doi: 10.3934/dcdss.2020375

Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO

1. 

School of Automation, Southeast University, Nanjing 210096, China

2. 

Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, China

3. 

Shenzhen Research Institute of Southeast University, Shenzhen 518057, China

* Corresponding author: Shihua Li

Received  October 2019 Revised  February 2020 Published  May 2020

In an electronically controlled VE distributive pump, the fuel quantity actuator is a significant component. It is responsible for governing the quantity of fuel being injected into diesel-type engines. The FQA system has nonlinearities and always confronts disturbances caused by the external torque and the input voltage variation in the real working condition, which can be regarded as a lumped disturbance. However, most existing results only focus on dealing with the so called constant disturbance in the FQA system which fail to remove the influence of time-varying disturbances. Therefore, to deal with the nonlinearities and reject the lumped disturbance, a reduced-order generalized proportional integral observer (GPIO) based sliding mode control approach is presented. By using a reduced-order GPIO, time-varying disturbances can be estimated accurately. In addition, a theoretical analysis of the closed-loop system is given. The proposed control scheme exhibits a satisfactory performance in terms of transient behavior and disturbance rejection. Finally, a set of experimental tests are carried out to validate the feasibility as well as efficiency of the proposed control framework.

Citation: Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020375
References:
[1]

W.-H. ChenJ. YangL. Guo and S. Li, Disturbance-observer-based control and related methods-an overview, IEEE Transactions on Industrial Electronics, 63 (2016), 1083-1095.  doi: 10.1109/TIE.2015.2478397.  Google Scholar

[2]

H. Eisele, Electronic Control of Diesel Passenger Cars, Technical report, SAE Technical Paper, 1980. doi: 10.4271/800167.  Google Scholar

[3]

A. Gutiérrez-Giles and M. A. Arteaga-Pérez, GPIbased velocity/force observer design for robot manipulators, ISA Transactions, 53 (2014), 929-938.   Google Scholar

[4]

W. HeS. LiJ. Yang and Z. Wang, Incremental passivity based control for {DC-DC} boost converters under time-varying disturbances via a generalized proportional integral observer, Journal of Power Electronics, 18 (2018), 147-159.   Google Scholar

[5]

H. K. Khalil, Nonlinear systems, Upper Saddle River. Google Scholar

[6]

K.-S. KimK.-H. Rew and S. Kim, Disturbance observer for estimating higher order disturbances in time series expansion, IEEE Transactions on Automatic Control, 55 (2010), 1905-1911.  doi: 10.1109/TAC.2010.2049522.  Google Scholar

[7]

Y. Li, W. Gao and X. Zhou, The adaptive fuzzy control of electromagnetic actuator in diesel fuel injection system, in Proceedings of the IEEE International Vehicle Electronics Conference (IVEC'99)(Cat. No. 99EX257), IEEE, 1999,149-152. Google Scholar

[8]

Y. LiG. Liu and X. Zhou, Fuel-injection control system design and experiments of a diesel engine, IEEE Transactions on Control Systems Technology, 11 (2003), 565-570.   Google Scholar

[9]

R. Madoński and P. Herman, Survey on methods of increasing the efficiency of extended state disturbance observers, ISA Transactions, 56 (2015), 18-27.   Google Scholar

[10]

J. MaoJ. YangS. LiY. Yan and Q. Li, Output feedback-based sliding mode control for disturbed motion control systems via a higher-order ESO approach, IET Control Theory & Applications, 12 (2018), 2118-2126.  doi: 10.1049/iet-cta.2018.5197.  Google Scholar

[11]

K. Mollenhauer, H. Tschöke and K. G. Johnson, Handbook of Diesel Engines, vol. 1, Springer, 2010. Google Scholar

[12]

K. Reif, Diesel Engine Management, Springer, 2014. doi: 10.1007/978-3-658-03981-3.  Google Scholar

[13]

C. Ren and S. Ma, Generalized proportional integral observer based control of an omnidirectional mobile robot, Mechatronics, 26 (2015), 36-44.  doi: 10.1016/j.mechatronics.2015.01.001.  Google Scholar

[14]

K. Shi, Z. Wang, C. Wu and S. Li, GPIO based backstepping control for electronic throttle,, in IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2017, 6087-6092. doi: 10.1109/IECON.2017.8217057.  Google Scholar

[15]

G. Stumpp and H. Kull, Strategy for a Fail-Safe Electronic Diesel Control System for Passenger Cars, Technical report, SAE Technical Paper, 1983. doi: 10.4271/830527.  Google Scholar

[16]

H. SunC. Dai and S. Li, Modelling and composite control of fuel quantity actuator system for diesel engines, IFAC-PapersOnLine, 51 (2018), 807-812.  doi: 10.1016/j.ifacol.2018.10.124.  Google Scholar

[17]

H. Sun and S. Li, Sliding mode control method for diesel engine fuel quantity actuator with disturbance estimation, Control Theory and Applications, 35 (2018), 1568-1576.   Google Scholar

[18]

Z. Sun, T. Guo, Y. Yan, X. Wang and S. Li, A composite current-constrained control for permanent magnet synchronous motor with time-varying disturbance, Advances in Mechanical Engineering, 9 (2017), 1687814017728691. doi: 10.1177/1687814017728691.  Google Scholar

[19]

M. Trenne and A. Ives, Closed loop design for electronic diesel injection systems, SAE Transactions, 2017, 1834-1840. doi: 10.4271/820447.  Google Scholar

[20]

J. WangS. LiJ. YangB. Wu and Q. Li, Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances, IET Control Theory & Applications, 9 (2015), 579-586.  doi: 10.1049/iet-cta.2014.0220.  Google Scholar

[21]

J. WangF. WangG. WangS. Li and L. Yu, Generalized proportional integral observer based robust finite control set predictive current control for induction motor systems with time-varying disturbances, IEEE Transactions on Industrial Informatics, 14 (2018), 4159-4168.  doi: 10.1109/TII.2018.2818153.  Google Scholar

[22]

Z. WangS. LiJ. Wang and Q. Li, Robust control for disturbed buck converters based on two GPI observers, Control Engineering Practice, 66 (2017), 13-22.  doi: 10.1016/j.conengprac.2017.06.001.  Google Scholar

[23]

Y. XiaZ. Zhu and M. Fu, Back-stepping sliding mode control for missile systems based on an extended state observer, IET Control Theory & Applications, 5 (2011), 93-102.  doi: 10.1049/iet-cta.2009.0341.  Google Scholar

[24]

J. YangH. CuiS. Li and A. Zolotas, Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer, IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 65 (2018), 832-841.  doi: 10.1109/TCSI.2017.2725386.  Google Scholar

[25]

M. Yang and S. C. Sorenson, Survey of the Electronic Injection and Control of Diesel Engines, Technical report, SAE Technical Paper, 1994. doi: 10.4271/940378.  Google Scholar

[26]

M. Yawei and X. Feiyun, Application of discrete tracking differentiator to electronic control system of diesel engine, in 2011 International Conference on Electric Information and Control Engineering, IEEE, 2011, 3005-3008. Google Scholar

show all references

References:
[1]

W.-H. ChenJ. YangL. Guo and S. Li, Disturbance-observer-based control and related methods-an overview, IEEE Transactions on Industrial Electronics, 63 (2016), 1083-1095.  doi: 10.1109/TIE.2015.2478397.  Google Scholar

[2]

H. Eisele, Electronic Control of Diesel Passenger Cars, Technical report, SAE Technical Paper, 1980. doi: 10.4271/800167.  Google Scholar

[3]

A. Gutiérrez-Giles and M. A. Arteaga-Pérez, GPIbased velocity/force observer design for robot manipulators, ISA Transactions, 53 (2014), 929-938.   Google Scholar

[4]

W. HeS. LiJ. Yang and Z. Wang, Incremental passivity based control for {DC-DC} boost converters under time-varying disturbances via a generalized proportional integral observer, Journal of Power Electronics, 18 (2018), 147-159.   Google Scholar

[5]

H. K. Khalil, Nonlinear systems, Upper Saddle River. Google Scholar

[6]

K.-S. KimK.-H. Rew and S. Kim, Disturbance observer for estimating higher order disturbances in time series expansion, IEEE Transactions on Automatic Control, 55 (2010), 1905-1911.  doi: 10.1109/TAC.2010.2049522.  Google Scholar

[7]

Y. Li, W. Gao and X. Zhou, The adaptive fuzzy control of electromagnetic actuator in diesel fuel injection system, in Proceedings of the IEEE International Vehicle Electronics Conference (IVEC'99)(Cat. No. 99EX257), IEEE, 1999,149-152. Google Scholar

[8]

Y. LiG. Liu and X. Zhou, Fuel-injection control system design and experiments of a diesel engine, IEEE Transactions on Control Systems Technology, 11 (2003), 565-570.   Google Scholar

[9]

R. Madoński and P. Herman, Survey on methods of increasing the efficiency of extended state disturbance observers, ISA Transactions, 56 (2015), 18-27.   Google Scholar

[10]

J. MaoJ. YangS. LiY. Yan and Q. Li, Output feedback-based sliding mode control for disturbed motion control systems via a higher-order ESO approach, IET Control Theory & Applications, 12 (2018), 2118-2126.  doi: 10.1049/iet-cta.2018.5197.  Google Scholar

[11]

K. Mollenhauer, H. Tschöke and K. G. Johnson, Handbook of Diesel Engines, vol. 1, Springer, 2010. Google Scholar

[12]

K. Reif, Diesel Engine Management, Springer, 2014. doi: 10.1007/978-3-658-03981-3.  Google Scholar

[13]

C. Ren and S. Ma, Generalized proportional integral observer based control of an omnidirectional mobile robot, Mechatronics, 26 (2015), 36-44.  doi: 10.1016/j.mechatronics.2015.01.001.  Google Scholar

[14]

K. Shi, Z. Wang, C. Wu and S. Li, GPIO based backstepping control for electronic throttle,, in IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2017, 6087-6092. doi: 10.1109/IECON.2017.8217057.  Google Scholar

[15]

G. Stumpp and H. Kull, Strategy for a Fail-Safe Electronic Diesel Control System for Passenger Cars, Technical report, SAE Technical Paper, 1983. doi: 10.4271/830527.  Google Scholar

[16]

H. SunC. Dai and S. Li, Modelling and composite control of fuel quantity actuator system for diesel engines, IFAC-PapersOnLine, 51 (2018), 807-812.  doi: 10.1016/j.ifacol.2018.10.124.  Google Scholar

[17]

H. Sun and S. Li, Sliding mode control method for diesel engine fuel quantity actuator with disturbance estimation, Control Theory and Applications, 35 (2018), 1568-1576.   Google Scholar

[18]

Z. Sun, T. Guo, Y. Yan, X. Wang and S. Li, A composite current-constrained control for permanent magnet synchronous motor with time-varying disturbance, Advances in Mechanical Engineering, 9 (2017), 1687814017728691. doi: 10.1177/1687814017728691.  Google Scholar

[19]

M. Trenne and A. Ives, Closed loop design for electronic diesel injection systems, SAE Transactions, 2017, 1834-1840. doi: 10.4271/820447.  Google Scholar

[20]

J. WangS. LiJ. YangB. Wu and Q. Li, Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances, IET Control Theory & Applications, 9 (2015), 579-586.  doi: 10.1049/iet-cta.2014.0220.  Google Scholar

[21]

J. WangF. WangG. WangS. Li and L. Yu, Generalized proportional integral observer based robust finite control set predictive current control for induction motor systems with time-varying disturbances, IEEE Transactions on Industrial Informatics, 14 (2018), 4159-4168.  doi: 10.1109/TII.2018.2818153.  Google Scholar

[22]

Z. WangS. LiJ. Wang and Q. Li, Robust control for disturbed buck converters based on two GPI observers, Control Engineering Practice, 66 (2017), 13-22.  doi: 10.1016/j.conengprac.2017.06.001.  Google Scholar

[23]

Y. XiaZ. Zhu and M. Fu, Back-stepping sliding mode control for missile systems based on an extended state observer, IET Control Theory & Applications, 5 (2011), 93-102.  doi: 10.1049/iet-cta.2009.0341.  Google Scholar

[24]

J. YangH. CuiS. Li and A. Zolotas, Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer, IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 65 (2018), 832-841.  doi: 10.1109/TCSI.2017.2725386.  Google Scholar

[25]

M. Yang and S. C. Sorenson, Survey of the Electronic Injection and Control of Diesel Engines, Technical report, SAE Technical Paper, 1994. doi: 10.4271/940378.  Google Scholar

[26]

M. Yawei and X. Feiyun, Application of discrete tracking differentiator to electronic control system of diesel engine, in 2011 International Conference on Electric Information and Control Engineering, IEEE, 2011, 3005-3008. Google Scholar

Figure 1.  Bosch electronically controlled VE distribution pump
Figure 2.  Structure of fuel quantity actuator
Figure 3.  Diagram of the fuel quantity actuator under the reduced-order GPIO based output feedback sliding mode control approach
Figure 4.  Experimental test setup
Figure 5.  Response curves in the presence of constant disturbance under SMC+ESO controller (34) (a) angular position; (b) duty ratio
Figure 6.  Response curves in the presence of constant disturbance under SMC+GPIO controller (18) (a) angular position; (b) duty ratio
Figure 7.  Response curves in the presence of time-varying disturbance under SMC+ESO controller (34) (a) angular position; (b) duty ratio
Figure 8.  Response curves in the presence of time-varying disturbance under SMC+GPIO controller (18) (a) angular position; (b) duty ratio
Table 1.  Parameters of the fuel quantity actuator
Parameter Symbol Value
Nominal Input Voltage $ V_{in0} $ 12 $ V $
Reference Output Angle $ {\theta}_{ref} $ 0.5 $ rad $
Nominal Resistance $ R $ 0.75 $ \Omega $
Parameter Symbol Value
Nominal Input Voltage $ V_{in0} $ 12 $ V $
Reference Output Angle $ {\theta}_{ref} $ 0.5 $ rad $
Nominal Resistance $ R $ 0.75 $ \Omega $
Table 2.  Parameters values for simplified model (5)
Parameter Names Parameter Values
$ a_{21} $ $ -7.1121\times10^{3} $
$ a_{22} $ $ -41.6290 $
$ c_{2} $ $ -36.1109 $
$ c $ $ -2.3370\times10^{3} $
$ b $ $ 3.7872\times10^{4} $
Parameter Names Parameter Values
$ a_{21} $ $ -7.1121\times10^{3} $
$ a_{22} $ $ -41.6290 $
$ c_{2} $ $ -36.1109 $
$ c $ $ -2.3370\times10^{3} $
$ b $ $ 3.7872\times10^{4} $
Table 3.  Control parameters for fuel quantity actuator
Controller Control Parameters
$ SMC+GPIO $ $ k_1=1000, \lambda = 30, \beta=-200 $
$ SMC+ESO $ $ k_2=1000, \lambda = 30, p=-200 $
Controller Control Parameters
$ SMC+GPIO $ $ k_1=1000, \lambda = 30, \beta=-200 $
$ SMC+ESO $ $ k_2=1000, \lambda = 30, p=-200 $
Table 4.  Comparisons of disturbance rejection performance (Case Ⅰ: Constant disturbance)
Controller MAPR RT IAE(3-6s)
Case Ⅰ SMC+ESO 0.0294rad 520ms 8.7119
SMC+GPIO 0.0228rad 502ms 6.4476
Controller MAPR RT IAE(3-6s)
Case Ⅰ SMC+ESO 0.0294rad 520ms 8.7119
SMC+GPIO 0.0228rad 502ms 6.4476
Table 5.  Comparisons of disturbance rejection performance (Case Ⅱ: Time-varying disturbance)
Controller MAPR MAPD IAE(0-3s)
Case Ⅰ SMC+ESO 0.0281rad 0.0454rad 64.3796
SMC+GPIO 0.0149rad 0.0191rad 29.1016
Controller MAPR MAPD IAE(0-3s)
Case Ⅰ SMC+ESO 0.0281rad 0.0454rad 64.3796
SMC+GPIO 0.0149rad 0.0191rad 29.1016
[1]

Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations & Control Theory, 2019, 8 (4) : 883-902. doi: 10.3934/eect.2019043

[2]

Yueyuan Zhang, Yanyan Yin, Fei Liu. Robust observer-based control for discrete-time semi-Markov jump systems with actuator saturation. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020105

[3]

Yuan Li, Ruxia Zhang, Yi Zhang, Bo Yang. Sliding mode control for uncertain T-S fuzzy systems with input and state delays. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 345-354. doi: 10.3934/naco.2020006

[4]

Nasim Ullah, Ahmad Aziz Al-Ahmadi. A triple mode robust sliding mode controller for a nonlinear system with measurement noise and uncertainty. Mathematical Foundations of Computing, 2020, 3 (2) : 81-99. doi: 10.3934/mfc.2020007

[5]

Lela Dorel. Glucose level regulation via integral high-order sliding modes. Mathematical Biosciences & Engineering, 2011, 8 (2) : 549-560. doi: 10.3934/mbe.2011.8.549

[6]

Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2067-2088. doi: 10.3934/dcdsb.2017085

[7]

Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control & Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019

[8]

Yingshu Lü, Chunqin Zhou. Symmetry for an integral system with general nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1533-1543. doi: 10.3934/dcds.2018121

[9]

A. Alessandri, F. Bedouhene, D. Bouhadjra, A. Zemouche, P. Bagnerini. Observer-based control for a class of hybrid linear and nonlinear systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020376

[10]

Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. Impulsive control of a symmetric ball rolling without sliding or spinning. Journal of Geometric Mechanics, 2010, 2 (4) : 321-342. doi: 10.3934/jgm.2010.2.321

[11]

Shu Zhang, Yuan Yuan. The Filippov equilibrium and sliding motion in an internet congestion control model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1189-1206. doi: 10.3934/dcdsb.2017058

[12]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020011

[13]

Zhao-Han Sheng, Tingwen Huang, Jian-Guo Du, Qiang Mei, Hui Huang. Study on self-adaptive proportional control method for a class of output models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 459-477. doi: 10.3934/dcdsb.2009.11.459

[14]

Junlin Xiong, Wenjie Liu. $ H_{\infty} $ observer-based control for large-scale systems with sparse observer communication network. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 331-343. doi: 10.3934/naco.2020005

[15]

Monica Motta, Caterina Sartori. Uniqueness results for boundary value problems arising from finite fuel and other singular and unbounded stochastic control problems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 513-535. doi: 10.3934/dcds.2008.21.513

[16]

Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183

[17]

Mohsen Lashgari, Ata Allah Taleizadeh, Shib Sankar Sana. An inventory control problem for deteriorating items with back-ordering and financial considerations under two levels of trade credit linked to order quantity. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1091-1119. doi: 10.3934/jimo.2016.12.1091

[18]

Alexander Arguchintsev, Vasilisa Poplevko. An optimal control problem by parabolic equation with boundary smooth control and an integral constraint. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 193-202. doi: 10.3934/naco.2018011

[19]

Jingshi Li, Jiachuan Zhang, Guoliang Ju, Juntao You. A multi-mode expansion method for boundary optimal control problems constrained by random Poisson equations. Electronic Research Archive, 2020, 28 (2) : 977-1000. doi: 10.3934/era.2020052

[20]

Qi Gong, I. Michael Ross, Wei Kang. A pseudospectral observer for nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 589-611. doi: 10.3934/dcdsb.2007.8.589

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (13)
  • HTML views (47)
  • Cited by (0)

Other articles
by authors

[Back to Top]