# American Institute of Mathematical Sciences

March  2021, 14(3): 935-951. doi: 10.3934/dcdss.2020382

## Mathematical model of signal propagation in excitable media

 Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, Prague, 12000, Czech Republic

* Corresponding author: Michal Beneš

Received  February 2020 Revised  January 2019 Published  June 2020

This article deals with a model of signal propagation in excitable media based on a system of reaction-diffusion equations. Such media have the ability to exhibit a large response in reaction to a small deviation from the rest state. An example of such media is the nerve tissue or the heart tissue. The first part of the article briefly describes the origin and the propagation of the cardiac action potential in the heart. In the second part, the mathematical properties of the model are discussed. Next, the numerical algorithm based on the finite difference method is used to obtain computational studies in both a homogeneous and heterogeneous medium with an emphasis on interactions of the propagating signals with obstacles in the medium.

Citation: Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382
##### References:

show all references

##### References:
An example of nullclines for problem (1). The green curve represents cubic function $v_1$ and the dashed red line is the graph of the linear function $v_2$. The values of the parameters are $\varepsilon = 0.008, \alpha = 0.139, \beta = 2.54, g_1 = 20, g_2 = 1.5, \text{ and } g_3 = -5.5$
The time evolution of the component $u_1$ of the solution for the set parameter values and the initial conditions for Example 1. Each subfigure represents one selected time level $t$
The time evolution of the component $u_1$ of the solution for the set parameter values and the initial conditions for Example 2. Each subfigure represents one selected time level $t$. The obstacle is marked in orange in Figures Figures 3a and 3b
The time evolution of the component $u_1$ of the solution for the set parameter values and the initial conditions for Experiment 3. Each subfigure represents one selected time level $t$. The obstacle is marked in orange
The common parameters for all Examples
 Model characteristics $u$ right hand side coefficients $\epsilon = 0.008, \alpha = 0.139 , \beta = 2.54$ $v$ right hand side coefficients $g_1 = 20, g_2 = 1.5, g_3 = -7.5$ Fixed point location $u_1^0 = 0.198598, u_2^0 = -2.352028$ Diffusion coefficients $\qquad D_1 = 8\cdot 10^{-4} \quad \text{ in }\Omega\setminus\Omega_{obs}$ $\qquad D_2 = 4\cdot 10^{-4} \quad \text{ in }\Omega\setminus\Omega_{obs}$ $\qquad D_1 = 0 \quad \text{ in } \Omega_{obs}$ $\qquad D_2 = 0 \quad \text{ in } \Omega_{obs},$ where $\Omega$ is a domain identical with the one in the initial conditions and $\Omega_{obs}$ is an obstacle, further described in Table 4 for each example. Initial state and boundary conditions $\qquad u_{ini, 1} = u_1^0 + \sin \left( \frac{\pi (x-a_x^0)}{b^0_x-a^0_x}\right)\sin \left( \frac{\pi (y-a^0_y)}{b^0_y-a^0_y}\right) \quad \text{ in }\Omega_0$ $\qquad u_{ini, 1} = u_1^0 \quad \text{ in }\Omega\setminus\Omega_0$ $\qquad u_{ini, 2} = u_2^0 \quad \text{ in }\Omega$ $\qquad u_1|_{\partial\Omega} = u_1^0$ $\qquad u_2|_{\partial\Omega} = u_2^0$ $\quad \Omega \ = \left( a_x, b_x\right) \times\left( a_y, b_y\right) \ = \left( 0, 1\right)\times\left( 0, 1\right)$ $\quad$ The parameters for $\Omega_0 = (a_x^0, b_x^0)\times (a_y^0, b_y^0)$ are described in Table 4 for each experiment. Numerical characteristics Total length of simulation $. \dots\dots\dots\dots\dots . \ T$ $15$ Internal time step $. \dots\dots\dots\dots\dots\dots\dots\dots \ \tau$ $6.1\cdot10^{-5}$ Mesh $. \dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots \ \omega_h$ $128\times 128$
 Model characteristics $u$ right hand side coefficients $\epsilon = 0.008, \alpha = 0.139 , \beta = 2.54$ $v$ right hand side coefficients $g_1 = 20, g_2 = 1.5, g_3 = -7.5$ Fixed point location $u_1^0 = 0.198598, u_2^0 = -2.352028$ Diffusion coefficients $\qquad D_1 = 8\cdot 10^{-4} \quad \text{ in }\Omega\setminus\Omega_{obs}$ $\qquad D_2 = 4\cdot 10^{-4} \quad \text{ in }\Omega\setminus\Omega_{obs}$ $\qquad D_1 = 0 \quad \text{ in } \Omega_{obs}$ $\qquad D_2 = 0 \quad \text{ in } \Omega_{obs},$ where $\Omega$ is a domain identical with the one in the initial conditions and $\Omega_{obs}$ is an obstacle, further described in Table 4 for each example. Initial state and boundary conditions $\qquad u_{ini, 1} = u_1^0 + \sin \left( \frac{\pi (x-a_x^0)}{b^0_x-a^0_x}\right)\sin \left( \frac{\pi (y-a^0_y)}{b^0_y-a^0_y}\right) \quad \text{ in }\Omega_0$ $\qquad u_{ini, 1} = u_1^0 \quad \text{ in }\Omega\setminus\Omega_0$ $\qquad u_{ini, 2} = u_2^0 \quad \text{ in }\Omega$ $\qquad u_1|_{\partial\Omega} = u_1^0$ $\qquad u_2|_{\partial\Omega} = u_2^0$ $\quad \Omega \ = \left( a_x, b_x\right) \times\left( a_y, b_y\right) \ = \left( 0, 1\right)\times\left( 0, 1\right)$ $\quad$ The parameters for $\Omega_0 = (a_x^0, b_x^0)\times (a_y^0, b_y^0)$ are described in Table 4 for each experiment. Numerical characteristics Total length of simulation $. \dots\dots\dots\dots\dots . \ T$ $15$ Internal time step $. \dots\dots\dots\dots\dots\dots\dots\dots \ \tau$ $6.1\cdot10^{-5}$ Mesh $. \dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots\dots \ \omega_h$ $128\times 128$
Table of parameter values in which the Examples differ
 Example $\Omega_{obs}$ $\Omega_0$ 1 no obstacle $(0.02, 0.12)\times(0.02, 0.92)$ 2 triangle obstacle in orange in Figure 3 $(0.1, 0.3)\times(0.3, 0.5)$ 3 triangle obstacle in orange in Figure 4 $(0.1, 0.3)\times(0.3, 0.5)$
 Example $\Omega_{obs}$ $\Omega_0$ 1 no obstacle $(0.02, 0.12)\times(0.02, 0.92)$ 2 triangle obstacle in orange in Figure 3 $(0.1, 0.3)\times(0.3, 0.5)$ 3 triangle obstacle in orange in Figure 4 $(0.1, 0.3)\times(0.3, 0.5)$
Table of the numerical parameters and the maximal $L_1, L_2$ and $L_\infty$ errors at 20 time levels for an excitation in a medium with heterogeneous diffusion. Measured against the reference mesh with spatial step $h = 1.95 \cdot 10^{-3}$
 Mesh time step $L_1$ $L_1$ $L_2$ $L_2$ $L_\infty$ $L_\infty$ $h$ $\tau$ error of $u$ error of $v$ error of $u$ error of $v$ error of $u$ error of $v$ 0.0625 0.001953 0.056240 0.161228 0.108336 0.265209 0.363029 0.779687 0.0313 0.000488 0.021852 0.049984 0.043336 0.094244 0.235573 0.651494 0.0156 0.000122 0.004384 0.008584 0.008694 0.014913 0.053264 0.107053 0.0078 0.000031 0.000884 0.001813 0.001997 0.002953 0.013961 0.021748 0.0039 0.000008 0.000217 0.000472 0.000505 0.000698 0.003454 0.004255
 Mesh time step $L_1$ $L_1$ $L_2$ $L_2$ $L_\infty$ $L_\infty$ $h$ $\tau$ error of $u$ error of $v$ error of $u$ error of $v$ error of $u$ error of $v$ 0.0625 0.001953 0.056240 0.161228 0.108336 0.265209 0.363029 0.779687 0.0313 0.000488 0.021852 0.049984 0.043336 0.094244 0.235573 0.651494 0.0156 0.000122 0.004384 0.008584 0.008694 0.014913 0.053264 0.107053 0.0078 0.000031 0.000884 0.001813 0.001997 0.002953 0.013961 0.021748 0.0039 0.000008 0.000217 0.000472 0.000505 0.000698 0.003454 0.004255
Table of the EOC coefficients for an excitation in a medium with the heterogeneous diffusion
 Mesh Mesh EOC u EOC v EOC $u$ EOC $v$ EOC $u$ EOC $v$ $h_1$ $h_2$ $L_1$ $L_1$ $L_2$ $L_2$ $L_\infty$ $L_\infty$ 0.0625 0.0313 1.363831 1.689564 1.321875 1.492657 0.623911 0.259143 0.0313 0.0156 2.317446 2.541744 2.317474 2.659830 2.144942 2.605427 0.0156 0.0078 2.310130 2.243271 2.122186 2.336317 1.931758 2.299371 0.0078 0.0039 2.026351 1.941520 1.983479 2.080882 2.015062 2.353652
 Mesh Mesh EOC u EOC v EOC $u$ EOC $v$ EOC $u$ EOC $v$ $h_1$ $h_2$ $L_1$ $L_1$ $L_2$ $L_2$ $L_\infty$ $L_\infty$ 0.0625 0.0313 1.363831 1.689564 1.321875 1.492657 0.623911 0.259143 0.0313 0.0156 2.317446 2.541744 2.317474 2.659830 2.144942 2.605427 0.0156 0.0078 2.310130 2.243271 2.122186 2.336317 1.931758 2.299371 0.0078 0.0039 2.026351 1.941520 1.983479 2.080882 2.015062 2.353652
The parameters for the second wave in Example 1 – the functional reentry
 Initial state of the second wave at time $t=3$ $\qquad u_{ini, 1} = u_1^0 + \sin \left( \frac{\pi (x-a^2_x)}{b^2_x-a^2_x}\right)\sin \left( \frac{\pi (y-a^2_y)}{b^2_y-a^2_y}\right) \quad \text{ in }\Omega_2$ $\qquad u_{ini, 2} = u_2^0 \quad \text{ in }\Omega_2$ $\quad \Omega_2 = \left( a^2_x, b^2_x\right)\times\left( a^2_y, b^2_y\right) = \left( 0.3, 0.4\right)\times\left( 0.4, 0.6\right)$
 Initial state of the second wave at time $t=3$ $\qquad u_{ini, 1} = u_1^0 + \sin \left( \frac{\pi (x-a^2_x)}{b^2_x-a^2_x}\right)\sin \left( \frac{\pi (y-a^2_y)}{b^2_y-a^2_y}\right) \quad \text{ in }\Omega_2$ $\qquad u_{ini, 2} = u_2^0 \quad \text{ in }\Omega_2$ $\quad \Omega_2 = \left( a^2_x, b^2_x\right)\times\left( a^2_y, b^2_y\right) = \left( 0.3, 0.4\right)\times\left( 0.4, 0.6\right)$
 [1] Chao Xing, Zhigang Pan, Quan Wang. Stabilities and dynamic transitions of the Fitzhugh-Nagumo system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 775-794. doi: 10.3934/dcdsb.2020134 [2] Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172 [3] Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316 [4] Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126 [5] Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 [6] H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433 [7] Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283 [8] Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 [9] Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004 [10] Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019 [11] Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $\mathbb{R}^{N}$ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376 [12] Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011 [13] Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321 [14] Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033 [15] Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049 [16] Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053 [17] Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400 [18] Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319 [19] Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329 [20] El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $L^1$ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

2019 Impact Factor: 1.233

## Tools

Article outline

Figures and Tables