[1]
|
A. Abdessameud, A. Tayebi and I. G. Polushin, Leader-follower synchronization of Euler-Lagrange systems with time-varying leader trajectory and constrained discrete-time communication, IEEE Trans. Autom. Control, 62 (2017), 2539-2545.
doi: 10.1109/TAC.2016.2602326.
|
[2]
|
C. Amato, G. Konidaris, A. Anders, G. Cruz, J. P. How and L. P. Kaelbling, Policy search for multi-robot coordination under uncertainty, Int. J. Robot. Res., 35 (2016), 1760-1778.
doi: 10.15607/RSS.2015.XI.007.
|
[3]
|
M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA, 1997.
doi: 10.1007/978-0-8176-4755-1.
|
[4]
|
D. P. Bertsekas, J. N. Tsitsiklis and A. Volgenant, Neuro-Dynamic Programming, Second edition. Athena Scientific Optimization and Computation Series. Athena Scientific, Belmont, MA, 1999.
|
[5]
|
D. P. Bertsekas, Dynamic Programming and Optimal Control, Athena scientific, Belmont, MA, 1995.
|
[6]
|
G. Chen, Y. Yue and Y. Song, Finite-time cooperative-tracking control for networked Euler-Lagrange systems, IET Control Theory Appl., 7 (2013), 1487-1497.
doi: 10.1049/iet-cta.2013.0205.
|
[7]
|
S. J. Chung and J. J. E. Slotine, Cooperative robot control and concurrent synchronization of Lagrangian systems, IEEE Trans. Robot., 25 (2009), 686-700.
|
[8]
|
D. V. Dimarogonas, E. Frazzoli and K. H. Johansson, Distributed event-triggered control for multi-agent systems, IEEE Trans. Autom. Control, 57 (2012), 1291-1297.
doi: 10.1109/TAC.2011.2174666.
|
[9]
|
F. Heppner and U. Grenander, A stochastic nonlinear model for coordinated bird flocks, Proc. Ubiquity Chaos, 233 (1990), 238.
|
[10]
|
W. Hu, L. Liu and G. Feng, Consensus of multi-agent systems by distributed event-triggered control, Proc. IFAC, 47 (2014), 9768-9773.
|
[11]
|
N. Huang, Z. Duan and Y. Zhao, Distributed consensus for multiple Euler-Lagrange systems: An event-triggered approach, Sci. China Technol. Sci., 59 (2016), 33-44.
doi: 10.1007/s11431-015-5987-9.
|
[12]
|
B. Igelnik and Y. H. Pao, Stochastic choice of basis functions in adaptive function approximation and the functional-link net, IEEE Trans. Neural Netw., 6 (1995), 1320-1329.
doi: 10.1109/72.471375.
|
[13]
|
X. Jin, D. Wei, W. He, L. Kocarev, Y. Tang and J. Kurths, Twisting-based finite-time consensus for Euler-Lagrange systems with an event-triggered strategy, IEEE Trans. Netw. Sci. Eng., (2019), 1–1.
doi: 10.1109/TNSE.2019.2900264.
|
[14]
|
Y. Katz, K. Tunstrøm, C. C. Ioannou, C. Huepe and I. D. Couzin, Inferring the structure and dynamics of interactions in schooling fish, Proc. Natl Acad. Sci., 108 (2011), 18720-18725.
doi: 10.1073/pnas.1107583108.
|
[15]
|
H. K. Khalil, Nonlinear Systems, Upper Saddle River, NJ: Prentice hall, 2002.
|
[16]
|
J. R. Klotz, Z. Kan, J. M. Shea, E. L. Pasiliao and W. E. Dixon, Asymptotic synchronization of a leader-follower network of uncertain Euler-Lagrange systems, IEEE Trans. Control Network Syst., 2 (2014), 174-182.
doi: 10.1109/TCNS.2014.2378875.
|
[17]
|
J. R. Klotz, S. Obuz, Z. Kan and W. E. Dixon, Synchronization of uncertain Euler-Lagrange systems with uncertain time-varying communication delays, IEEE Trans. Cybern., 48 (2018), 807-817.
doi: 10.1109/TCYB.2017.2657541.
|
[18]
|
F. L. Lewis, D. Vrabie and V. L. Syrmos, Optimal Control, John Wiley & Sons, New Jersey, 2012.
doi: 10.1002/9781118122631.
|
[19]
|
X. Li, X. Yang and T. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130-146.
doi: 10.1016/j.amc.2018.09.003.
|
[20]
|
J. Li, H. Modares, T. Chai, F. L. Lewis and L. Xie, Off-policy reinforcement learning for synchronization in multiagent graphical games, IEEE Trans. Neural Netw. Learn. Syst., 28 (2017), 2434-2445.
doi: 10.1109/TNNLS.2016.2609500.
|
[21]
|
A. Loria and H. Nijmeijer, Bounded output feedback tracking control of fully actuated Euler-Lagrange systems, Syst. Control Lett., 33 (1998), 151-161.
doi: 10.1016/S0167-6911(97)80170-3.
|
[22]
|
J. Mei, W. Ren and G. Ma, Distributed containment control for Lagrangian networks with parametric uncertainties under a directed graph, Automatica, 48 (2012), 653-659.
doi: 10.1016/j.automatica.2012.01.020.
|
[23]
|
J. J. Murray, C. J. Cox, G. G. Lendaris and R. Saeks, Adaptive dynamic programming, IEEE Trans. Syst. Man Cybern., 32 (2002), 140-153.
doi: 10.1109/TSMCC.2002.801727.
|
[24]
|
E. Nuno, R. Ortega, L. Basanez and D. Hill, Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays, IEEE Trans. Autom. Control, 56 (2011), 935-941.
doi: 10.1109/TAC.2010.2103415.
|
[25]
|
J. Qin, M. Li, Y. Shi, Q. Ma and W. X. Zheng, Optimal synchronization control of multiagent systems with input saturation via off-policy reinforcement learning, IEEE Trans. Neural Netw. Learn. Syst., 30 (2018), 85-96.
doi: 10.1109/TNNLS.2018.2832025.
|
[26]
|
Z. Qiu, Y. Hong and L. Xie, Optimal consensus of Euler-Lagrangian systems with kinematic constraints, Proc. IFAC, 49 (2016), 327-332.
doi: 10.1016/j.ifacol.2016.10.418.
|
[27]
|
J. Sarangapani, Neural Network Control of Nonlinear Discrete-Time Systems, CRC press, Boca Raton, 2006.
doi: 10.1201/9781420015454.
|
[28]
|
R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, Second edition. Adaptive Computation and Machine Learning. MIT Press, Cambridge, MA
|
[29]
|
Y. Tang, X. Wu, P. Shi and F. Qian, Input-to-state stability for nonlinear systems with stochastic impulses, Automatica, 113 (2020), 108766, 12pp.
doi: 10.1016/j.automatica.2019.108766.
|
[30]
|
K. G. Vamvoudakis, F. L. Lewis and G. R. Hudas, Multi-agent differential graphical games: Online adaptive learning solution for synchronization with optimality, Automatica, 48 (2012), 1598-1611.
doi: 10.1016/j.automatica.2012.05.074.
|
[31]
|
K. G. Vamvoudakis, Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems, IEEE/CAA J. Autom. Sinica, 1 (2014), 282-293.
|
[32]
|
X. F. Wang, Z. Deng, S. Ma and X. Du, Event-triggered design for multi-agent optimal consensus of Euler-Lagrangian systems, Kybernetika, 53 (2017), 179-194.
doi: 10.14736/kyb-2017-1-0179.
|
[33]
|
C. Wei, J. Luo, H. Dai and J. Yuan, Adaptive model-free constrained control of postcapture flexible spacecraft: A Euler–Lagrange approach, J. Vib. Contr., 24 (2018), 4885-4903.
doi: 10.1177/1077546317736965.
|
[34]
|
S. Weng, D. Yue and J. Shi, Distributed cooperative control for multiple photovoltaic generators in distribution power system under event-triggered mechanism, J. Franklin Inst., 353 (2016), 3407-3427.
doi: 10.1016/j.jfranklin.2016.06.015.
|
[35]
|
D. Yang, X. Li and J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal. Hybrid Syst., 32 (2019), 294-305.
doi: 10.1016/j.nahs.2019.01.006.
|
[36]
|
H. Zhang, F. L. Lewis and A. Das, Optimal design for synchronization of cooperative systems: State feedback, observer and output feedback, IEEE Trans. Autom. Control, 56 (2011), 1948-1952.
doi: 10.1109/TAC.2011.2139510.
|
[37]
|
W. Zhang, Y. Tang, T. Huang and A. V. Vasilakos, Consensus of networked Euler-Lagrange systems under time-varying sampled-data control, IEEE Trans. Ind. Inform., 14 (2018), 535-544.
doi: 10.1109/TII.2017.2715843.
|
[38]
|
W. Zhang, Q. Han, Y. Tang and Y. Liu, Sampled-data control for a class of linear time-varying systems, Automatica, 103 (2019), 126-134.
doi: 10.1016/j.automatica.2019.01.027.
|
[39]
|
W. Zhao and H. Zhang, Distributed optimal coordination control for nonlinear multi-agent systems using event-triggered adaptive dynamic programming method, ISA Trans., 91 (2019), 184-195.
doi: 10.1016/j.isatra.2019.01.021.
|