doi: 10.3934/dcdss.2020376

Observer-based control for a class of hybrid linear and nonlinear systems

1. 

University of Genoa (DIME), Via Opera Pia 15, 16145 Genova, Italy

2. 

Laboratoire de Mathématiques Pures et Appliquées, University Mouloud Mammeri of Tizi-Ouzou, B.P. No. 17 RP, 15000 Tizi-Ouzou, Algeria

3. 

Centre de Recherche en Automatique de Nancy, University of Lorraine, CNRS UMR 7039, F-54400 Cosnes et Romain, France

* Corresponding author: A. Alessandri

Received  November 2019 Revised  February 2020 Published  May 2020

An approach to output feedback control for hybrid discrete-time systems subject to uncertain mode transitions is proposed. The system dynamics may assume different modes upon the occurrence of a switching that is not directly measurable. Since the current system mode is unknown, a regulation scheme is proposed by combining a Luenberger observer to estimate the continuous state, a mode estimator, and a controller fed with the estimates of both continuous state variables and mode. The closed-loop stability is ensured under suitable conditions given in terms of linear matrix inequalities. Since complexity and conservativeness grow with the increase of the modes, we address the problem of reducing the number of linear matrix inequalities by providing more easily tractable stability conditions. Such conditions are extended to deal with systems having also Lipschitz nonlinearities and affected by disturbances. The effectiveness of the proposed approach is shown by means of simulations.

Citation: A. Alessandri, F. Bedouhene, D. Bouhadjra, A. Zemouche, P. Bagnerini. Observer-based control for a class of hybrid linear and nonlinear systems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020376
References:
[1]

A. AlessandriM. Baglietto and G. Battistelli, Receding-horizon estimation for switching discrete-time linear systems, IEEE Trans. on Automatic Control, 50 (2005), 1736-1748.  doi: 10.1109/TAC.2005.858684.  Google Scholar

[2]

A. AlessandriM. Baglietto and G. Battistelli, Luenberger observers for switching discrete-time linear systems, International Journal of Control, 80 (2007), 1931-1943.  doi: 10.1080/00207170701481683.  Google Scholar

[3]

A. Alessandri and F. Boem, State observers for systems subject to bounded disturbances using quadratic boundedness, IEEE Trans. on Automatic Control, to appear. Google Scholar

[4]

F. BlanchiniS. Miani and F. Mesquine, A separation principle for linear switching systems and parametrization of all stabilizing controllers, IEEE Trans. on Automatic Control, 54 (2009), 279-292.  doi: 10.1109/TAC.2008.2010896.  Google Scholar

[5]

S. CourtK. Kunisch and L. Pfeiffer, Hybrid optimal control problems for a class of semilinear parabolic equations, Discrete and Continuous Dynamical Systems - Series S, 11 (2018), 1031-1060.  doi: 10.3934/dcdss.2018060.  Google Scholar

[6]

M. de OliveiraJ. Bernussou and J. Geromel, A new discrete-time robust stability condition, Systems & Control Letters, 37 (1999), 261-265.  doi: 10.1016/S0167-6911(99)00035-3.  Google Scholar

[7]

R. EssickJ.-W. Lee and G. Dullerud, Control of linear switched systems with receding horizon modal information, IEEE Trans. on Automatic Control, 59 (2014), 2340-2352.  doi: 10.1109/TAC.2014.2321251.  Google Scholar

[8]

B. GrandvalletA. ZemoucheH. Souley-Ali and M. Boutayeb, New LMI condition for observer-based $H_{\infty}$ stabilization of a class of nonlinear discrete-time systems, SIAM Journal on Control and Optimization, 51 (2013), 784-800.  doi: 10.1137/11085623X.  Google Scholar

[9]

R. Guo and L. Song, Optical chaotic secure algorithm based on space laser communication, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 1355-1369.  doi: 10.3934/dcdss.2019093.  Google Scholar

[10]

M. HalimiG. Millerioux and J. Daafouz, Model-based modes detection and discernibility for switched affine discrete-time systems, IEEE Trans. on Automatic Control, 60 (2015), 1501-1514.  doi: 10.1109/TAC.2014.2383012.  Google Scholar

[11]

W. HeemelsJ. Daafouz and G. Millerioux, Observer-based control of discrete-time LPV systems with uncertain parameters, IEEE Trans. on Automatic Control, 55 (2010), 2130-2135.  doi: 10.1109/TAC.2010.2051072.  Google Scholar

[12]

S. Ibrir, Static output feedback and guaranteed cost control of a class of discrete-time nonlinear systems with partial state measurements, Nonlinear Analysis, 68 (2008), 1784-1792.  doi: 10.1016/j.na.2007.01.011.  Google Scholar

[13]

X.-Q. Jiang and L.-C. Zhang, Stock price fluctuation prediction method based on time series analysis, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 915-927.  doi: 10.3934/dcdss.2019061.  Google Scholar

[14]

H. KheloufiF. BedouheneA. Zemouche and A. Alessandri, Observer-based stabilisation of linear systems with parameter uncertainties by using enhanced LMI conditions, Int. Journal of Control, 88 (2015), 1189-1200.  doi: 10.1080/00207179.2014.999258.  Google Scholar

[15]

J. Li and Y. Liu, Stabilization of a class of discrete-time switched systems via observer-based output feedback, Journal of Control Theory and Applications, 5 (2007), 307-311.  doi: 10.1007/s11768-006-6064-5.  Google Scholar

[16]

Z. LiC. Wen and Y. Soh, Observer-based stabilization of switching linear systems, Automatica, 39 (2003), 517-524.  doi: 10.1016/S0005-1098(02)00267-4.  Google Scholar

[17]

W. Lv and S. Ji, Atmospheric environmental quality assessment method based on analytic hierarchy process, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 941-955.  doi: 10.3934/dcdss.2019063.  Google Scholar

[18]

Y. QiuW. Chen and Q. Nie, A hybrid method for stiff reaction-diffusion equations, Discrete and Continuous Dynamical Systems - Series B, 24 (2019), 6387-6417.  doi: 10.3934/dcdsb.2019144.  Google Scholar

[19]

R. Rajamani, W. Jeon, H. Movahedi and A. Zemouche, On the need for switched-gain observers for non-monotonic nonlinear systems, Automatica J. IFAC, 114 (2020), 108814, 12 pp. doi: 10.1016/j.automatica.2020.108814.  Google Scholar

[20]

Z. Song and J. Zhao, Observer-based robust $H_{\infty}$ control for uncertain switched systems, Journal of Control Theory and Applications, 5 (2007), 278-284.  doi: 10.1007/s11768-006-6053-8.  Google Scholar

[21]

W. XiangJ. Xiao and M. Iqbal, Robust observer design for nonlinear uncertain switched systems under asynchronous switching, Nonlinear Analysis: Hybrid Systems, 6 (2012), 754-773.  doi: 10.1016/j.nahs.2011.08.001.  Google Scholar

[22]

A. Zemouche and M. Boutayeb, On LMI conditions to design observers for Lipschitz nonlinear systems, Automatica, 49 (2013), 585-591.  doi: 10.1016/j.automatica.2012.11.029.  Google Scholar

show all references

References:
[1]

A. AlessandriM. Baglietto and G. Battistelli, Receding-horizon estimation for switching discrete-time linear systems, IEEE Trans. on Automatic Control, 50 (2005), 1736-1748.  doi: 10.1109/TAC.2005.858684.  Google Scholar

[2]

A. AlessandriM. Baglietto and G. Battistelli, Luenberger observers for switching discrete-time linear systems, International Journal of Control, 80 (2007), 1931-1943.  doi: 10.1080/00207170701481683.  Google Scholar

[3]

A. Alessandri and F. Boem, State observers for systems subject to bounded disturbances using quadratic boundedness, IEEE Trans. on Automatic Control, to appear. Google Scholar

[4]

F. BlanchiniS. Miani and F. Mesquine, A separation principle for linear switching systems and parametrization of all stabilizing controllers, IEEE Trans. on Automatic Control, 54 (2009), 279-292.  doi: 10.1109/TAC.2008.2010896.  Google Scholar

[5]

S. CourtK. Kunisch and L. Pfeiffer, Hybrid optimal control problems for a class of semilinear parabolic equations, Discrete and Continuous Dynamical Systems - Series S, 11 (2018), 1031-1060.  doi: 10.3934/dcdss.2018060.  Google Scholar

[6]

M. de OliveiraJ. Bernussou and J. Geromel, A new discrete-time robust stability condition, Systems & Control Letters, 37 (1999), 261-265.  doi: 10.1016/S0167-6911(99)00035-3.  Google Scholar

[7]

R. EssickJ.-W. Lee and G. Dullerud, Control of linear switched systems with receding horizon modal information, IEEE Trans. on Automatic Control, 59 (2014), 2340-2352.  doi: 10.1109/TAC.2014.2321251.  Google Scholar

[8]

B. GrandvalletA. ZemoucheH. Souley-Ali and M. Boutayeb, New LMI condition for observer-based $H_{\infty}$ stabilization of a class of nonlinear discrete-time systems, SIAM Journal on Control and Optimization, 51 (2013), 784-800.  doi: 10.1137/11085623X.  Google Scholar

[9]

R. Guo and L. Song, Optical chaotic secure algorithm based on space laser communication, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 1355-1369.  doi: 10.3934/dcdss.2019093.  Google Scholar

[10]

M. HalimiG. Millerioux and J. Daafouz, Model-based modes detection and discernibility for switched affine discrete-time systems, IEEE Trans. on Automatic Control, 60 (2015), 1501-1514.  doi: 10.1109/TAC.2014.2383012.  Google Scholar

[11]

W. HeemelsJ. Daafouz and G. Millerioux, Observer-based control of discrete-time LPV systems with uncertain parameters, IEEE Trans. on Automatic Control, 55 (2010), 2130-2135.  doi: 10.1109/TAC.2010.2051072.  Google Scholar

[12]

S. Ibrir, Static output feedback and guaranteed cost control of a class of discrete-time nonlinear systems with partial state measurements, Nonlinear Analysis, 68 (2008), 1784-1792.  doi: 10.1016/j.na.2007.01.011.  Google Scholar

[13]

X.-Q. Jiang and L.-C. Zhang, Stock price fluctuation prediction method based on time series analysis, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 915-927.  doi: 10.3934/dcdss.2019061.  Google Scholar

[14]

H. KheloufiF. BedouheneA. Zemouche and A. Alessandri, Observer-based stabilisation of linear systems with parameter uncertainties by using enhanced LMI conditions, Int. Journal of Control, 88 (2015), 1189-1200.  doi: 10.1080/00207179.2014.999258.  Google Scholar

[15]

J. Li and Y. Liu, Stabilization of a class of discrete-time switched systems via observer-based output feedback, Journal of Control Theory and Applications, 5 (2007), 307-311.  doi: 10.1007/s11768-006-6064-5.  Google Scholar

[16]

Z. LiC. Wen and Y. Soh, Observer-based stabilization of switching linear systems, Automatica, 39 (2003), 517-524.  doi: 10.1016/S0005-1098(02)00267-4.  Google Scholar

[17]

W. Lv and S. Ji, Atmospheric environmental quality assessment method based on analytic hierarchy process, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 941-955.  doi: 10.3934/dcdss.2019063.  Google Scholar

[18]

Y. QiuW. Chen and Q. Nie, A hybrid method for stiff reaction-diffusion equations, Discrete and Continuous Dynamical Systems - Series B, 24 (2019), 6387-6417.  doi: 10.3934/dcdsb.2019144.  Google Scholar

[19]

R. Rajamani, W. Jeon, H. Movahedi and A. Zemouche, On the need for switched-gain observers for non-monotonic nonlinear systems, Automatica J. IFAC, 114 (2020), 108814, 12 pp. doi: 10.1016/j.automatica.2020.108814.  Google Scholar

[20]

Z. Song and J. Zhao, Observer-based robust $H_{\infty}$ control for uncertain switched systems, Journal of Control Theory and Applications, 5 (2007), 278-284.  doi: 10.1007/s11768-006-6053-8.  Google Scholar

[21]

W. XiangJ. Xiao and M. Iqbal, Robust observer design for nonlinear uncertain switched systems under asynchronous switching, Nonlinear Analysis: Hybrid Systems, 6 (2012), 754-773.  doi: 10.1016/j.nahs.2011.08.001.  Google Scholar

[22]

A. Zemouche and M. Boutayeb, On LMI conditions to design observers for Lipschitz nonlinear systems, Automatica, 49 (2013), 585-591.  doi: 10.1016/j.automatica.2012.11.029.  Google Scholar

Figure 1.  Output feedback observer-based control scheme
Figure 2.  State space piecewise regions
Figure 3.  Finite state machine of the discrete state dynamics and tree of mode combinations over successive time instants
Figure 4.  Case Study 1: state variables and their estimates
Figure 5.  Case Study 2: state variables and their estimates
Figure 6.  Case Study 3: state variables and their estimates
Figure 7.  Case Study 3: switching signal and its estimate
[1]

Gonzalo Robledo. Feedback stabilization for a chemostat with delayed output. Mathematical Biosciences & Engineering, 2009, 6 (3) : 629-647. doi: 10.3934/mbe.2009.6.629

[2]

Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020375

[3]

Lorena Bociu, Steven Derochers, Daniel Toundykov. Feedback stabilization of a linear hydro-elastic system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1107-1132. doi: 10.3934/dcdsb.2018144

[4]

Martin Gugat, Mario Sigalotti. Stars of vibrating strings: Switching boundary feedback stabilization. Networks & Heterogeneous Media, 2010, 5 (2) : 299-314. doi: 10.3934/nhm.2010.5.299

[5]

Magdi S. Mahmoud. Output feedback overlapping control design of interconnected systems with input saturation. Numerical Algebra, Control & Optimization, 2016, 6 (2) : 127-151. doi: 10.3934/naco.2016004

[6]

Jian Chen, Tao Zhang, Ziye Zhang, Chong Lin, Bing Chen. Stability and output feedback control for singular Markovian jump delayed systems. Mathematical Control & Related Fields, 2018, 8 (2) : 475-490. doi: 10.3934/mcrf.2018019

[7]

Alexei Pokrovskii, Dmitrii Rachinskii. Effect of positive feedback on Devil's staircase input-output relationship. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1095-1112. doi: 10.3934/dcdss.2013.6.1095

[8]

Ahmadreza Argha, Steven W. Su, Lin Ye, Branko G. Celler. Optimal sparse output feedback for networked systems with parametric uncertainties. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 283-295. doi: 10.3934/naco.2019019

[9]

Ruth F. Curtain, George Weiss. Strong stabilization of (almost) impedance passive systems by static output feedback. Mathematical Control & Related Fields, 2019, 9 (4) : 643-671. doi: 10.3934/mcrf.2019045

[10]

Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449

[11]

James P. Nelson, Mark J. Balas. Direct model reference adaptive control of linear systems with input/output delays. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 445-462. doi: 10.3934/naco.2013.3.445

[12]

Yong He. Switching controls for linear stochastic differential systems. Mathematical Control & Related Fields, 2020, 10 (2) : 443-454. doi: 10.3934/mcrf.2020005

[13]

N. U. Ahmed. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: A direct approach. Evolution Equations & Control Theory, 2012, 1 (2) : 235-250. doi: 10.3934/eect.2012.1.235

[14]

Ta T.H. Trang, Vu N. Phat, Adly Samir. Finite-time stabilization and $H_\infty$ control of nonlinear delay systems via output feedback. Journal of Industrial & Management Optimization, 2016, 12 (1) : 303-315. doi: 10.3934/jimo.2016.12.303

[15]

Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discrete-time linear multi-agent systems with observer-type protocols. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 489-505. doi: 10.3934/dcdsb.2011.16.489

[16]

Thomas I. Seidman. Optimal control of a diffusion/reaction/switching system. Evolution Equations & Control Theory, 2013, 2 (4) : 723-731. doi: 10.3934/eect.2013.2.723

[17]

Quoc T. Luu, Paul DuChateau. The relative biologic effectiveness versus linear energy transfer curve as an output-input relation for linear cellular systems. Mathematical Biosciences & Engineering, 2009, 6 (3) : 591-602. doi: 10.3934/mbe.2009.6.591

[18]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[19]

Guangliang Zhao, Fuke Wu, George Yin. Feedback controls to ensure global solutions and asymptotic stability of Markovian switching diffusion systems. Mathematical Control & Related Fields, 2015, 5 (2) : 359-376. doi: 10.3934/mcrf.2015.5.359

[20]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]