
-
Previous Article
Segmentation of color images using mean curvature flow and parametric curves
- DCDS-S Home
- This Issue
-
Next Article
Existence of a period two solution of a delay differential equation
Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs
1. | Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, Praha 2,120 00, Czech Republic |
2. | Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA, Nuclear Physics Institute, Czech Academy of Sciences, Řež 25068, Czech Republic |
3. | Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA |
4. | Faculty of Information Technology, Czech Technical University, Prague 16000, Czech Republic, Aerospace Research and Test Establishment, Prague 19905, Czech Republic |
5. | Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA |
Starting from the matrix elements of a nucleon-nucleon potential operator provided in a basis of spherical harmonic oscillator functions, we present an algorithm for expressing a given potential operator in terms of irreducible tensors of the SU(3) and SU(2) groups. Further, we introduce a GPU-based implementation of the latter and investigate its performance compared with a CPU-based version of the same. We find that the CUDA implementation delivers speedups of 2.27x – 5.93x.
References:
[1] |
Y. Akiyama and J. P. Draayer, A user's guide to Fortran programs for Wigner and Racah coefficients of SU$_3$, Comp. Phys. Comm, 5 (1973), 405-406. Google Scholar |
[2] |
T. Dytrych, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary, E. Saule, U. Catalyurek, M. Sosonkina, D. Langr and M. A. Caprio, Collective modes in light nuclei from first principles, Phys. Rev. Lett., 111 (2013), 252501.
doi: 10.1103/PhysRevLett.111.252501. |
[3] |
T. Dytrych, P. Maris, K. D. Launey, J. P. Draayer, J. Vary, D. Langr, E. Saule, M. A. Caprio, U. Catalyurek and M. Sosonkina,
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei, Comp. Phys. Comm., 207 (2016), 202-210.
doi: 10.2172/1326837. |
[4] |
H. T. Johansson and C. Forssén, Fast and accurate evaluation of Wigner $3j$, $6j$, and $9j$ symbols using prime factorization and multiword integer arithmetic, SIAM J. Sci. Comput., 38 (2016), A376–A384.
doi: 10.1137/15M1021908. |
[5] |
K. D. Launey, T. Dytrych and J. P. Draayer,
Symmetry-guided large-scale shell-model theory, Prog. Part. Nucl. Phys., 89 (2016), 101-136.
doi: 10.1016/j.ppnp.2016.02.001. |
[6] |
M. F. O'Reilly,
A closed formula for the product of irreducible representations of SU(3), J. Math. Phys., 23 (1982), 2022-2028.
doi: 10.1063/1.525258. |
show all references
References:
[1] |
Y. Akiyama and J. P. Draayer, A user's guide to Fortran programs for Wigner and Racah coefficients of SU$_3$, Comp. Phys. Comm, 5 (1973), 405-406. Google Scholar |
[2] |
T. Dytrych, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary, E. Saule, U. Catalyurek, M. Sosonkina, D. Langr and M. A. Caprio, Collective modes in light nuclei from first principles, Phys. Rev. Lett., 111 (2013), 252501.
doi: 10.1103/PhysRevLett.111.252501. |
[3] |
T. Dytrych, P. Maris, K. D. Launey, J. P. Draayer, J. Vary, D. Langr, E. Saule, M. A. Caprio, U. Catalyurek and M. Sosonkina,
Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei, Comp. Phys. Comm., 207 (2016), 202-210.
doi: 10.2172/1326837. |
[4] |
H. T. Johansson and C. Forssén, Fast and accurate evaluation of Wigner $3j$, $6j$, and $9j$ symbols using prime factorization and multiword integer arithmetic, SIAM J. Sci. Comput., 38 (2016), A376–A384.
doi: 10.1137/15M1021908. |
[5] |
K. D. Launey, T. Dytrych and J. P. Draayer,
Symmetry-guided large-scale shell-model theory, Prog. Part. Nucl. Phys., 89 (2016), 101-136.
doi: 10.1016/j.ppnp.2016.02.001. |
[6] |
M. F. O'Reilly,
A closed formula for the product of irreducible representations of SU(3), J. Math. Phys., 23 (1982), 2022-2028.
doi: 10.1063/1.525258. |


MPI procs. | CPU only | CPU+GPU | |||
Time [s] | Efficiency | Time [s] | Speed-up | ||
7+1 | 295.3 | – | 75.3 | 3.92 | |
15+1 | 137.6 | 1 | 36.8 | 3.73 | |
31+1 | 66.5 | 1 | 17.5 | 3.79 | |
63+1 | 39.4 | 0.83 | 9.23 | 4.26 | |
127+1 | 32.8 | 0.56 | 6.35 | 5.17 | |
255+1 | 31.0 | 0.52 | 5.22 | 5.94 | |
7+1 | 2219 | – | 648 | 3.42 | |
15+1 | 1034 | 1 | 318 | 3.24 | |
31+1 | 499 | 1 | 151 | 3.28 | |
63+1 | 248 | 0.99 | 74 | 3.32 | |
127+1 | 165 | 0.74 | 43 | 3.75 | |
255+1 | 138 | 0.59 | 32 | 4.25 | |
7+1 | 13083 | – | 4493 | 2.91 | |
15+1 | 6097 | 1 | 2116 | 2.88 | |
31+1 | 2943 | 1 | 1054 | 2.79 | |
63+1 | 1447 | 1 | 515 | 2.80 | |
127+1 | 776 | 0.92 | 269 | 2.88 | |
255+1 | 565 | 0.68 | 169 | 3.33 | |
5+1 | 64865 | – | 26104 | 2.48 | |
15+1 | 30227 | 1 | 12204 | 2.47 | |
31+1 | 14596 | 1 | 5944 | 2.45 | |
63+1 | 7179 | 1 | 2932 | 2.44 | |
127+1 | 3581 | 0.99 | 1461 | 2.45 | |
255+1 | 2142 | 0.83 | 838 | 2.55 |
MPI procs. | CPU only | CPU+GPU | |||
Time [s] | Efficiency | Time [s] | Speed-up | ||
7+1 | 295.3 | – | 75.3 | 3.92 | |
15+1 | 137.6 | 1 | 36.8 | 3.73 | |
31+1 | 66.5 | 1 | 17.5 | 3.79 | |
63+1 | 39.4 | 0.83 | 9.23 | 4.26 | |
127+1 | 32.8 | 0.56 | 6.35 | 5.17 | |
255+1 | 31.0 | 0.52 | 5.22 | 5.94 | |
7+1 | 2219 | – | 648 | 3.42 | |
15+1 | 1034 | 1 | 318 | 3.24 | |
31+1 | 499 | 1 | 151 | 3.28 | |
63+1 | 248 | 0.99 | 74 | 3.32 | |
127+1 | 165 | 0.74 | 43 | 3.75 | |
255+1 | 138 | 0.59 | 32 | 4.25 | |
7+1 | 13083 | – | 4493 | 2.91 | |
15+1 | 6097 | 1 | 2116 | 2.88 | |
31+1 | 2943 | 1 | 1054 | 2.79 | |
63+1 | 1447 | 1 | 515 | 2.80 | |
127+1 | 776 | 0.92 | 269 | 2.88 | |
255+1 | 565 | 0.68 | 169 | 3.33 | |
5+1 | 64865 | – | 26104 | 2.48 | |
15+1 | 30227 | 1 | 12204 | 2.47 | |
31+1 | 14596 | 1 | 5944 | 2.45 | |
63+1 | 7179 | 1 | 2932 | 2.44 | |
127+1 | 3581 | 0.99 | 1461 | 2.45 | |
255+1 | 2142 | 0.83 | 838 | 2.55 |
CPU only | CPU+GPU | ||
Time [s] | Time [s] | Speed-up | |
8 | 41.65 | 15.78 | 2.63 |
10 | 274.14 | 97.99 | 2.79 |
12 | 1649.7 | 611.1 | 2.69 |
14 | 7761.9 | 3407.6 | 2.27 |
CPU only | CPU+GPU | ||
Time [s] | Time [s] | Speed-up | |
8 | 41.65 | 15.78 | 2.63 |
10 | 274.14 | 97.99 | 2.79 |
12 | 1649.7 | 611.1 | 2.69 |
14 | 7761.9 | 3407.6 | 2.27 |
[1] |
Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041 |
[2] |
Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097 |
[3] |
Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020464 |
[4] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[5] |
Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108 |
[6] |
Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320 |
[7] |
Hongyan Guo. Automorphism group and twisted modules of the twisted Heisenberg-Virasoro vertex operator algebra. Electronic Research Archive, , () : -. doi: 10.3934/era.2021008 |
[8] |
Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143 |
[9] |
Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020446 |
[10] |
Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315 |
[11] |
Chaoqian Li, Yajun Liu, Yaotang Li. Note on $ Z $-eigenvalue inclusion theorems for tensors. Journal of Industrial & Management Optimization, 2021, 17 (2) : 687-693. doi: 10.3934/jimo.2019129 |
[12] |
Shigui Ruan. Nonlinear dynamics in tumor-immune system interaction models with delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 541-602. doi: 10.3934/dcdsb.2020282 |
[13] |
Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123 |
[14] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[15] |
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 |
[16] |
Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021027 |
[17] |
Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011 |
[18] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[19] |
Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119 |
[20] |
Jintai Ding, Zheng Zhang, Joshua Deaton. The singularity attack to the multivariate signature scheme HIMQ-3. Advances in Mathematics of Communications, 2021, 15 (1) : 65-72. doi: 10.3934/amc.2020043 |
2019 Impact Factor: 1.233
Tools
Article outline
Figures and Tables
[Back to Top]