March  2021, 14(3): 1111-1122. doi: 10.3934/dcdss.2020383

Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs

1. 

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, Praha 2,120 00, Czech Republic

2. 

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA, Nuclear Physics Institute, Czech Academy of Sciences, Řež 25068, Czech Republic

3. 

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

4. 

Faculty of Information Technology, Czech Technical University, Prague 16000, Czech Republic, Aerospace Research and Test Establishment, Prague 19905, Czech Republic

5. 

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

* Corresponding author

Received  January 2019 Revised  February 2020 Published  June 2020

Starting from the matrix elements of a nucleon-nucleon potential operator provided in a basis of spherical harmonic oscillator functions, we present an algorithm for expressing a given potential operator in terms of irreducible tensors of the SU(3) and SU(2) groups. Further, we introduce a GPU-based implementation of the latter and investigate its performance compared with a CPU-based version of the same. We find that the CUDA implementation delivers speedups of 2.27x – 5.93x.

Citation: Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383
References:
[1]

Y. Akiyama and J. P. Draayer, A user's guide to Fortran programs for Wigner and Racah coefficients of SU$_3$, Comp. Phys. Comm, 5 (1973), 405-406.   Google Scholar

[2]

T. Dytrych, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary, E. Saule, U. Catalyurek, M. Sosonkina, D. Langr and M. A. Caprio, Collective modes in light nuclei from first principles, Phys. Rev. Lett., 111 (2013), 252501. doi: 10.1103/PhysRevLett.111.252501.  Google Scholar

[3]

T. DytrychP. MarisK. D. LauneyJ. P. DraayerJ. VaryD. LangrE. SauleM. A. CaprioU. Catalyurek and M. Sosonkina, Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei, Comp. Phys. Comm., 207 (2016), 202-210.  doi: 10.2172/1326837.  Google Scholar

[4]

H. T. Johansson and C. Forssén, Fast and accurate evaluation of Wigner $3j$, $6j$, and $9j$ symbols using prime factorization and multiword integer arithmetic, SIAM J. Sci. Comput., 38 (2016), A376–A384. doi: 10.1137/15M1021908.  Google Scholar

[5]

K. D. LauneyT. Dytrych and J. P. Draayer, Symmetry-guided large-scale shell-model theory, Prog. Part. Nucl. Phys., 89 (2016), 101-136.  doi: 10.1016/j.ppnp.2016.02.001.  Google Scholar

[6]

M. F. O'Reilly, A closed formula for the product of irreducible representations of SU(3), J. Math. Phys., 23 (1982), 2022-2028.  doi: 10.1063/1.525258.  Google Scholar

show all references

References:
[1]

Y. Akiyama and J. P. Draayer, A user's guide to Fortran programs for Wigner and Racah coefficients of SU$_3$, Comp. Phys. Comm, 5 (1973), 405-406.   Google Scholar

[2]

T. Dytrych, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary, E. Saule, U. Catalyurek, M. Sosonkina, D. Langr and M. A. Caprio, Collective modes in light nuclei from first principles, Phys. Rev. Lett., 111 (2013), 252501. doi: 10.1103/PhysRevLett.111.252501.  Google Scholar

[3]

T. DytrychP. MarisK. D. LauneyJ. P. DraayerJ. VaryD. LangrE. SauleM. A. CaprioU. Catalyurek and M. Sosonkina, Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei, Comp. Phys. Comm., 207 (2016), 202-210.  doi: 10.2172/1326837.  Google Scholar

[4]

H. T. Johansson and C. Forssén, Fast and accurate evaluation of Wigner $3j$, $6j$, and $9j$ symbols using prime factorization and multiword integer arithmetic, SIAM J. Sci. Comput., 38 (2016), A376–A384. doi: 10.1137/15M1021908.  Google Scholar

[5]

K. D. LauneyT. Dytrych and J. P. Draayer, Symmetry-guided large-scale shell-model theory, Prog. Part. Nucl. Phys., 89 (2016), 101-136.  doi: 10.1016/j.ppnp.2016.02.001.  Google Scholar

[6]

M. F. O'Reilly, A closed formula for the product of irreducible representations of SU(3), J. Math. Phys., 23 (1982), 2022-2028.  doi: 10.1063/1.525258.  Google Scholar

Figure 1.  Data layout of buffer used for transfer of the Wigner coupling coefficients and quantum numbers of irreducible tensors computed on CPU to GPU
Figure 2.  Data layout of buffer holding records with triplets of references to records in buffer $ B_W $. Each such triplet thus represents one irreducible tensor
Table3 
Table 1.  Performance results obtained on the Blue Waters system. Notation $ +1 $ in the column with MPI processes denotes one master process which just assigns HO shells to other MPI processes. The master process is not taken into account for efficiency evaluation
$ N_{\max} $ MPI procs. CPU only CPU+GPU
Time [s] Efficiency Time [s] Speed-up
$ 8 $ 7+1 295.3 75.3 3.92
15+1 137.6 1 36.8 3.73
31+1 66.5 1 17.5 3.79
63+1 39.4 0.83 9.23 4.26
127+1 32.8 0.56 6.35 5.17
255+1 31.0 0.52 5.22 5.94
$ 10 $ 7+1 2219 648 3.42
15+1 1034 1 318 3.24
31+1 499 1 151 3.28
63+1 248 0.99 74 3.32
127+1 165 0.74 43 3.75
255+1 138 0.59 32 4.25
$ 12 $ 7+1 13083 4493 2.91
15+1 6097 1 2116 2.88
31+1 2943 1 1054 2.79
63+1 1447 1 515 2.80
127+1 776 0.92 269 2.88
255+1 565 0.68 169 3.33
$ 14 $ 5+1 64865 26104 2.48
15+1 30227 1 12204 2.47
31+1 14596 1 5944 2.45
63+1 7179 1 2932 2.44
127+1 3581 0.99 1461 2.45
255+1 2142 0.83 838 2.55
$ N_{\max} $ MPI procs. CPU only CPU+GPU
Time [s] Efficiency Time [s] Speed-up
$ 8 $ 7+1 295.3 75.3 3.92
15+1 137.6 1 36.8 3.73
31+1 66.5 1 17.5 3.79
63+1 39.4 0.83 9.23 4.26
127+1 32.8 0.56 6.35 5.17
255+1 31.0 0.52 5.22 5.94
$ 10 $ 7+1 2219 648 3.42
15+1 1034 1 318 3.24
31+1 499 1 151 3.28
63+1 248 0.99 74 3.32
127+1 165 0.74 43 3.75
255+1 138 0.59 32 4.25
$ 12 $ 7+1 13083 4493 2.91
15+1 6097 1 2116 2.88
31+1 2943 1 1054 2.79
63+1 1447 1 515 2.80
127+1 776 0.92 269 2.88
255+1 565 0.68 169 3.33
$ 14 $ 5+1 64865 26104 2.48
15+1 30227 1 12204 2.47
31+1 14596 1 5944 2.45
63+1 7179 1 2932 2.44
127+1 3581 0.99 1461 2.45
255+1 2142 0.83 838 2.55
Table 2.  Performance results obtained for 32 MPI processes running on two 16-core IBM Power9 CPUs and a single NVIDIA V100 GPU
$ N_{\max} $ CPU only CPU+GPU
Time [s] Time [s] Speed-up
8 41.65 15.78 2.63
10 274.14 97.99 2.79
12 1649.7 611.1 2.69
14 7761.9 3407.6 2.27
$ N_{\max} $ CPU only CPU+GPU
Time [s] Time [s] Speed-up
8 41.65 15.78 2.63
10 274.14 97.99 2.79
12 1649.7 611.1 2.69
14 7761.9 3407.6 2.27
[1]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

[2]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[3]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[4]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[5]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[6]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[7]

Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008

[8]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[9]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[10]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[11]

Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129

[12]

Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282

[13]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[14]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[15]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[16]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[17]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[18]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[19]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[20]

Jintai Ding, Zheng Zhang, Joshua Deaton. The singularity attack to the multivariate signature scheme HIMQ-3. Advances in Mathematics of Communications, 2021, 15 (1) : 65-72. doi: 10.3934/amc.2020043

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]