April  2021, 14(4): 1447-1464. doi: 10.3934/dcdss.2020375

Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO

1. 

School of Automation, Southeast University, Nanjing 210096, China

2. 

Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, China

3. 

Shenzhen Research Institute of Southeast University, Shenzhen 518057, China

* Corresponding author: Shihua Li

Received  October 2019 Revised  February 2020 Published  April 2021 Early access  May 2020

In an electronically controlled VE distributive pump, the fuel quantity actuator is a significant component. It is responsible for governing the quantity of fuel being injected into diesel-type engines. The FQA system has nonlinearities and always confronts disturbances caused by the external torque and the input voltage variation in the real working condition, which can be regarded as a lumped disturbance. However, most existing results only focus on dealing with the so called constant disturbance in the FQA system which fail to remove the influence of time-varying disturbances. Therefore, to deal with the nonlinearities and reject the lumped disturbance, a reduced-order generalized proportional integral observer (GPIO) based sliding mode control approach is presented. By using a reduced-order GPIO, time-varying disturbances can be estimated accurately. In addition, a theoretical analysis of the closed-loop system is given. The proposed control scheme exhibits a satisfactory performance in terms of transient behavior and disturbance rejection. Finally, a set of experimental tests are carried out to validate the feasibility as well as efficiency of the proposed control framework.

Citation: Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375
References:
[1]

W.-H. ChenJ. YangL. Guo and S. Li, Disturbance-observer-based control and related methods-an overview, IEEE Transactions on Industrial Electronics, 63 (2016), 1083-1095.  doi: 10.1109/TIE.2015.2478397.

[2]

H. Eisele, Electronic Control of Diesel Passenger Cars, Technical report, SAE Technical Paper, 1980. doi: 10.4271/800167.

[3]

A. Gutiérrez-Giles and M. A. Arteaga-Pérez, GPIbased velocity/force observer design for robot manipulators, ISA Transactions, 53 (2014), 929-938. 

[4]

W. HeS. LiJ. Yang and Z. Wang, Incremental passivity based control for {DC-DC} boost converters under time-varying disturbances via a generalized proportional integral observer, Journal of Power Electronics, 18 (2018), 147-159. 

[5]

H. K. Khalil, Nonlinear systems, Upper Saddle River.

[6]

K.-S. KimK.-H. Rew and S. Kim, Disturbance observer for estimating higher order disturbances in time series expansion, IEEE Transactions on Automatic Control, 55 (2010), 1905-1911.  doi: 10.1109/TAC.2010.2049522.

[7]

Y. Li, W. Gao and X. Zhou, The adaptive fuzzy control of electromagnetic actuator in diesel fuel injection system, in Proceedings of the IEEE International Vehicle Electronics Conference (IVEC'99)(Cat. No. 99EX257), IEEE, 1999,149-152.

[8]

Y. LiG. Liu and X. Zhou, Fuel-injection control system design and experiments of a diesel engine, IEEE Transactions on Control Systems Technology, 11 (2003), 565-570. 

[9]

R. Madoński and P. Herman, Survey on methods of increasing the efficiency of extended state disturbance observers, ISA Transactions, 56 (2015), 18-27. 

[10]

J. MaoJ. YangS. LiY. Yan and Q. Li, Output feedback-based sliding mode control for disturbed motion control systems via a higher-order ESO approach, IET Control Theory & Applications, 12 (2018), 2118-2126.  doi: 10.1049/iet-cta.2018.5197.

[11]

K. Mollenhauer, H. Tschöke and K. G. Johnson, Handbook of Diesel Engines, vol. 1, Springer, 2010.

[12]

K. Reif, Diesel Engine Management, Springer, 2014. doi: 10.1007/978-3-658-03981-3.

[13]

C. Ren and S. Ma, Generalized proportional integral observer based control of an omnidirectional mobile robot, Mechatronics, 26 (2015), 36-44.  doi: 10.1016/j.mechatronics.2015.01.001.

[14]

K. Shi, Z. Wang, C. Wu and S. Li, GPIO based backstepping control for electronic throttle,, in IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2017, 6087-6092. doi: 10.1109/IECON.2017.8217057.

[15]

G. Stumpp and H. Kull, Strategy for a Fail-Safe Electronic Diesel Control System for Passenger Cars, Technical report, SAE Technical Paper, 1983. doi: 10.4271/830527.

[16]

H. SunC. Dai and S. Li, Modelling and composite control of fuel quantity actuator system for diesel engines, IFAC-PapersOnLine, 51 (2018), 807-812.  doi: 10.1016/j.ifacol.2018.10.124.

[17]

H. Sun and S. Li, Sliding mode control method for diesel engine fuel quantity actuator with disturbance estimation, Control Theory and Applications, 35 (2018), 1568-1576. 

[18]

Z. Sun, T. Guo, Y. Yan, X. Wang and S. Li, A composite current-constrained control for permanent magnet synchronous motor with time-varying disturbance, Advances in Mechanical Engineering, 9 (2017), 1687814017728691. doi: 10.1177/1687814017728691.

[19]

M. Trenne and A. Ives, Closed loop design for electronic diesel injection systems, SAE Transactions, 2017, 1834-1840. doi: 10.4271/820447.

[20]

J. WangS. LiJ. YangB. Wu and Q. Li, Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances, IET Control Theory & Applications, 9 (2015), 579-586.  doi: 10.1049/iet-cta.2014.0220.

[21]

J. WangF. WangG. WangS. Li and L. Yu, Generalized proportional integral observer based robust finite control set predictive current control for induction motor systems with time-varying disturbances, IEEE Transactions on Industrial Informatics, 14 (2018), 4159-4168.  doi: 10.1109/TII.2018.2818153.

[22]

Z. WangS. LiJ. Wang and Q. Li, Robust control for disturbed buck converters based on two GPI observers, Control Engineering Practice, 66 (2017), 13-22.  doi: 10.1016/j.conengprac.2017.06.001.

[23]

Y. XiaZ. Zhu and M. Fu, Back-stepping sliding mode control for missile systems based on an extended state observer, IET Control Theory & Applications, 5 (2011), 93-102.  doi: 10.1049/iet-cta.2009.0341.

[24]

J. YangH. CuiS. Li and A. Zolotas, Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer, IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 65 (2018), 832-841.  doi: 10.1109/TCSI.2017.2725386.

[25]

M. Yang and S. C. Sorenson, Survey of the Electronic Injection and Control of Diesel Engines, Technical report, SAE Technical Paper, 1994. doi: 10.4271/940378.

[26]

M. Yawei and X. Feiyun, Application of discrete tracking differentiator to electronic control system of diesel engine, in 2011 International Conference on Electric Information and Control Engineering, IEEE, 2011, 3005-3008.

show all references

References:
[1]

W.-H. ChenJ. YangL. Guo and S. Li, Disturbance-observer-based control and related methods-an overview, IEEE Transactions on Industrial Electronics, 63 (2016), 1083-1095.  doi: 10.1109/TIE.2015.2478397.

[2]

H. Eisele, Electronic Control of Diesel Passenger Cars, Technical report, SAE Technical Paper, 1980. doi: 10.4271/800167.

[3]

A. Gutiérrez-Giles and M. A. Arteaga-Pérez, GPIbased velocity/force observer design for robot manipulators, ISA Transactions, 53 (2014), 929-938. 

[4]

W. HeS. LiJ. Yang and Z. Wang, Incremental passivity based control for {DC-DC} boost converters under time-varying disturbances via a generalized proportional integral observer, Journal of Power Electronics, 18 (2018), 147-159. 

[5]

H. K. Khalil, Nonlinear systems, Upper Saddle River.

[6]

K.-S. KimK.-H. Rew and S. Kim, Disturbance observer for estimating higher order disturbances in time series expansion, IEEE Transactions on Automatic Control, 55 (2010), 1905-1911.  doi: 10.1109/TAC.2010.2049522.

[7]

Y. Li, W. Gao and X. Zhou, The adaptive fuzzy control of electromagnetic actuator in diesel fuel injection system, in Proceedings of the IEEE International Vehicle Electronics Conference (IVEC'99)(Cat. No. 99EX257), IEEE, 1999,149-152.

[8]

Y. LiG. Liu and X. Zhou, Fuel-injection control system design and experiments of a diesel engine, IEEE Transactions on Control Systems Technology, 11 (2003), 565-570. 

[9]

R. Madoński and P. Herman, Survey on methods of increasing the efficiency of extended state disturbance observers, ISA Transactions, 56 (2015), 18-27. 

[10]

J. MaoJ. YangS. LiY. Yan and Q. Li, Output feedback-based sliding mode control for disturbed motion control systems via a higher-order ESO approach, IET Control Theory & Applications, 12 (2018), 2118-2126.  doi: 10.1049/iet-cta.2018.5197.

[11]

K. Mollenhauer, H. Tschöke and K. G. Johnson, Handbook of Diesel Engines, vol. 1, Springer, 2010.

[12]

K. Reif, Diesel Engine Management, Springer, 2014. doi: 10.1007/978-3-658-03981-3.

[13]

C. Ren and S. Ma, Generalized proportional integral observer based control of an omnidirectional mobile robot, Mechatronics, 26 (2015), 36-44.  doi: 10.1016/j.mechatronics.2015.01.001.

[14]

K. Shi, Z. Wang, C. Wu and S. Li, GPIO based backstepping control for electronic throttle,, in IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2017, 6087-6092. doi: 10.1109/IECON.2017.8217057.

[15]

G. Stumpp and H. Kull, Strategy for a Fail-Safe Electronic Diesel Control System for Passenger Cars, Technical report, SAE Technical Paper, 1983. doi: 10.4271/830527.

[16]

H. SunC. Dai and S. Li, Modelling and composite control of fuel quantity actuator system for diesel engines, IFAC-PapersOnLine, 51 (2018), 807-812.  doi: 10.1016/j.ifacol.2018.10.124.

[17]

H. Sun and S. Li, Sliding mode control method for diesel engine fuel quantity actuator with disturbance estimation, Control Theory and Applications, 35 (2018), 1568-1576. 

[18]

Z. Sun, T. Guo, Y. Yan, X. Wang and S. Li, A composite current-constrained control for permanent magnet synchronous motor with time-varying disturbance, Advances in Mechanical Engineering, 9 (2017), 1687814017728691. doi: 10.1177/1687814017728691.

[19]

M. Trenne and A. Ives, Closed loop design for electronic diesel injection systems, SAE Transactions, 2017, 1834-1840. doi: 10.4271/820447.

[20]

J. WangS. LiJ. YangB. Wu and Q. Li, Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances, IET Control Theory & Applications, 9 (2015), 579-586.  doi: 10.1049/iet-cta.2014.0220.

[21]

J. WangF. WangG. WangS. Li and L. Yu, Generalized proportional integral observer based robust finite control set predictive current control for induction motor systems with time-varying disturbances, IEEE Transactions on Industrial Informatics, 14 (2018), 4159-4168.  doi: 10.1109/TII.2018.2818153.

[22]

Z. WangS. LiJ. Wang and Q. Li, Robust control for disturbed buck converters based on two GPI observers, Control Engineering Practice, 66 (2017), 13-22.  doi: 10.1016/j.conengprac.2017.06.001.

[23]

Y. XiaZ. Zhu and M. Fu, Back-stepping sliding mode control for missile systems based on an extended state observer, IET Control Theory & Applications, 5 (2011), 93-102.  doi: 10.1049/iet-cta.2009.0341.

[24]

J. YangH. CuiS. Li and A. Zolotas, Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer, IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 65 (2018), 832-841.  doi: 10.1109/TCSI.2017.2725386.

[25]

M. Yang and S. C. Sorenson, Survey of the Electronic Injection and Control of Diesel Engines, Technical report, SAE Technical Paper, 1994. doi: 10.4271/940378.

[26]

M. Yawei and X. Feiyun, Application of discrete tracking differentiator to electronic control system of diesel engine, in 2011 International Conference on Electric Information and Control Engineering, IEEE, 2011, 3005-3008.

Figure 1.  Bosch electronically controlled VE distribution pump
Figure 2.  Structure of fuel quantity actuator
Figure 3.  Diagram of the fuel quantity actuator under the reduced-order GPIO based output feedback sliding mode control approach
Figure 4.  Experimental test setup
Figure 5.  Response curves in the presence of constant disturbance under SMC+ESO controller (34) (a) angular position; (b) duty ratio
Figure 6.  Response curves in the presence of constant disturbance under SMC+GPIO controller (18) (a) angular position; (b) duty ratio
Figure 7.  Response curves in the presence of time-varying disturbance under SMC+ESO controller (34) (a) angular position; (b) duty ratio
Figure 8.  Response curves in the presence of time-varying disturbance under SMC+GPIO controller (18) (a) angular position; (b) duty ratio
Table 1.  Parameters of the fuel quantity actuator
Parameter Symbol Value
Nominal Input Voltage $ V_{in0} $ 12 $ V $
Reference Output Angle $ {\theta}_{ref} $ 0.5 $ rad $
Nominal Resistance $ R $ 0.75 $ \Omega $
Parameter Symbol Value
Nominal Input Voltage $ V_{in0} $ 12 $ V $
Reference Output Angle $ {\theta}_{ref} $ 0.5 $ rad $
Nominal Resistance $ R $ 0.75 $ \Omega $
Table 2.  Parameters values for simplified model (5)
Parameter Names Parameter Values
$ a_{21} $ $ -7.1121\times10^{3} $
$ a_{22} $ $ -41.6290 $
$ c_{2} $ $ -36.1109 $
$ c $ $ -2.3370\times10^{3} $
$ b $ $ 3.7872\times10^{4} $
Parameter Names Parameter Values
$ a_{21} $ $ -7.1121\times10^{3} $
$ a_{22} $ $ -41.6290 $
$ c_{2} $ $ -36.1109 $
$ c $ $ -2.3370\times10^{3} $
$ b $ $ 3.7872\times10^{4} $
Table 3.  Control parameters for fuel quantity actuator
Controller Control Parameters
$ SMC+GPIO $ $ k_1=1000, \lambda = 30, \beta=-200 $
$ SMC+ESO $ $ k_2=1000, \lambda = 30, p=-200 $
Controller Control Parameters
$ SMC+GPIO $ $ k_1=1000, \lambda = 30, \beta=-200 $
$ SMC+ESO $ $ k_2=1000, \lambda = 30, p=-200 $
Table 4.  Comparisons of disturbance rejection performance (Case Ⅰ: Constant disturbance)
Controller MAPR RT IAE(3-6s)
Case Ⅰ SMC+ESO 0.0294rad 520ms 8.7119
SMC+GPIO 0.0228rad 502ms 6.4476
Controller MAPR RT IAE(3-6s)
Case Ⅰ SMC+ESO 0.0294rad 520ms 8.7119
SMC+GPIO 0.0228rad 502ms 6.4476
Table 5.  Comparisons of disturbance rejection performance (Case Ⅱ: Time-varying disturbance)
Controller MAPR MAPD IAE(0-3s)
Case Ⅰ SMC+ESO 0.0281rad 0.0454rad 64.3796
SMC+GPIO 0.0149rad 0.0191rad 29.1016
Controller MAPR MAPD IAE(0-3s)
Case Ⅰ SMC+ESO 0.0281rad 0.0454rad 64.3796
SMC+GPIO 0.0149rad 0.0191rad 29.1016
[1]

Dongyun Wang. Sliding mode observer based control for T-S fuzzy descriptor systems. Mathematical Foundations of Computing, 2022, 5 (1) : 17-32. doi: 10.3934/mfc.2021017

[2]

Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations and Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043

[3]

Yueyuan Zhang, Yanyan Yin, Fei Liu. Robust observer-based control for discrete-time semi-Markov jump systems with actuator saturation. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3013-3026. doi: 10.3934/jimo.2020105

[4]

Yuan Li, Ruxia Zhang, Yi Zhang, Bo Yang. Sliding mode control for uncertain T-S fuzzy systems with input and state delays. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 345-354. doi: 10.3934/naco.2020006

[5]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control and Related Fields, 2021, 11 (4) : 905-934. doi: 10.3934/mcrf.2020051

[6]

Xiang Dong, Chengcheng Ren, Shuping He, Long Cheng, Shuo Wang. Finite-time sliding mode control for UVMS via T-S fuzzy approach. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1699-1712. doi: 10.3934/dcdss.2021167

[7]

Ramasamy Kavikumar, Boomipalagan Kaviarasan, Yong-Gwon Lee, Oh-Min Kwon, Rathinasamy Sakthivel, Seong-Gon Choi. Robust dynamic sliding mode control design for interval type-2 fuzzy systems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1839-1858. doi: 10.3934/dcdss.2022014

[8]

Yaobang Ye, Zongyu Zuo, Michael Basin. Robust adaptive sliding mode tracking control for a rigid body based on Lie subgroups of SO(3). Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1823-1837. doi: 10.3934/dcdss.2022010

[9]

Nasim Ullah, Ahmad Aziz Al-Ahmadi. A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty. Mathematical Foundations of Computing, 2020, 3 (2) : 81-99. doi: 10.3934/mfc.2020007

[10]

Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control and Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019

[11]

Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549

[12]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[13]

Yingshu Lü, Chunqin Zhou. Symmetry for an integral system with general nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1533-1543. doi: 10.3934/dcds.2018121

[14]

A. Alessandri, F. Bedouhene, D. Bouhadjra, A. Zemouche, P. Bagnerini. Observer-based control for a class of hybrid linear and nonlinear systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1213-1231. doi: 10.3934/dcdss.2020376

[15]

Monica Motta, Caterina Sartori. Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 513-535. doi: 10.3934/dcds.2008.21.513

[16]

Tiantian Mu, Jun-E Feng, Biao Wang. Pinning detectability of Boolean control networks with injection mode. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022089

[17]

Junlin Xiong, Wenjie Liu. $ H_{\infty} $ observer-based control for large-scale systems with sparse observer communication network. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 331-343. doi: 10.3934/naco.2020005

[18]

Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. Impulsive control of a symmetric ball rolling without sliding or spinning. Journal of Geometric Mechanics, 2010, 2 (4) : 321-342. doi: 10.3934/jgm.2010.2.321

[19]

Shu Zhang, Yuan Yuan. The Filippov equilibrium and sliding motion in an internet congestion control model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 1189-1206. doi: 10.3934/dcdsb.2017058

[20]

Zhao-Han Sheng, Tingwen Huang, Jian-Guo Du, Qiang Mei, Hui Huang. Study on self-adaptive proportional control method for a class of output models. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 459-477. doi: 10.3934/dcdsb.2009.11.459

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (272)
  • HTML views (292)
  • Cited by (0)

Other articles
by authors

[Back to Top]