
-
Previous Article
An automated segmentation of NATURA 2000 habitats from Sentinel-2 optical data
- DCDS-S Home
- This Issue
-
Next Article
Computational optimization in solving the geodetic boundary value problems
Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems
Division of Mathematical and Physical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan |
We consider a boundary value problem for the stationary Stokes problem and the corresponding pressure-Poisson equation. We propose a new formulation for the pressure-Poisson problem with an appropriate additional boundary condition. We establish error estimates between solutions to the Stokes problem and the pressure-Poisson problem in terms of the additional boundary condition. As boundary conditions for the Stokes problem, we use a traction boundary condition and a pressure boundary condition introduced in C. Conca et al (1994).
References:
[1] |
A. A. Amsden and F. H. Harlow,
A simplified MAC technique for incompressible fluid flow calculations, J. Comput. Phys., 6 (1970), 322-325.
doi: 10.1016/0021-9991(70)90029-X. |
[2] |
C. Bernardi, T. Chacón Rebollo and D. Yakoubi,
Finite element discretization of the Stokes and Navier–Stokes equations with boundary conditions on the pressure, SIAM J. Numer. Anal., 53 (2015), 1256-1279.
doi: 10.1137/140972299. |
[3] |
S. Bertoluzza, V. Chabannes, C. Prud'homme and M. Szopos,
Boundary conditions involving pressure for the Stokes problem and applications in computational hemodynamics, Comput. Methods Appl. Mech. Engrg., 322 (2017), 58-80.
doi: 10.1016/j.cma.2017.04.024. |
[4] |
A. J. Chorin,
Numerical solution of the Navier-Stokes equations, Math. Comput., 22 (1968), 745-762.
doi: 10.1090/S0025-5718-1968-0242392-2. |
[5] |
C. Conca, F. Murat and O. Pironneau,
The Stokes and Navier-Stokes equations with boundary conditions involving the pressure, Jpn. J. Math. (N.S.), 20 (1994), 279-318.
doi: 10.4099/math1924.20.279. |
[6] |
C. Conca, C. Parés, O. Pironneau and M. Thiriet,
Navier-Stokes equations with imposed pressure and velocity fluxes, Int. J. Numer. Meth. Fluids, 20 (1995), 267-287.
doi: 10.1002/fld.1650200402. |
[7] |
S. J. Cummins and M. Rudman,
An SPH projection method, J. Comput. Phys., 152 (1999), 584-607.
doi: 10.1006/jcph.1999.6246. |
[8] |
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, 5. Springer-Verlag, Berlin, 1986.
doi: 10.1007/978-3-642-61623-5. |
[9] |
P. M. Gresho and R. L. Sani,
On pressure boundary conditions for the incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 7 (1987), 1111-1145.
doi: 10.1002/fld.1650071008. |
[10] |
J.-L. Guermond, P. Minev and J. Shen,
An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195 (2006), 6011-6045.
doi: 10.1016/j.cma.2005.10.010. |
[11] |
J.-L. Guermond and L. Quartapelle,
On stability and convergence of projection methods based on pressure Poisson equation, Int. J. Numer. Meth. Fluids, 26 (1998), 1039-1053.
doi: 10.1002/(SICI)1097-0363(19980515)26:9<1039::AID-FLD675>3.0.CO;2-U. |
[12] |
F. H. Harlow and J. E. Welch,
Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, The Physics of Fluids, 8 (1965), 2182-2189.
doi: 10.1063/1.1761178. |
[13] |
J. Kim and P. Moin,
Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985), 308-323.
doi: 10.1016/0021-9991(85)90148-2. |
[14] |
J. Liu,
Open and traction boundary conditions for the incompressible Navier-Stokes equations, J. Comput. Phys., 228 (2009), 7250-7267.
doi: 10.1016/j.jcp.2009.06.021. |
[15] |
S. Marušić,
On the Navier-Stokes system with pressure boundary condition, Ann. Univ. Ferrara, 53 (2007), 319-331.
doi: 10.1007/s11565-007-0024-y. |
[16] |
S. McKee, M. F. Tomé, J. A. Cuminato, A. Castelo and V. G. Ferreira,
Recent advances in the marker and cell method, Arch. Comput. Meth. Engng., 11 (2004), 107-142.
doi: 10.1007/BF02905936. |
[17] |
J. B. Perot,
An analysis of the fractional step method, J. Comput. Phys., 108 (1993), 51-58.
doi: 10.1006/jcph.1993.1162. |
[18] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2. North-Holland Publishing Co., Amsterdam-New York, 1979. |
[19] |
J. A. Trangenstein, Numerical Solution of Elliptic and Parabolic Partial Differential Equations, Cambridge University Press, Cambridge, 2013.
doi: 10.1017/CBO9781139025508.![]() ![]() |
show all references
References:
[1] |
A. A. Amsden and F. H. Harlow,
A simplified MAC technique for incompressible fluid flow calculations, J. Comput. Phys., 6 (1970), 322-325.
doi: 10.1016/0021-9991(70)90029-X. |
[2] |
C. Bernardi, T. Chacón Rebollo and D. Yakoubi,
Finite element discretization of the Stokes and Navier–Stokes equations with boundary conditions on the pressure, SIAM J. Numer. Anal., 53 (2015), 1256-1279.
doi: 10.1137/140972299. |
[3] |
S. Bertoluzza, V. Chabannes, C. Prud'homme and M. Szopos,
Boundary conditions involving pressure for the Stokes problem and applications in computational hemodynamics, Comput. Methods Appl. Mech. Engrg., 322 (2017), 58-80.
doi: 10.1016/j.cma.2017.04.024. |
[4] |
A. J. Chorin,
Numerical solution of the Navier-Stokes equations, Math. Comput., 22 (1968), 745-762.
doi: 10.1090/S0025-5718-1968-0242392-2. |
[5] |
C. Conca, F. Murat and O. Pironneau,
The Stokes and Navier-Stokes equations with boundary conditions involving the pressure, Jpn. J. Math. (N.S.), 20 (1994), 279-318.
doi: 10.4099/math1924.20.279. |
[6] |
C. Conca, C. Parés, O. Pironneau and M. Thiriet,
Navier-Stokes equations with imposed pressure and velocity fluxes, Int. J. Numer. Meth. Fluids, 20 (1995), 267-287.
doi: 10.1002/fld.1650200402. |
[7] |
S. J. Cummins and M. Rudman,
An SPH projection method, J. Comput. Phys., 152 (1999), 584-607.
doi: 10.1006/jcph.1999.6246. |
[8] |
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, 5. Springer-Verlag, Berlin, 1986.
doi: 10.1007/978-3-642-61623-5. |
[9] |
P. M. Gresho and R. L. Sani,
On pressure boundary conditions for the incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fluids, 7 (1987), 1111-1145.
doi: 10.1002/fld.1650071008. |
[10] |
J.-L. Guermond, P. Minev and J. Shen,
An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., 195 (2006), 6011-6045.
doi: 10.1016/j.cma.2005.10.010. |
[11] |
J.-L. Guermond and L. Quartapelle,
On stability and convergence of projection methods based on pressure Poisson equation, Int. J. Numer. Meth. Fluids, 26 (1998), 1039-1053.
doi: 10.1002/(SICI)1097-0363(19980515)26:9<1039::AID-FLD675>3.0.CO;2-U. |
[12] |
F. H. Harlow and J. E. Welch,
Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, The Physics of Fluids, 8 (1965), 2182-2189.
doi: 10.1063/1.1761178. |
[13] |
J. Kim and P. Moin,
Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985), 308-323.
doi: 10.1016/0021-9991(85)90148-2. |
[14] |
J. Liu,
Open and traction boundary conditions for the incompressible Navier-Stokes equations, J. Comput. Phys., 228 (2009), 7250-7267.
doi: 10.1016/j.jcp.2009.06.021. |
[15] |
S. Marušić,
On the Navier-Stokes system with pressure boundary condition, Ann. Univ. Ferrara, 53 (2007), 319-331.
doi: 10.1007/s11565-007-0024-y. |
[16] |
S. McKee, M. F. Tomé, J. A. Cuminato, A. Castelo and V. G. Ferreira,
Recent advances in the marker and cell method, Arch. Comput. Meth. Engng., 11 (2004), 107-142.
doi: 10.1007/BF02905936. |
[17] |
J. B. Perot,
An analysis of the fractional step method, J. Comput. Phys., 108 (1993), 51-58.
doi: 10.1006/jcph.1993.1162. |
[18] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2. North-Holland Publishing Co., Amsterdam-New York, 1979. |
[19] |
J. A. Trangenstein, Numerical Solution of Elliptic and Parabolic Partial Differential Equations, Cambridge University Press, Cambridge, 2013.
doi: 10.1017/CBO9781139025508.![]() ![]() |

[1] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[2] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[3] |
Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020384 |
[4] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[5] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[6] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[7] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[8] |
Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 |
[9] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[10] |
Helin Guo, Huan-Song Zhou. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1023-1050. doi: 10.3934/dcds.2020308 |
[11] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[12] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[13] |
Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003 |
[14] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[15] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[16] |
Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071 |
[17] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[18] |
Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004 |
[19] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[20] |
Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020467 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]