• Previous Article
    Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria
  • DCDS-S Home
  • This Issue
  • Next Article
    On the fuzzy stability results for fractional stochastic Volterra integral equation
doi: 10.3934/dcdss.2020375

Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO

1. 

School of Automation, Southeast University, Nanjing 210096, China

2. 

Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, China

3. 

Shenzhen Research Institute of Southeast University, Shenzhen 518057, China

* Corresponding author: Shihua Li

Received  October 2019 Revised  February 2020 Published  May 2020

In an electronically controlled VE distributive pump, the fuel quantity actuator is a significant component. It is responsible for governing the quantity of fuel being injected into diesel-type engines. The FQA system has nonlinearities and always confronts disturbances caused by the external torque and the input voltage variation in the real working condition, which can be regarded as a lumped disturbance. However, most existing results only focus on dealing with the so called constant disturbance in the FQA system which fail to remove the influence of time-varying disturbances. Therefore, to deal with the nonlinearities and reject the lumped disturbance, a reduced-order generalized proportional integral observer (GPIO) based sliding mode control approach is presented. By using a reduced-order GPIO, time-varying disturbances can be estimated accurately. In addition, a theoretical analysis of the closed-loop system is given. The proposed control scheme exhibits a satisfactory performance in terms of transient behavior and disturbance rejection. Finally, a set of experimental tests are carried out to validate the feasibility as well as efficiency of the proposed control framework.

Citation: Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020375
References:
[1]

W.-H. ChenJ. YangL. Guo and S. Li, Disturbance-observer-based control and related methods-an overview, IEEE Transactions on Industrial Electronics, 63 (2016), 1083-1095.  doi: 10.1109/TIE.2015.2478397.  Google Scholar

[2]

H. Eisele, Electronic Control of Diesel Passenger Cars, Technical report, SAE Technical Paper, 1980. doi: 10.4271/800167.  Google Scholar

[3]

A. Gutiérrez-Giles and M. A. Arteaga-Pérez, GPIbased velocity/force observer design for robot manipulators, ISA Transactions, 53 (2014), 929-938.   Google Scholar

[4]

W. HeS. LiJ. Yang and Z. Wang, Incremental passivity based control for {DC-DC} boost converters under time-varying disturbances via a generalized proportional integral observer, Journal of Power Electronics, 18 (2018), 147-159.   Google Scholar

[5]

H. K. Khalil, Nonlinear systems, Upper Saddle River. Google Scholar

[6]

K.-S. KimK.-H. Rew and S. Kim, Disturbance observer for estimating higher order disturbances in time series expansion, IEEE Transactions on Automatic Control, 55 (2010), 1905-1911.  doi: 10.1109/TAC.2010.2049522.  Google Scholar

[7]

Y. Li, W. Gao and X. Zhou, The adaptive fuzzy control of electromagnetic actuator in diesel fuel injection system, in Proceedings of the IEEE International Vehicle Electronics Conference (IVEC'99)(Cat. No. 99EX257), IEEE, 1999,149-152. Google Scholar

[8]

Y. LiG. Liu and X. Zhou, Fuel-injection control system design and experiments of a diesel engine, IEEE Transactions on Control Systems Technology, 11 (2003), 565-570.   Google Scholar

[9]

R. Madoński and P. Herman, Survey on methods of increasing the efficiency of extended state disturbance observers, ISA Transactions, 56 (2015), 18-27.   Google Scholar

[10]

J. MaoJ. YangS. LiY. Yan and Q. Li, Output feedback-based sliding mode control for disturbed motion control systems via a higher-order ESO approach, IET Control Theory & Applications, 12 (2018), 2118-2126.  doi: 10.1049/iet-cta.2018.5197.  Google Scholar

[11]

K. Mollenhauer, H. Tschöke and K. G. Johnson, Handbook of Diesel Engines, vol. 1, Springer, 2010. Google Scholar

[12]

K. Reif, Diesel Engine Management, Springer, 2014. doi: 10.1007/978-3-658-03981-3.  Google Scholar

[13]

C. Ren and S. Ma, Generalized proportional integral observer based control of an omnidirectional mobile robot, Mechatronics, 26 (2015), 36-44.  doi: 10.1016/j.mechatronics.2015.01.001.  Google Scholar

[14]

K. Shi, Z. Wang, C. Wu and S. Li, GPIO based backstepping control for electronic throttle,, in IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2017, 6087-6092. doi: 10.1109/IECON.2017.8217057.  Google Scholar

[15]

G. Stumpp and H. Kull, Strategy for a Fail-Safe Electronic Diesel Control System for Passenger Cars, Technical report, SAE Technical Paper, 1983. doi: 10.4271/830527.  Google Scholar

[16]

H. SunC. Dai and S. Li, Modelling and composite control of fuel quantity actuator system for diesel engines, IFAC-PapersOnLine, 51 (2018), 807-812.  doi: 10.1016/j.ifacol.2018.10.124.  Google Scholar

[17]

H. Sun and S. Li, Sliding mode control method for diesel engine fuel quantity actuator with disturbance estimation, Control Theory and Applications, 35 (2018), 1568-1576.   Google Scholar

[18]

Z. Sun, T. Guo, Y. Yan, X. Wang and S. Li, A composite current-constrained control for permanent magnet synchronous motor with time-varying disturbance, Advances in Mechanical Engineering, 9 (2017), 1687814017728691. doi: 10.1177/1687814017728691.  Google Scholar

[19]

M. Trenne and A. Ives, Closed loop design for electronic diesel injection systems, SAE Transactions, 2017, 1834-1840. doi: 10.4271/820447.  Google Scholar

[20]

J. WangS. LiJ. YangB. Wu and Q. Li, Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances, IET Control Theory & Applications, 9 (2015), 579-586.  doi: 10.1049/iet-cta.2014.0220.  Google Scholar

[21]

J. WangF. WangG. WangS. Li and L. Yu, Generalized proportional integral observer based robust finite control set predictive current control for induction motor systems with time-varying disturbances, IEEE Transactions on Industrial Informatics, 14 (2018), 4159-4168.  doi: 10.1109/TII.2018.2818153.  Google Scholar

[22]

Z. WangS. LiJ. Wang and Q. Li, Robust control for disturbed buck converters based on two GPI observers, Control Engineering Practice, 66 (2017), 13-22.  doi: 10.1016/j.conengprac.2017.06.001.  Google Scholar

[23]

Y. XiaZ. Zhu and M. Fu, Back-stepping sliding mode control for missile systems based on an extended state observer, IET Control Theory & Applications, 5 (2011), 93-102.  doi: 10.1049/iet-cta.2009.0341.  Google Scholar

[24]

J. YangH. CuiS. Li and A. Zolotas, Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer, IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 65 (2018), 832-841.  doi: 10.1109/TCSI.2017.2725386.  Google Scholar

[25]

M. Yang and S. C. Sorenson, Survey of the Electronic Injection and Control of Diesel Engines, Technical report, SAE Technical Paper, 1994. doi: 10.4271/940378.  Google Scholar

[26]

M. Yawei and X. Feiyun, Application of discrete tracking differentiator to electronic control system of diesel engine, in 2011 International Conference on Electric Information and Control Engineering, IEEE, 2011, 3005-3008. Google Scholar

show all references

References:
[1]

W.-H. ChenJ. YangL. Guo and S. Li, Disturbance-observer-based control and related methods-an overview, IEEE Transactions on Industrial Electronics, 63 (2016), 1083-1095.  doi: 10.1109/TIE.2015.2478397.  Google Scholar

[2]

H. Eisele, Electronic Control of Diesel Passenger Cars, Technical report, SAE Technical Paper, 1980. doi: 10.4271/800167.  Google Scholar

[3]

A. Gutiérrez-Giles and M. A. Arteaga-Pérez, GPIbased velocity/force observer design for robot manipulators, ISA Transactions, 53 (2014), 929-938.   Google Scholar

[4]

W. HeS. LiJ. Yang and Z. Wang, Incremental passivity based control for {DC-DC} boost converters under time-varying disturbances via a generalized proportional integral observer, Journal of Power Electronics, 18 (2018), 147-159.   Google Scholar

[5]

H. K. Khalil, Nonlinear systems, Upper Saddle River. Google Scholar

[6]

K.-S. KimK.-H. Rew and S. Kim, Disturbance observer for estimating higher order disturbances in time series expansion, IEEE Transactions on Automatic Control, 55 (2010), 1905-1911.  doi: 10.1109/TAC.2010.2049522.  Google Scholar

[7]

Y. Li, W. Gao and X. Zhou, The adaptive fuzzy control of electromagnetic actuator in diesel fuel injection system, in Proceedings of the IEEE International Vehicle Electronics Conference (IVEC'99)(Cat. No. 99EX257), IEEE, 1999,149-152. Google Scholar

[8]

Y. LiG. Liu and X. Zhou, Fuel-injection control system design and experiments of a diesel engine, IEEE Transactions on Control Systems Technology, 11 (2003), 565-570.   Google Scholar

[9]

R. Madoński and P. Herman, Survey on methods of increasing the efficiency of extended state disturbance observers, ISA Transactions, 56 (2015), 18-27.   Google Scholar

[10]

J. MaoJ. YangS. LiY. Yan and Q. Li, Output feedback-based sliding mode control for disturbed motion control systems via a higher-order ESO approach, IET Control Theory & Applications, 12 (2018), 2118-2126.  doi: 10.1049/iet-cta.2018.5197.  Google Scholar

[11]

K. Mollenhauer, H. Tschöke and K. G. Johnson, Handbook of Diesel Engines, vol. 1, Springer, 2010. Google Scholar

[12]

K. Reif, Diesel Engine Management, Springer, 2014. doi: 10.1007/978-3-658-03981-3.  Google Scholar

[13]

C. Ren and S. Ma, Generalized proportional integral observer based control of an omnidirectional mobile robot, Mechatronics, 26 (2015), 36-44.  doi: 10.1016/j.mechatronics.2015.01.001.  Google Scholar

[14]

K. Shi, Z. Wang, C. Wu and S. Li, GPIO based backstepping control for electronic throttle,, in IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2017, 6087-6092. doi: 10.1109/IECON.2017.8217057.  Google Scholar

[15]

G. Stumpp and H. Kull, Strategy for a Fail-Safe Electronic Diesel Control System for Passenger Cars, Technical report, SAE Technical Paper, 1983. doi: 10.4271/830527.  Google Scholar

[16]

H. SunC. Dai and S. Li, Modelling and composite control of fuel quantity actuator system for diesel engines, IFAC-PapersOnLine, 51 (2018), 807-812.  doi: 10.1016/j.ifacol.2018.10.124.  Google Scholar

[17]

H. Sun and S. Li, Sliding mode control method for diesel engine fuel quantity actuator with disturbance estimation, Control Theory and Applications, 35 (2018), 1568-1576.   Google Scholar

[18]

Z. Sun, T. Guo, Y. Yan, X. Wang and S. Li, A composite current-constrained control for permanent magnet synchronous motor with time-varying disturbance, Advances in Mechanical Engineering, 9 (2017), 1687814017728691. doi: 10.1177/1687814017728691.  Google Scholar

[19]

M. Trenne and A. Ives, Closed loop design for electronic diesel injection systems, SAE Transactions, 2017, 1834-1840. doi: 10.4271/820447.  Google Scholar

[20]

J. WangS. LiJ. YangB. Wu and Q. Li, Extended state observer-based sliding mode control for PWM-based DC-DC buck power converter systems with mismatched disturbances, IET Control Theory & Applications, 9 (2015), 579-586.  doi: 10.1049/iet-cta.2014.0220.  Google Scholar

[21]

J. WangF. WangG. WangS. Li and L. Yu, Generalized proportional integral observer based robust finite control set predictive current control for induction motor systems with time-varying disturbances, IEEE Transactions on Industrial Informatics, 14 (2018), 4159-4168.  doi: 10.1109/TII.2018.2818153.  Google Scholar

[22]

Z. WangS. LiJ. Wang and Q. Li, Robust control for disturbed buck converters based on two GPI observers, Control Engineering Practice, 66 (2017), 13-22.  doi: 10.1016/j.conengprac.2017.06.001.  Google Scholar

[23]

Y. XiaZ. Zhu and M. Fu, Back-stepping sliding mode control for missile systems based on an extended state observer, IET Control Theory & Applications, 5 (2011), 93-102.  doi: 10.1049/iet-cta.2009.0341.  Google Scholar

[24]

J. YangH. CuiS. Li and A. Zolotas, Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer, IEEE Transactions on Circuits and Systems Ⅰ: Regular Papers, 65 (2018), 832-841.  doi: 10.1109/TCSI.2017.2725386.  Google Scholar

[25]

M. Yang and S. C. Sorenson, Survey of the Electronic Injection and Control of Diesel Engines, Technical report, SAE Technical Paper, 1994. doi: 10.4271/940378.  Google Scholar

[26]

M. Yawei and X. Feiyun, Application of discrete tracking differentiator to electronic control system of diesel engine, in 2011 International Conference on Electric Information and Control Engineering, IEEE, 2011, 3005-3008. Google Scholar

Figure 1.  Bosch electronically controlled VE distribution pump
Figure 2.  Structure of fuel quantity actuator
Figure 3.  Diagram of the fuel quantity actuator under the reduced-order GPIO based output feedback sliding mode control approach
Figure 4.  Experimental test setup
Figure 5.  Response curves in the presence of constant disturbance under SMC+ESO controller (34) (a) angular position; (b) duty ratio
Figure 6.  Response curves in the presence of constant disturbance under SMC+GPIO controller (18) (a) angular position; (b) duty ratio
Figure 7.  Response curves in the presence of time-varying disturbance under SMC+ESO controller (34) (a) angular position; (b) duty ratio
Figure 8.  Response curves in the presence of time-varying disturbance under SMC+GPIO controller (18) (a) angular position; (b) duty ratio
Table 1.  Parameters of the fuel quantity actuator
Parameter Symbol Value
Nominal Input Voltage $ V_{in0} $ 12 $ V $
Reference Output Angle $ {\theta}_{ref} $ 0.5 $ rad $
Nominal Resistance $ R $ 0.75 $ \Omega $
Parameter Symbol Value
Nominal Input Voltage $ V_{in0} $ 12 $ V $
Reference Output Angle $ {\theta}_{ref} $ 0.5 $ rad $
Nominal Resistance $ R $ 0.75 $ \Omega $
Table 2.  Parameters values for simplified model (5)
Parameter Names Parameter Values
$ a_{21} $ $ -7.1121\times10^{3} $
$ a_{22} $ $ -41.6290 $
$ c_{2} $ $ -36.1109 $
$ c $ $ -2.3370\times10^{3} $
$ b $ $ 3.7872\times10^{4} $
Parameter Names Parameter Values
$ a_{21} $ $ -7.1121\times10^{3} $
$ a_{22} $ $ -41.6290 $
$ c_{2} $ $ -36.1109 $
$ c $ $ -2.3370\times10^{3} $
$ b $ $ 3.7872\times10^{4} $
Table 3.  Control parameters for fuel quantity actuator
Controller Control Parameters
$ SMC+GPIO $ $ k_1=1000, \lambda = 30, \beta=-200 $
$ SMC+ESO $ $ k_2=1000, \lambda = 30, p=-200 $
Controller Control Parameters
$ SMC+GPIO $ $ k_1=1000, \lambda = 30, \beta=-200 $
$ SMC+ESO $ $ k_2=1000, \lambda = 30, p=-200 $
Table 4.  Comparisons of disturbance rejection performance (Case Ⅰ: Constant disturbance)
Controller MAPR RT IAE(3-6s)
Case Ⅰ SMC+ESO 0.0294rad 520ms 8.7119
SMC+GPIO 0.0228rad 502ms 6.4476
Controller MAPR RT IAE(3-6s)
Case Ⅰ SMC+ESO 0.0294rad 520ms 8.7119
SMC+GPIO 0.0228rad 502ms 6.4476
Table 5.  Comparisons of disturbance rejection performance (Case Ⅱ: Time-varying disturbance)
Controller MAPR MAPD IAE(0-3s)
Case Ⅰ SMC+ESO 0.0281rad 0.0454rad 64.3796
SMC+GPIO 0.0149rad 0.0191rad 29.1016
Controller MAPR MAPD IAE(0-3s)
Case Ⅰ SMC+ESO 0.0281rad 0.0454rad 64.3796
SMC+GPIO 0.0149rad 0.0191rad 29.1016
[1]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[2]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[5]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[6]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[7]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[8]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[9]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[10]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[11]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[14]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[15]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[16]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[17]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (40)
  • HTML views (198)
  • Cited by (0)

Other articles
by authors

[Back to Top]