• Previous Article
    A Novel Lyapunov functional with application to stability analysis of neutral systems with nonlinear disturbances
  • DCDS-S Home
  • This Issue
  • Next Article
    Input-to-state stability and no-inputs stabilization of delayed feedback chaotic financial system involved in open and closed economy
April  2021, 14(4): 1395-1414. doi: 10.3934/dcdss.2020379

Event-triggered adaptive fault-tolerant control for multi-agent systems with unknown disturbances

1. 

School of Automation and Guangdong Provincial Key Laboratory of Intelligent, Decision and Cooperative Control, Guangdong University of Technology, Guangzhou 510006, China

2. 

College of Engineering, Bohai University, Jinzhou 121013, China

* Corresponding author: Shubo Li

Received  January 2020 Revised  February 2020 Published  May 2020

This paper presents an event-triggered consensus control protocol for a class of multi-agent systems with actuator faults, sensor faults and unknown disturbances. The adaptive neural network compensation control method is introduced to solve the problem of sensor faults. The event-triggered mechanism is developed to reduce the communication burden. In the control design process, the radial basis function neural networks are used to approximate the unknown nonlinear functions, and a nonlinear disturbance observer is used to eliminate the effect of unknown external disturbances. Furthermore, based on the graph theory and Lyapunov stability theory, it is further shown that the consensus tracking errors are semi-globally uniformly ultimately bounded. Finally, the simulation example illustrates the effectiveness of the designed control protocol.

Citation: Hongru Ren, Shubo Li, Changxin Lu. Event-triggered adaptive fault-tolerant control for multi-agent systems with unknown disturbances. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1395-1414. doi: 10.3934/dcdss.2020379
References:
[1]

A. BounemeurM. Chemachema and N. Essounbouli, Indirect adaptive fuzzy fault-tolerant tracking control for mimo nonlinear systems with actuator and sensor failures, ISA Transactions, 79 (2018), 45-61.  doi: 10.1016/j.isatra.2018.04.014.  Google Scholar

[2]

L. Cao, H. Li, G. Dong and R. Lu, Event-triggered control for multiagent systems with sensor faults and input saturation, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 1–12. doi: 10.1109/TSMC.2019.2938216.  Google Scholar

[3]

Z. Chen, Q.-L. Han, Y. Yan and Z. Wu, How often should one update control and estimation: Review of networked triggering techniques, SCIENCE CHINA Information Sciences, 63 (2020), 150201. doi: 10.1007/s11432-019-2637-9.  Google Scholar

[4]

P. Du, H. Liang, S. Zhao and C. K. Ahn, Neural-based decentralized adaptive finite-time control for nonlinear large-scale systems with time-varying output constraints, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 1–12. doi: 10.1109/TSMC.2019.2918351.  Google Scholar

[5]

Z. HouL. Cheng and M. Tan, Decentralized robust adaptive control for the multiagent system consensus problem using neural networks, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39 (2009), 636-647.  doi: 10.1109/TSMCB.2008.2007810.  Google Scholar

[6]

J. HuY. WuT. Li and B. K. Ghosh, Consensus control of general linear multiagent systems with antagonistic interactions and communication noises, IEEE Transactions on Automatic Control, 64 (2018), 2122-2127.  doi: 10.1109/TAC.2018.2872197.  Google Scholar

[7]

W. HuL. Liu and G. Feng, Consensus of linear multi-agent systems by distributed event-triggered strategy, IEEE Transactions on Cybernetics, 46 (2016), 148-157.  doi: 10.1109/TCYB.2015.2398892.  Google Scholar

[8]

W. HuL. Liu and G. Feng, Event-triggered cooperative output regulation of linear multi-agent systems under jointly connected topologies, IEEE Transactions on Automatic Control, 64 (2019), 1317-1322.  doi: 10.1109/TAC.2018.2849587.  Google Scholar

[9]

C. HuaK. Li and X. Guan, Leader-following output consensus for high-order nonlinear multiagent systems, IEEE Transactions on Automatic Control, 64 (2018), 1156-1161.  doi: 10.1109/TAC.2018.2836024.  Google Scholar

[10]

M. Hui, L. Hongyi, L. Renquan and T. Huang, Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances, SCIENCE CHINA Information Sciences, 63 (2020), 150212. doi: 10.1007/s11432-019-2680-1.  Google Scholar

[11]

J. LengH. ZhangD. YanQ. LiuX. Chen and D. Zhang, Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop, Journal of Ambient Intelligence and Humanized Computing, 10 (2019), 1155-1166.  doi: 10.1007/s12652-018-0881-5.  Google Scholar

[12]

X. LiD. W. Ho and J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361-368.  doi: 10.1016/j.automatica.2018.10.024.  Google Scholar

[13]

X. Li and S. Song, Stabilization of delay systems: Delay-dependent impulsive control, IEEE Transactions on Automatic Control, 62 (2017), 406-411.  doi: 10.1109/TAC.2016.2530041.  Google Scholar

[14]

X. Li and J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica, 64 (2016), 63-69.  doi: 10.1016/j.automatica.2015.10.002.  Google Scholar

[15]

X. LiX. Yang and S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135-140.  doi: 10.1016/j.automatica.2019.01.031.  Google Scholar

[16]

Y. Li and G. Yang, Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems with actuator faults and unknown dead zones, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47 (2016), 729-740.  doi: 10.1109/TSMC.2016.2521824.  Google Scholar

[17]

H. Liang, L. Zhang, Y. Sun and T. Huang, Containment control of semi-Markovian multiagent systems with switching topologies, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 1–11. doi: 10.1109/TSMC.2019.2946248.  Google Scholar

[18]

H. Liang, X. Guo, Y. Pan and T. Huang, Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers, IEEE Transactions on Fuzzy Systems, 2020, 1–1. doi: 10.1109/TFUZZ.2020.2982618.  Google Scholar

[19]

Q. LiuH. ZhangJ. Leng and X. Chen, Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system, International Journal of Production Research, 57 (2019), 3903-3919.  doi: 10.1080/00207543.2018.1471243.  Google Scholar

[20]

Y. LiuX. LiuY. JingX. Chen and J. Qiu, Direct adaptive preassigned finite-time control with time-delay and quantized input using neural network, IEEE Transactions on Neural Networks and Learning Systems, 31 (2020), 1222-1231.  doi: 10.1109/TNNLS.2019.2919577.  Google Scholar

[21]

Q. Liu, J. Leng, D. Yan, D. Zhang, L. Wei, A. Yu, R. Zhao, H. Zhang and X. Chen, Digital twin-based designing of the configuration, motion, control, and optimization model of a flow-type smart manufacturing system, Journal of Manufacturing Systems, 2020, 1–13. doi: 10.1016/j.jmsy.2020.04.012.  Google Scholar

[22]

Y. LiuX. LiuY. Jing and Z. Zhang, A novel finite-time adaptive fuzzy tracking control scheme for nonstrict feedback systems, IEEE Transactions on Fuzzy Systems, 27 (2018), 646-658.  doi: 10.1109/TFUZZ.2018.2866264.  Google Scholar

[23]

R. LuY. XuA. Xue and J. Zheng, Networked control with state reset and quantized measurements: Observer-based case, IEEE Transactions on Industrial Electronics, 60 (2012), 5206-5213.  doi: 10.1109/TIE.2012.2227910.  Google Scholar

[24]

R. LuW. YuJ. Lü and A. Xue, Synchronization on complex networks of networks, IEEE Transactions on Neural Networks and Learning Systems, 25 (2014), 2110-2118.  doi: 10.1109/TNNLS.2014.2305443.  Google Scholar

[25]

S. Luo and D. Ye, Adaptive double event-triggered control for linear multi-agent systems with actuator faults, IEEE Transactions on Circuits and Systems I: Regular Papers, 66 (2019), 4829-4839.  doi: 10.1109/TCSI.2019.2932084.  Google Scholar

[26]

Y. QianL. Liu and G. Feng, Output consensus of heterogeneous linear multi-agent systems with adaptive event-triggered control, IEEE Transactions on Automatic Control, 64 (2018), 2606-2613.  doi: 10.1109/TAC.2018.2868997.  Google Scholar

[27]

W. Ren, Distributed attitude alignment in spacecraft formation flying, Internat. J. Adapt. Control Signal Process., 21 (2007), 95-113.  doi: 10.1002/acs.916.  Google Scholar

[28]

R. O. Saber and R. M. Murray, Consensus protocols for networks of dynamic agents, 2003 American Control Conference, 2 (2003), 951-956.  doi: 10.1109/ACC.2003.1239709.  Google Scholar

[29]

R. SakthivelA. ParivallalB. KaviarasanH. Lee and Y. Lim, Finite-time consensus of Markov jumping multi-agent systems with time-varying actuator faults and input saturation, ISA Transactions, 83 (2018), 89-99.  doi: 10.1016/j.isatra.2018.08.016.  Google Scholar

[30]

R. SakthivelR. SakthivelB. KaviarasanH. Lee and Y. Lim, Finite-time leaderless consensus of uncertain multi-agent systems against time-varying actuator faults, Neurocomputing, 325 (2019), 159-171.  doi: 10.1016/j.neucom.2018.10.020.  Google Scholar

[31]

Y. SuQ. Wang and C. Sun, Self-triggered consensus control for linear multi-agent systems with input saturation, IEEE/CAA Journal of Automatica Sinica, 7 (2020), 150-157.  doi: 10.1109/JAS.2019.1911837.  Google Scholar

[32]

Y. SuB. ChenC. LinH. Wang and S. Zhou, Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach, Information Sciences, 369 (2016), 748-764.  doi: 10.1016/j.ins.2016.06.010.  Google Scholar

[33]

D. Sumpter and S. Pratt, A modelling framework for understanding social insect foraging, Behavioral Ecology and Sociobiology, 53 (2003), 131-144.  doi: 10.1007/s00265-002-0549-0.  Google Scholar

[34]

X. TanJ. Cao and X. Li, Consensus of leader-following multiagent systems: A distributed event-triggered impulsive control strategy, IEEE Transactions on Cybernetics, 49 (2018), 792-801.  doi: 10.1109/TCYB.2017.2786474.  Google Scholar

[35]

A. WangX. Liao and T. Dong, Fractional-order follower observer design for tracking consensus in second-order leader multi-agent systems: Periodic sampled-based event-triggered control, Journal of the Franklin Institute, 355 (2018), 4618-4628.  doi: 10.1016/j.jfranklin.2018.01.036.  Google Scholar

[36]

W. Wang, H. Liang, Y. Pan and T. Li, Prescribed performance adaptive fuzzy containment control for nonlinear multi-agent systems using disturbance observer, IEEE Transactions on Cybernetics, 2020, 1–13. doi: 10.1109/TCYB.2020.2969499.  Google Scholar

[37]

X. WangS. LiX. Yu and J. Yang, Distributed active anti-disturbance consensus for leader-follower higher-order multi-agent systems with mismatched disturbances, IEEE Transactions on Automatic Control, 62 (2017), 5795-5801.  doi: 10.1109/TAC.2016.2638966.  Google Scholar

[38]

H. Wu and H. Su, Observer-based consensus for positive multiagent systems with directed topology and nonlinear control input, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49 (2018), 1459-1469.  doi: 10.1109/TSMC.2018.2852704.  Google Scholar

[39]

Y. WuZ. WangS. Ding and H. Zhang, Leader–follower consensus of multi-agent systems in directed networks with actuator faults, Neurocomputing, 275 (2018), 1177-1185.  doi: 10.1016/j.neucom.2017.09.066.  Google Scholar

[40]

G. Xie, L. Sun, T. Wen, X. Hei and F. Qian, Adaptive transition probability matrix-based parallel IMM algorithm, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 1–10. doi: 10.1109/TSMC.2019.2922305.  Google Scholar

[41]

D. Yao, H. Li, R. Lu and Y. Shi, Distributed sliding mode tracking control of second-order nonlinear multi-agent systems: An event-triggered approach, IEEE Transactions on Cybernetics, 2020, 1-11. doi: 10.1109/TCYB.2019.2963087.  Google Scholar

[42]

F. YeB. SunL. Ou and W. Zhang, Disturbance observer-based control for consensus tracking of multi-agent systems with input delays from a frequency domain perspective, Systems & Control Letters, 114 (2018), 66-75.  doi: 10.1016/j.sysconle.2017.12.005.  Google Scholar

[43]

Y. YeH. Su and Y. Sun, Event-triggered consensus tracking for fractional-order multi-agent systems with general linear models, Neurocomputing, 315 (2018), 292-298.  doi: 10.1016/j.neucom.2018.07.024.  Google Scholar

[44]

X. YouC. Hua and X. Guan, Event-triggered leader-following consensus for nonlinear multiagent systems subject to actuator saturation using dynamic output feedback method, IEEE Transactions on Automatic Control, 63 (2018), 4391-4396.  doi: 10.1109/TAC.2018.2817160.  Google Scholar

[45]

C. Zhang and G. Yang, Event-triggered adaptive output feedback control for a class of uncertain nonlinear systems with actuator failures, IEEE Transactions on Cybernetics, 50 (2018), 201-210.  doi: 10.1109/TCYB.2018.2868169.  Google Scholar

[46]

H. Zhang and F. L. Lewis, Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics, Automatica, 48 (2012), 1432-1439.  doi: 10.1016/j.automatica.2012.05.008.  Google Scholar

[47]

H. ZhangF. L. Lewis and Z. Qu, Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs, IEEE Transactions on Industrial Electronics, 59 (2012), 3026-3041.  doi: 10.1109/TIE.2011.2160140.  Google Scholar

[48]

L. Zhang, H. Liang, Y. Sun and C. K. Ahn, Adaptive event-triggered fault detection scheme for semi-Markovian jump systems with output quantization, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 1–12. doi: 10.1109/TSMC.2019.2912846.  Google Scholar

[49]

X.-M. ZhangQ.-L. HanX. GeD. DingL. DingD. Yue and C. Peng, Networked control systems: A survey of trends and techniques, IEEE/CAA Journal of Automatica Sinica, 7 (2020), 1-17.  doi: 10.1109/JAS.2019.1911651.  Google Scholar

[50]

S. ZhengP. ShiS. Wang and Y. Shi, Event triggered adaptive fuzzy consensus for interconnected switched multiagent systems, IEEE Transactions on Fuzzy Systems, 27 (2019), 144-158.  doi: 10.1109/TFUZZ.2018.2873968.  Google Scholar

[51]

Q. Zhou, P. Du, H. Li, R. Lu and J. Yang, Adaptive fixed-time control of error-constrained pure-feedback interconnected nonlinear systems, IEEE Transactions on Systems, Man and Cybernetics: Systems, 2019, 1–12. doi: 10.1109/TSMC.2019.2961371.  Google Scholar

[52]

Q. Zhou, W. Wang, H. Liang, M. Basin and B. Wang, Observer-based event-triggered fuzzy adaptive bipartite containment control of multi-agent systems with input quantization, IEEE Transactions on Fuzzy Systems, 2019, 1–1. doi: 10.1109/TFUZZ.2019.2953573.  Google Scholar

[53]

Q. Zhou, W. Wang, H. Ma and H. Li, Event-triggered fuzzy adaptive containment control for nonlinear multi-agent systems with unknown Bouc-Wen hysteresis input, IEEE Transactions on Fuzzy Systems, 2019, 1–1. doi: 10.1109/TFUZZ.2019.2961642.  Google Scholar

[54]

S. Zhu, Y. Liu, Y. Lou and J. Cao, Stabilization of logical control networks: An event-triggered control approach, SCIENCE CHINA Information Sciences, 63 (2020), 112203. doi: 10.1007/s11432-019-9898-3.  Google Scholar

[55]

Z. Zhu, Y. Pan, Q. Zhou and C. Lu, Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis, IEEE Transactions on Fuzzy Systems, 2019, 1–1. doi: 10.1109/TFUZZ.2020.2973950.  Google Scholar

show all references

References:
[1]

A. BounemeurM. Chemachema and N. Essounbouli, Indirect adaptive fuzzy fault-tolerant tracking control for mimo nonlinear systems with actuator and sensor failures, ISA Transactions, 79 (2018), 45-61.  doi: 10.1016/j.isatra.2018.04.014.  Google Scholar

[2]

L. Cao, H. Li, G. Dong and R. Lu, Event-triggered control for multiagent systems with sensor faults and input saturation, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 1–12. doi: 10.1109/TSMC.2019.2938216.  Google Scholar

[3]

Z. Chen, Q.-L. Han, Y. Yan and Z. Wu, How often should one update control and estimation: Review of networked triggering techniques, SCIENCE CHINA Information Sciences, 63 (2020), 150201. doi: 10.1007/s11432-019-2637-9.  Google Scholar

[4]

P. Du, H. Liang, S. Zhao and C. K. Ahn, Neural-based decentralized adaptive finite-time control for nonlinear large-scale systems with time-varying output constraints, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 1–12. doi: 10.1109/TSMC.2019.2918351.  Google Scholar

[5]

Z. HouL. Cheng and M. Tan, Decentralized robust adaptive control for the multiagent system consensus problem using neural networks, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39 (2009), 636-647.  doi: 10.1109/TSMCB.2008.2007810.  Google Scholar

[6]

J. HuY. WuT. Li and B. K. Ghosh, Consensus control of general linear multiagent systems with antagonistic interactions and communication noises, IEEE Transactions on Automatic Control, 64 (2018), 2122-2127.  doi: 10.1109/TAC.2018.2872197.  Google Scholar

[7]

W. HuL. Liu and G. Feng, Consensus of linear multi-agent systems by distributed event-triggered strategy, IEEE Transactions on Cybernetics, 46 (2016), 148-157.  doi: 10.1109/TCYB.2015.2398892.  Google Scholar

[8]

W. HuL. Liu and G. Feng, Event-triggered cooperative output regulation of linear multi-agent systems under jointly connected topologies, IEEE Transactions on Automatic Control, 64 (2019), 1317-1322.  doi: 10.1109/TAC.2018.2849587.  Google Scholar

[9]

C. HuaK. Li and X. Guan, Leader-following output consensus for high-order nonlinear multiagent systems, IEEE Transactions on Automatic Control, 64 (2018), 1156-1161.  doi: 10.1109/TAC.2018.2836024.  Google Scholar

[10]

M. Hui, L. Hongyi, L. Renquan and T. Huang, Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances, SCIENCE CHINA Information Sciences, 63 (2020), 150212. doi: 10.1007/s11432-019-2680-1.  Google Scholar

[11]

J. LengH. ZhangD. YanQ. LiuX. Chen and D. Zhang, Digital twin-driven manufacturing cyber-physical system for parallel controlling of smart workshop, Journal of Ambient Intelligence and Humanized Computing, 10 (2019), 1155-1166.  doi: 10.1007/s12652-018-0881-5.  Google Scholar

[12]

X. LiD. W. Ho and J. Cao, Finite-time stability and settling-time estimation of nonlinear impulsive systems, Automatica, 99 (2019), 361-368.  doi: 10.1016/j.automatica.2018.10.024.  Google Scholar

[13]

X. Li and S. Song, Stabilization of delay systems: Delay-dependent impulsive control, IEEE Transactions on Automatic Control, 62 (2017), 406-411.  doi: 10.1109/TAC.2016.2530041.  Google Scholar

[14]

X. Li and J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses, Automatica, 64 (2016), 63-69.  doi: 10.1016/j.automatica.2015.10.002.  Google Scholar

[15]

X. LiX. Yang and S. Song, Lyapunov conditions for finite-time stability of time-varying time-delay systems, Automatica, 103 (2019), 135-140.  doi: 10.1016/j.automatica.2019.01.031.  Google Scholar

[16]

Y. Li and G. Yang, Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems with actuator faults and unknown dead zones, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47 (2016), 729-740.  doi: 10.1109/TSMC.2016.2521824.  Google Scholar

[17]

H. Liang, L. Zhang, Y. Sun and T. Huang, Containment control of semi-Markovian multiagent systems with switching topologies, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 1–11. doi: 10.1109/TSMC.2019.2946248.  Google Scholar

[18]

H. Liang, X. Guo, Y. Pan and T. Huang, Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers, IEEE Transactions on Fuzzy Systems, 2020, 1–1. doi: 10.1109/TFUZZ.2020.2982618.  Google Scholar

[19]

Q. LiuH. ZhangJ. Leng and X. Chen, Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system, International Journal of Production Research, 57 (2019), 3903-3919.  doi: 10.1080/00207543.2018.1471243.  Google Scholar

[20]

Y. LiuX. LiuY. JingX. Chen and J. Qiu, Direct adaptive preassigned finite-time control with time-delay and quantized input using neural network, IEEE Transactions on Neural Networks and Learning Systems, 31 (2020), 1222-1231.  doi: 10.1109/TNNLS.2019.2919577.  Google Scholar

[21]

Q. Liu, J. Leng, D. Yan, D. Zhang, L. Wei, A. Yu, R. Zhao, H. Zhang and X. Chen, Digital twin-based designing of the configuration, motion, control, and optimization model of a flow-type smart manufacturing system, Journal of Manufacturing Systems, 2020, 1–13. doi: 10.1016/j.jmsy.2020.04.012.  Google Scholar

[22]

Y. LiuX. LiuY. Jing and Z. Zhang, A novel finite-time adaptive fuzzy tracking control scheme for nonstrict feedback systems, IEEE Transactions on Fuzzy Systems, 27 (2018), 646-658.  doi: 10.1109/TFUZZ.2018.2866264.  Google Scholar

[23]

R. LuY. XuA. Xue and J. Zheng, Networked control with state reset and quantized measurements: Observer-based case, IEEE Transactions on Industrial Electronics, 60 (2012), 5206-5213.  doi: 10.1109/TIE.2012.2227910.  Google Scholar

[24]

R. LuW. YuJ. Lü and A. Xue, Synchronization on complex networks of networks, IEEE Transactions on Neural Networks and Learning Systems, 25 (2014), 2110-2118.  doi: 10.1109/TNNLS.2014.2305443.  Google Scholar

[25]

S. Luo and D. Ye, Adaptive double event-triggered control for linear multi-agent systems with actuator faults, IEEE Transactions on Circuits and Systems I: Regular Papers, 66 (2019), 4829-4839.  doi: 10.1109/TCSI.2019.2932084.  Google Scholar

[26]

Y. QianL. Liu and G. Feng, Output consensus of heterogeneous linear multi-agent systems with adaptive event-triggered control, IEEE Transactions on Automatic Control, 64 (2018), 2606-2613.  doi: 10.1109/TAC.2018.2868997.  Google Scholar

[27]

W. Ren, Distributed attitude alignment in spacecraft formation flying, Internat. J. Adapt. Control Signal Process., 21 (2007), 95-113.  doi: 10.1002/acs.916.  Google Scholar

[28]

R. O. Saber and R. M. Murray, Consensus protocols for networks of dynamic agents, 2003 American Control Conference, 2 (2003), 951-956.  doi: 10.1109/ACC.2003.1239709.  Google Scholar

[29]

R. SakthivelA. ParivallalB. KaviarasanH. Lee and Y. Lim, Finite-time consensus of Markov jumping multi-agent systems with time-varying actuator faults and input saturation, ISA Transactions, 83 (2018), 89-99.  doi: 10.1016/j.isatra.2018.08.016.  Google Scholar

[30]

R. SakthivelR. SakthivelB. KaviarasanH. Lee and Y. Lim, Finite-time leaderless consensus of uncertain multi-agent systems against time-varying actuator faults, Neurocomputing, 325 (2019), 159-171.  doi: 10.1016/j.neucom.2018.10.020.  Google Scholar

[31]

Y. SuQ. Wang and C. Sun, Self-triggered consensus control for linear multi-agent systems with input saturation, IEEE/CAA Journal of Automatica Sinica, 7 (2020), 150-157.  doi: 10.1109/JAS.2019.1911837.  Google Scholar

[32]

Y. SuB. ChenC. LinH. Wang and S. Zhou, Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach, Information Sciences, 369 (2016), 748-764.  doi: 10.1016/j.ins.2016.06.010.  Google Scholar

[33]

D. Sumpter and S. Pratt, A modelling framework for understanding social insect foraging, Behavioral Ecology and Sociobiology, 53 (2003), 131-144.  doi: 10.1007/s00265-002-0549-0.  Google Scholar

[34]

X. TanJ. Cao and X. Li, Consensus of leader-following multiagent systems: A distributed event-triggered impulsive control strategy, IEEE Transactions on Cybernetics, 49 (2018), 792-801.  doi: 10.1109/TCYB.2017.2786474.  Google Scholar

[35]

A. WangX. Liao and T. Dong, Fractional-order follower observer design for tracking consensus in second-order leader multi-agent systems: Periodic sampled-based event-triggered control, Journal of the Franklin Institute, 355 (2018), 4618-4628.  doi: 10.1016/j.jfranklin.2018.01.036.  Google Scholar

[36]

W. Wang, H. Liang, Y. Pan and T. Li, Prescribed performance adaptive fuzzy containment control for nonlinear multi-agent systems using disturbance observer, IEEE Transactions on Cybernetics, 2020, 1–13. doi: 10.1109/TCYB.2020.2969499.  Google Scholar

[37]

X. WangS. LiX. Yu and J. Yang, Distributed active anti-disturbance consensus for leader-follower higher-order multi-agent systems with mismatched disturbances, IEEE Transactions on Automatic Control, 62 (2017), 5795-5801.  doi: 10.1109/TAC.2016.2638966.  Google Scholar

[38]

H. Wu and H. Su, Observer-based consensus for positive multiagent systems with directed topology and nonlinear control input, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49 (2018), 1459-1469.  doi: 10.1109/TSMC.2018.2852704.  Google Scholar

[39]

Y. WuZ. WangS. Ding and H. Zhang, Leader–follower consensus of multi-agent systems in directed networks with actuator faults, Neurocomputing, 275 (2018), 1177-1185.  doi: 10.1016/j.neucom.2017.09.066.  Google Scholar

[40]

G. Xie, L. Sun, T. Wen, X. Hei and F. Qian, Adaptive transition probability matrix-based parallel IMM algorithm, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 1–10. doi: 10.1109/TSMC.2019.2922305.  Google Scholar

[41]

D. Yao, H. Li, R. Lu and Y. Shi, Distributed sliding mode tracking control of second-order nonlinear multi-agent systems: An event-triggered approach, IEEE Transactions on Cybernetics, 2020, 1-11. doi: 10.1109/TCYB.2019.2963087.  Google Scholar

[42]

F. YeB. SunL. Ou and W. Zhang, Disturbance observer-based control for consensus tracking of multi-agent systems with input delays from a frequency domain perspective, Systems & Control Letters, 114 (2018), 66-75.  doi: 10.1016/j.sysconle.2017.12.005.  Google Scholar

[43]

Y. YeH. Su and Y. Sun, Event-triggered consensus tracking for fractional-order multi-agent systems with general linear models, Neurocomputing, 315 (2018), 292-298.  doi: 10.1016/j.neucom.2018.07.024.  Google Scholar

[44]

X. YouC. Hua and X. Guan, Event-triggered leader-following consensus for nonlinear multiagent systems subject to actuator saturation using dynamic output feedback method, IEEE Transactions on Automatic Control, 63 (2018), 4391-4396.  doi: 10.1109/TAC.2018.2817160.  Google Scholar

[45]

C. Zhang and G. Yang, Event-triggered adaptive output feedback control for a class of uncertain nonlinear systems with actuator failures, IEEE Transactions on Cybernetics, 50 (2018), 201-210.  doi: 10.1109/TCYB.2018.2868169.  Google Scholar

[46]

H. Zhang and F. L. Lewis, Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics, Automatica, 48 (2012), 1432-1439.  doi: 10.1016/j.automatica.2012.05.008.  Google Scholar

[47]

H. ZhangF. L. Lewis and Z. Qu, Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs, IEEE Transactions on Industrial Electronics, 59 (2012), 3026-3041.  doi: 10.1109/TIE.2011.2160140.  Google Scholar

[48]

L. Zhang, H. Liang, Y. Sun and C. K. Ahn, Adaptive event-triggered fault detection scheme for semi-Markovian jump systems with output quantization, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 1–12. doi: 10.1109/TSMC.2019.2912846.  Google Scholar

[49]

X.-M. ZhangQ.-L. HanX. GeD. DingL. DingD. Yue and C. Peng, Networked control systems: A survey of trends and techniques, IEEE/CAA Journal of Automatica Sinica, 7 (2020), 1-17.  doi: 10.1109/JAS.2019.1911651.  Google Scholar

[50]

S. ZhengP. ShiS. Wang and Y. Shi, Event triggered adaptive fuzzy consensus for interconnected switched multiagent systems, IEEE Transactions on Fuzzy Systems, 27 (2019), 144-158.  doi: 10.1109/TFUZZ.2018.2873968.  Google Scholar

[51]

Q. Zhou, P. Du, H. Li, R. Lu and J. Yang, Adaptive fixed-time control of error-constrained pure-feedback interconnected nonlinear systems, IEEE Transactions on Systems, Man and Cybernetics: Systems, 2019, 1–12. doi: 10.1109/TSMC.2019.2961371.  Google Scholar

[52]

Q. Zhou, W. Wang, H. Liang, M. Basin and B. Wang, Observer-based event-triggered fuzzy adaptive bipartite containment control of multi-agent systems with input quantization, IEEE Transactions on Fuzzy Systems, 2019, 1–1. doi: 10.1109/TFUZZ.2019.2953573.  Google Scholar

[53]

Q. Zhou, W. Wang, H. Ma and H. Li, Event-triggered fuzzy adaptive containment control for nonlinear multi-agent systems with unknown Bouc-Wen hysteresis input, IEEE Transactions on Fuzzy Systems, 2019, 1–1. doi: 10.1109/TFUZZ.2019.2961642.  Google Scholar

[54]

S. Zhu, Y. Liu, Y. Lou and J. Cao, Stabilization of logical control networks: An event-triggered control approach, SCIENCE CHINA Information Sciences, 63 (2020), 112203. doi: 10.1007/s11432-019-9898-3.  Google Scholar

[55]

Z. Zhu, Y. Pan, Q. Zhou and C. Lu, Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis, IEEE Transactions on Fuzzy Systems, 2019, 1–1. doi: 10.1109/TFUZZ.2020.2973950.  Google Scholar

Figure 1.  Topology of communication graph
Figure 2.  Output trajectories of followers and the leader
Figure 3.  The trajectories of tracking errors
Figure 4.  The trajectories of event-triggered controllers
Figure 5.  The trajectories of errors between disturbances and disturbance observers
Figure 6.  The trajectories of errors between disturbances and disturbance observers
Figure 7.  Triggering instants and inter-event intervals
[1]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[2]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[3]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

[4]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[5]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[6]

Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

[7]

Yuta Ishii, Kazuhiro Kurata. Existence of multi-peak solutions to the Schnakenberg model with heterogeneity on metric graphs. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021035

[8]

Yongkun Wang, Fengshou He, Xiaobo Deng. Multi-aircraft cooperative path planning for maneuvering target detection. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021050

[9]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[10]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[11]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[12]

Namsu Ahn, Soochan Kim. Optimal and heuristic algorithms for the multi-objective vehicle routing problem with drones for military surveillance operations. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021037

[13]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[14]

Shoufeng Ji, Jinhuan Tang, Minghe Sun, Rongjuan Luo. Multi-objective optimization for a combined location-routing-inventory system considering carbon-capped differences. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021051

[15]

Haodong Chen, Hongchun Sun, Yiju Wang. A complementarity model and algorithm for direct multi-commodity flow supply chain network equilibrium problem. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2217-2242. doi: 10.3934/jimo.2020066

[16]

Kazeem Olalekan Aremu, Chinedu Izuchukwu, Grace Nnenanya Ogwo, Oluwatosin Temitope Mewomo. Multi-step iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2161-2180. doi: 10.3934/jimo.2020063

[17]

Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064

[18]

Ru Li, Guolin Yu. Strict efficiency of a multi-product supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2203-2215. doi: 10.3934/jimo.2020065

[19]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[20]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (273)
  • HTML views (402)
  • Cited by (0)

Other articles
by authors

[Back to Top]