[1]
|
O. Candogan, A. Ozdaglar and P. A. Parrilo, Dynamics in near potential games, Games and Economic Behavior, 82 (2013), 66-90.
doi: 10.1016/j.geb.2013.07.001.
|
[2]
|
D. Cheng, H. Qi and Y. Zhao, An Introduction to Semi-Tensor Product of Matrices and Its Applications Networks, World Scientific Singapore, 2012.
|
[3]
|
D. Cheng, F. He, H. Qi and T. Xu, Modeling, analysis and control of networked evolutionary games, IEEE Transactions on Automatic Control, 60 (2015), 2402-2415.
doi: 10.1109/TAC.2015.2404471.
|
[4]
|
D. Cheng, H. Qi and Z. Li, Analysis and control of Boolean Networks - A Semi-tensor Product Approach, London: Springer, 2011.
|
[5]
|
D. Cheng, On finite potential games, Automatic, 50) (2014), 1793-1801.
doi: 10.1016/j.automatica.2014.05.005.
|
[6]
|
X. Ding, H. Li and Q. Yang, Stochastic stability and stabilization of n-person random evolutionary Boolean games, Applied Mathematics and Computation, 306 (2017), 1-12.
doi: 10.1016/j.amc.2017.02.020.
|
[7]
|
P. Dubey, Inefficiency of nash equilibria, Mathematics of Operations Research, 11 (1986), 1-8.
doi: 10.1287/moor.11.1.1.
|
[8]
|
J. Eliasson, L. Hultkrantz, L. Nerhagen and L. S. Rosqvist, The stockholm congestion-charging trial 2006: Overview of effects, Transportation Research Part A: Policy and Practice, 43 (2009), 240-250.
doi: 10.1016/j.tra.2008.09.007.
|
[9]
|
J. Fuglestvedt, T. Berntsen, G. Myhre, K. Rypdal and R. B. Skeie, Climate forcing from the transport sectors, Proceedings of the National Academy of Sciences of the United States of America, 105 (2008), 454-458.
doi: 10.1073/pnas.0702958104.
|
[10]
|
R. Gopalakrishnan, J. R. Marden and A. Wierman, An architectural view of game theoretic control, ACM Sigmetrics Performance Evaluation Review, 38 (2011), 31.
|
[11]
|
Y. Hao, S. Pan, Y. Qiao and D. Cheng, Cooperative control via congestion game approach, IEEE Transactions on Automatic Control, 63 (2018), 4361-4366.
doi: 10.1109/TAC.2018.2824978.
|
[12]
|
C. Huang, J. Lu, G. Zhai, J. Cao, G. Lu and M. Perc, Stability and stabilization in probability of probabilistic boolean networks, IEEE Transactions on Neural Networks and Learning Systems, (2020), 1–11.
doi: 10.1109/TNNLS.2020.2978345.
|
[13]
|
K. Hymel, Does traffic congestion reduce employment growth?, Journal of Urban Economics, 65 (2009), 127-135.
doi: 10.1016/j.jue.2008.11.002.
|
[14]
|
T. Liu, J. Wang and D. Cheng, Game theoretic control of multi-agent systems, SIAM J. Control Optimization, 57 (2019), 1691-1709.
doi: 10.1137/18M1177615.
|
[15]
|
C. Li, F. He, H. Qi and D. Cheng, Potential games design using local information, 2018 IEEE Conference on Decision and Control (CDC), 2018, arXiv: 1807.05779v1.
doi: 10.1109/CDC.2018.8619561.
|
[16]
|
S. Le, Y. Wu and X. Sun, Congestion games with player-specific utility functions and its application to NFV networks, IEEE Transactions on Automation Science and Engineering, 16 (2019), 1870-1881.
doi: 10.1109/TASE.2019.2899504.
|
[17]
|
B. Li, Y. Liu, K.I. Kou and L. Yu, Event-triggered control for the disturbance decoupling problem of Boolean control networks, IEEE Transactions on Cybernetics, 48 (2018), 2764-2769.
doi: 10.1109/TCYB.2017.2746102.
|
[18]
|
H. Li, X. Ding, A. Alsaedi and F. E. Alsaadi, Stochastic set stabilization of n-person random evolutionary Boolean games and its applications, IET Control Theory Application, 11 (2017), 2152-2160.
doi: 10.1049/iet-cta.2017.0047.
|
[19]
|
L. Lin, J. Cao and L. Rutkowski, Robust event-triggered control invariance of probabilistic Boolean control networks, IEEE Transactions on Neural Networks and Learning Systems, 31 (2020), 1060-1065.
doi: 10.1109/TNNLS.2019.2917753.
|
[20]
|
J. Lu, L. Sun, Y. Liu, D. W. C. Ho and J. Cao, Stabilization of Boolean control networks under aperiodic sampled-data control, SIAM Journal on Control and Optimization, 56 (2018), 4385-4404.
|
[21]
|
J. Lu, M. Li, T. Huang, Y. Liu and J. Cao, The transformation between the Galois NLFSRs and the Fibonacci NLFSRs via semi-tensor product of matrices, Automatica, 96 (2018), 393-397.
doi: 10.1016/j.automatica.2018.07.011.
|
[22]
|
S. Le, Y. Wu and X. Sun, A Generalization of weighted congestion game and its nash equilibrium seeking, Proceeding of the 37th Chinese Control Conference, 2018.
doi: 10.23919/ChiCC.2018.8483432.
|
[23]
|
I. Milchtaich, Representation of finite games as network congestion games, Int J Game Theory, 42 (2013), 1085-1096.
doi: 10.1007/s00182-012-0363-5.
|
[24]
|
D. Monderer and L. S. Shapley, Potential games, Games and Economic behavior, 14 (1996), 124-143.
doi: 10.1006/game.1996.0044.
|
[25]
|
H. Qi, Y. Wang, T. Liu and D. Cheng, Vector space structure of finite evolutionary games and its application to strategy profile convergence, Journal of Systems Science & Complexity, 29 (2016), 602-628.
doi: 10.1007/s11424-016-4192-7.
|
[26]
|
R. W. Rosenthal, A class of games possessing pure-strategy nash equilibria, International Journal of Game Theory, 2 (1973), 65-67.
doi: 10.1007/BF01737559.
|
[27]
|
R. W. Rosenthal, The network equilibrium problem in integers, Networks, 3 (1973), 53-59.
doi: 10.1002/net.3230030104.
|
[28]
|
L. Wang, M. Fang, Z. Wu and J. Lu, Necessary and sufficient condition on pinning stabilization for stochastic Boolean networks, IEEE Transactions on Cybernetics, 2019, 1–10.
doi: 10.1109/TCYB.2019.2931051.
|
[29]
|
Y. Wu and T. Shen, Policy iteration algorithm for optimal control of stochastic logical dynamical systems, IEEE Transactions on Neural Networks and Learning Systems, 29 (2018), 2031-2036.
doi: 10.1109/TNNLS.2017.2661863.
|
[30]
|
M. Xu, Y. Liu, J. Lou, Z. Wu and J. Zhong, Set stabilization of probabilistic Boolean control networks: A sampled-data control approach, IEEE Transactions on cybernetics, 2019, 1–8.
doi: 10.1109/TCYB.2019.2940654.
|
[31]
|
M. B. Yildirim and D. W. Hearn, A first best toll pricing framework for variable demand traffic assignment problems, Transportation Research Part B, 39 (2005), 659-678.
doi: 10.1016/j.trb.2004.08.001.
|
[32]
|
H. Yang and X. Wang, Managing network mobility with tradable credits, Transportation Research Part B, 45 (2011), 580-594.
doi: 10.1016/j.trb.2010.10.002.
|
[33]
|
H. Yang and X. Zhang, Multi-class network toll design problem with social and spatial equity constraints, Journal of Transportation Engineering, 128 (2002), 420-428.
|
[34]
|
H. Yang and X. Zhang, Existence of anonymous link tolls for system optimum on networks with mixed equilibrium behaviors, Transportation Research Part B, 42 (2010), 99-112.
|
[35]
|
X. Zhang, H. Yang and H. Huang, Multi-class multicriteria mixed equilibrium on networks and uniform link tolls for system optimum, European Journal of Operational Research, 189 (2008), 146-158.
doi: 10.1016/j.ejor.2007.05.004.
|
[36]
|
J. Zhong, B. Li, Y. Liu and W. Gui, Output feedback stabilizer design of Boolean networks based on network structure, Frontiers of Information Technology Electronic Engineering, 21 (2020), 247-259.
doi: 10.1631/FITEE.1900229.
|
[37]
|
J. Zhong, D. W. C. Ho and J. Lu, Pinning controllers for activation output tracking of Boolean network under one-bit perturbation, IEEE Transactions on Cybernetics, 49 (2019), 3398-3408.
doi: 10.1109/TCYB.2018.2842819.
|
[38]
|
S. Zhu, J. Lu and Y. Liu, Asymptotical stability of probabilistic Boolean networks with state delays, IEEE Transactions on Automatic Control, 65 (2020), 1779-1784.
doi: 10.1109/TAC.2019.2934532.
|
[39]
|
S. Zhu, J. Lu, Y. Liu, T. Huang and J. Kurths, Output tracking of probabilistic Boolean networks by output feedback control, Information Sciences, 483 (2019), 96-105.
doi: 10.1016/j.ins.2018.12.087.
|