-pattern-division multiplexing, IEICE Trans. Fundam., E93-A (2010), 1486–1496. doi: 10.1587/transfun.E93.A.1486. |
[5] | A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise, second edition, Springer-Verlag, 1994. doi: 10.1007/978-1-4612-4286-4. |
[6] | G. Lee and N. H. Farhat, The bifurcating neuron network 1, Neural networks, 14 (2001), 115-131. doi: 10.1016/S0893-6080(00)00083-6. |
[7] | A. Lozano, M. Rodriguez and R. Barrio, Control strategies of 3-cell central pattern generator via global stimuli, Sci. Rep., 6 (2016), 23622. doi: 10.1038/srep23622. |
[8] | A. Matoba, N. Horimoto and T. Saito, Basic dynamics of the digital logistic map, IEICE Trans. Fundam., E96-A (2013), 1808–1811. doi: 10.1587/transfun.E96.A.1808. |
[9] | R. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. |
[10] | E. Ott, Chaos in Dynamical Systems,, Second edition, Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511803260. |
[11] | R. Perez and L. Glass, Bistability, period doubling bifurcations and chaos in a periodically forced oscillator, Phys. Lett. A, 90 (1982), 441-443. doi: 10.1016/0375-9601(82)90391-7. |
[12] | R. Sato and T. Saito, Stabilization of desired periodic orbits in dynamic binary neural networks, Neurocomputing, 248 (2017), 19-27. doi: 10.1016/j.neucom.2016.10.084. |
[13] | M. Schüle and R. Stoop, A full computation-relevant topological dynamics classification of elementary cellular automata, Chaos, 22 (2012), 043143, 10pp. doi: 10.1063/1.4771662. |
[14] | G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda, H. Numata, D. Nakano and A. Hirose, Recent advances in physical reservoir computing: A review, Neural Networks, 115 (2019), 100-123. doi: 10.1016/j.neunet.2019.03.005. |
[15] | H. Torikai and T. Saito, Resonance phenomenon of interspike intervals from a spiking oscillator with two periodic inputs, IEEE Trans. Circuits Syst. Ⅰ, 48 (2001), 1198-1204. doi: 10.1109/81.788809. |
[16] | H. Torikai and T. Saito, Analysis of a quantized chaotic system, Int'l J. of Bifurcation and Chaos, 12 (2002), 1207-1218. doi: 10.1142/S0218127402005054. |
[17] | H. Torikai and T. Saito, Synchronization phenomena in pulse-coupled networks driven by spike-train inputs, IEEE Trans. Neural Networks, 15 (2004), 337-347. doi: 10.1109/TNN.2004.824403. |
[18] | H. Torikai, H. Hamanaka and T. Saito, Reconfigurable spiking neuron and its pulse-coupled networks: basic characteristics and potential applications, IEEE Trans. Circuits Syst. Ⅱ, 53 (2006), 734-738. doi: 10.1109/TCSII.2006.876381. |
[19] | H. Torikai, A. Funew and T. Saito, Digital spiking neuron and its learning for approximation of various spike-trains, Neural Networks, 21 (2008), 140-149. doi: 10.1016/j.neunet.2007.12.045. |
[20] | H. Uchida and T. Saito, Multi-phase synchronization phenomena in a ring-coupled system of digital spiking neurons, IEICE Trans. Fundam., E102-A (2019), 235-241. doi: 10.1587/transfun.E102.A.235. |
[21] | W. Wada, J. Kuroiwa and S. Nara, Completely reproducible description of digital sound data with cellular automata, Phys. Lett. A, 306 (2002), 110-115. doi: 10.1016/S0375-9601(01)00610-7. |
[22] | D. L. Wang and D. Terman, Locally excitatory globally inhibitory oscillator networks, IEEE Trans. Neural Networks, 6 (1995), 283-286. doi: 10.4249/scholarpedia.1620. |
[23] | S. Wolfram, A New Kind of Science, Wolfram Media, 2002. |
[24] | H. Yamaoka and T. Saito, Steady-versus-transient plot for analysis of digital maps, IEICE Trans. Fundam., E99-A (2016), 1806-1812. doi: 10.1587/transfun.E99.A.1806. |