
- Previous Article
- DCDS-S Home
- This Issue
-
Next Article
Parallelization of a finite volumes discretization for anisotropic diffusion problems using an improved Schur complement technique
Observer-based control for a class of hybrid linear and nonlinear systems
1. | University of Genoa (DIME), Via Opera Pia 15, 16145 Genova, Italy |
2. | Laboratoire de Mathématiques Pures et Appliquées, University Mouloud Mammeri of Tizi-Ouzou, B.P. No. 17 RP, 15000 Tizi-Ouzou, Algeria |
3. | Centre de Recherche en Automatique de Nancy, University of Lorraine, CNRS UMR 7039, F-54400 Cosnes et Romain, France |
An approach to output feedback control for hybrid discrete-time systems subject to uncertain mode transitions is proposed. The system dynamics may assume different modes upon the occurrence of a switching that is not directly measurable. Since the current system mode is unknown, a regulation scheme is proposed by combining a Luenberger observer to estimate the continuous state, a mode estimator, and a controller fed with the estimates of both continuous state variables and mode. The closed-loop stability is ensured under suitable conditions given in terms of linear matrix inequalities. Since complexity and conservativeness grow with the increase of the modes, we address the problem of reducing the number of linear matrix inequalities by providing more easily tractable stability conditions. Such conditions are extended to deal with systems having also Lipschitz nonlinearities and affected by disturbances. The effectiveness of the proposed approach is shown by means of simulations.
References:
[1] |
A. Alessandri, M. Baglietto and G. Battistelli,
Receding-horizon estimation for switching discrete-time linear systems, IEEE Trans. on Automatic Control, 50 (2005), 1736-1748.
doi: 10.1109/TAC.2005.858684. |
[2] |
A. Alessandri, M. Baglietto and G. Battistelli,
Luenberger observers for switching discrete-time linear systems, International Journal of Control, 80 (2007), 1931-1943.
doi: 10.1080/00207170701481683. |
[3] |
A. Alessandri and F. Boem, State observers for systems subject to bounded disturbances using quadratic boundedness, IEEE Trans. on Automatic Control, to appear. Google Scholar |
[4] |
F. Blanchini, S. Miani and F. Mesquine,
A separation principle for linear switching systems and parametrization of all stabilizing controllers, IEEE Trans. on Automatic Control, 54 (2009), 279-292.
doi: 10.1109/TAC.2008.2010896. |
[5] |
S. Court, K. Kunisch and L. Pfeiffer,
Hybrid optimal control problems for a class of semilinear parabolic equations, Discrete and Continuous Dynamical Systems - Series S, 11 (2018), 1031-1060.
doi: 10.3934/dcdss.2018060. |
[6] |
M. de Oliveira, J. Bernussou and J. Geromel,
A new discrete-time robust stability condition, Systems & Control Letters, 37 (1999), 261-265.
doi: 10.1016/S0167-6911(99)00035-3. |
[7] |
R. Essick, J.-W. Lee and G. Dullerud,
Control of linear switched systems with receding horizon modal information, IEEE Trans. on Automatic Control, 59 (2014), 2340-2352.
doi: 10.1109/TAC.2014.2321251. |
[8] |
B. Grandvallet, A. Zemouche, H. Souley-Ali and M. Boutayeb,
New LMI condition for observer-based $H_{\infty}$ stabilization of a class of nonlinear discrete-time systems, SIAM Journal on Control and Optimization, 51 (2013), 784-800.
doi: 10.1137/11085623X. |
[9] |
R. Guo and L. Song,
Optical chaotic secure algorithm based on space laser communication, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 1355-1369.
doi: 10.3934/dcdss.2019093. |
[10] |
M. Halimi, G. Millerioux and J. Daafouz,
Model-based modes detection and discernibility for switched affine discrete-time systems, IEEE Trans. on Automatic Control, 60 (2015), 1501-1514.
doi: 10.1109/TAC.2014.2383012. |
[11] |
W. Heemels, J. Daafouz and G. Millerioux,
Observer-based control of discrete-time LPV systems with uncertain parameters, IEEE Trans. on Automatic Control, 55 (2010), 2130-2135.
doi: 10.1109/TAC.2010.2051072. |
[12] |
S. Ibrir,
Static output feedback and guaranteed cost control of a class of discrete-time nonlinear systems with partial state measurements, Nonlinear Analysis, 68 (2008), 1784-1792.
doi: 10.1016/j.na.2007.01.011. |
[13] |
X.-Q. Jiang and L.-C. Zhang,
Stock price fluctuation prediction method based on time series analysis, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 915-927.
doi: 10.3934/dcdss.2019061. |
[14] |
H. Kheloufi, F. Bedouhene, A. Zemouche and A. Alessandri,
Observer-based stabilisation of linear systems with parameter uncertainties by using enhanced LMI conditions, Int. Journal of Control, 88 (2015), 1189-1200.
doi: 10.1080/00207179.2014.999258. |
[15] |
J. Li and Y. Liu,
Stabilization of a class of discrete-time switched systems via observer-based output feedback, Journal of Control Theory and Applications, 5 (2007), 307-311.
doi: 10.1007/s11768-006-6064-5. |
[16] |
Z. Li, C. Wen and Y. Soh,
Observer-based stabilization of switching linear systems, Automatica, 39 (2003), 517-524.
doi: 10.1016/S0005-1098(02)00267-4. |
[17] |
W. Lv and S. Ji,
Atmospheric environmental quality assessment method based on analytic hierarchy process, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 941-955.
doi: 10.3934/dcdss.2019063. |
[18] |
Y. Qiu, W. Chen and Q. Nie,
A hybrid method for stiff reaction-diffusion equations, Discrete and Continuous Dynamical Systems - Series B, 24 (2019), 6387-6417.
doi: 10.3934/dcdsb.2019144. |
[19] |
R. Rajamani, W. Jeon, H. Movahedi and A. Zemouche, On the need for switched-gain observers for non-monotonic nonlinear systems, Automatica J. IFAC, 114 (2020), 108814, 12 pp.
doi: 10.1016/j.automatica.2020.108814. |
[20] |
Z. Song and J. Zhao,
Observer-based robust $H_{\infty}$ control for uncertain switched systems, Journal of Control Theory and Applications, 5 (2007), 278-284.
doi: 10.1007/s11768-006-6053-8. |
[21] |
W. Xiang, J. Xiao and M. Iqbal,
Robust observer design for nonlinear uncertain switched systems under asynchronous switching, Nonlinear Analysis: Hybrid Systems, 6 (2012), 754-773.
doi: 10.1016/j.nahs.2011.08.001. |
[22] |
A. Zemouche and M. Boutayeb,
On LMI conditions to design observers for Lipschitz nonlinear systems, Automatica, 49 (2013), 585-591.
doi: 10.1016/j.automatica.2012.11.029. |
show all references
References:
[1] |
A. Alessandri, M. Baglietto and G. Battistelli,
Receding-horizon estimation for switching discrete-time linear systems, IEEE Trans. on Automatic Control, 50 (2005), 1736-1748.
doi: 10.1109/TAC.2005.858684. |
[2] |
A. Alessandri, M. Baglietto and G. Battistelli,
Luenberger observers for switching discrete-time linear systems, International Journal of Control, 80 (2007), 1931-1943.
doi: 10.1080/00207170701481683. |
[3] |
A. Alessandri and F. Boem, State observers for systems subject to bounded disturbances using quadratic boundedness, IEEE Trans. on Automatic Control, to appear. Google Scholar |
[4] |
F. Blanchini, S. Miani and F. Mesquine,
A separation principle for linear switching systems and parametrization of all stabilizing controllers, IEEE Trans. on Automatic Control, 54 (2009), 279-292.
doi: 10.1109/TAC.2008.2010896. |
[5] |
S. Court, K. Kunisch and L. Pfeiffer,
Hybrid optimal control problems for a class of semilinear parabolic equations, Discrete and Continuous Dynamical Systems - Series S, 11 (2018), 1031-1060.
doi: 10.3934/dcdss.2018060. |
[6] |
M. de Oliveira, J. Bernussou and J. Geromel,
A new discrete-time robust stability condition, Systems & Control Letters, 37 (1999), 261-265.
doi: 10.1016/S0167-6911(99)00035-3. |
[7] |
R. Essick, J.-W. Lee and G. Dullerud,
Control of linear switched systems with receding horizon modal information, IEEE Trans. on Automatic Control, 59 (2014), 2340-2352.
doi: 10.1109/TAC.2014.2321251. |
[8] |
B. Grandvallet, A. Zemouche, H. Souley-Ali and M. Boutayeb,
New LMI condition for observer-based $H_{\infty}$ stabilization of a class of nonlinear discrete-time systems, SIAM Journal on Control and Optimization, 51 (2013), 784-800.
doi: 10.1137/11085623X. |
[9] |
R. Guo and L. Song,
Optical chaotic secure algorithm based on space laser communication, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 1355-1369.
doi: 10.3934/dcdss.2019093. |
[10] |
M. Halimi, G. Millerioux and J. Daafouz,
Model-based modes detection and discernibility for switched affine discrete-time systems, IEEE Trans. on Automatic Control, 60 (2015), 1501-1514.
doi: 10.1109/TAC.2014.2383012. |
[11] |
W. Heemels, J. Daafouz and G. Millerioux,
Observer-based control of discrete-time LPV systems with uncertain parameters, IEEE Trans. on Automatic Control, 55 (2010), 2130-2135.
doi: 10.1109/TAC.2010.2051072. |
[12] |
S. Ibrir,
Static output feedback and guaranteed cost control of a class of discrete-time nonlinear systems with partial state measurements, Nonlinear Analysis, 68 (2008), 1784-1792.
doi: 10.1016/j.na.2007.01.011. |
[13] |
X.-Q. Jiang and L.-C. Zhang,
Stock price fluctuation prediction method based on time series analysis, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 915-927.
doi: 10.3934/dcdss.2019061. |
[14] |
H. Kheloufi, F. Bedouhene, A. Zemouche and A. Alessandri,
Observer-based stabilisation of linear systems with parameter uncertainties by using enhanced LMI conditions, Int. Journal of Control, 88 (2015), 1189-1200.
doi: 10.1080/00207179.2014.999258. |
[15] |
J. Li and Y. Liu,
Stabilization of a class of discrete-time switched systems via observer-based output feedback, Journal of Control Theory and Applications, 5 (2007), 307-311.
doi: 10.1007/s11768-006-6064-5. |
[16] |
Z. Li, C. Wen and Y. Soh,
Observer-based stabilization of switching linear systems, Automatica, 39 (2003), 517-524.
doi: 10.1016/S0005-1098(02)00267-4. |
[17] |
W. Lv and S. Ji,
Atmospheric environmental quality assessment method based on analytic hierarchy process, Discrete and Continuous Dynamical Systems - Series S, 12 (2019), 941-955.
doi: 10.3934/dcdss.2019063. |
[18] |
Y. Qiu, W. Chen and Q. Nie,
A hybrid method for stiff reaction-diffusion equations, Discrete and Continuous Dynamical Systems - Series B, 24 (2019), 6387-6417.
doi: 10.3934/dcdsb.2019144. |
[19] |
R. Rajamani, W. Jeon, H. Movahedi and A. Zemouche, On the need for switched-gain observers for non-monotonic nonlinear systems, Automatica J. IFAC, 114 (2020), 108814, 12 pp.
doi: 10.1016/j.automatica.2020.108814. |
[20] |
Z. Song and J. Zhao,
Observer-based robust $H_{\infty}$ control for uncertain switched systems, Journal of Control Theory and Applications, 5 (2007), 278-284.
doi: 10.1007/s11768-006-6053-8. |
[21] |
W. Xiang, J. Xiao and M. Iqbal,
Robust observer design for nonlinear uncertain switched systems under asynchronous switching, Nonlinear Analysis: Hybrid Systems, 6 (2012), 754-773.
doi: 10.1016/j.nahs.2011.08.001. |
[22] |
A. Zemouche and M. Boutayeb,
On LMI conditions to design observers for Lipschitz nonlinear systems, Automatica, 49 (2013), 585-591.
doi: 10.1016/j.automatica.2012.11.029. |







[1] |
Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128 |
[2] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[3] |
Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020405 |
[4] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[5] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[6] |
Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012 |
[7] |
Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120 |
[8] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[9] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
[10] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[11] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[12] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[13] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[14] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[15] |
S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020435 |
[16] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020375 |
[17] |
Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016 |
[18] |
Nalin Fonseka, Jerome Goddard II, Ratnasingham Shivaji, Byungjae Son. A diffusive weak Allee effect model with U-shaped emigration and matrix hostility. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020356 |
[19] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[20] |
Yubiao Liu, Chunguo Zhang, Tehuan Chen. Stabilization of 2-d Mindlin-Timoshenko plates with localized acoustic boundary feedback. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021006 |
2019 Impact Factor: 1.233
Tools
Article outline
Figures and Tables
[Back to Top]