doi: 10.3934/dcdss.2020383

Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs

1. 

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, Praha 2,120 00, Czech Republic

2. 

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA, Nuclear Physics Institute, Czech Academy of Sciences, Řež 25068, Czech Republic

3. 

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

4. 

Faculty of Information Technology, Czech Technical University, Prague 16000, Czech Republic, Aerospace Research and Test Establishment, Prague 19905, Czech Republic

5. 

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

* Corresponding author

Received  January 2019 Revised  February 2020 Published  June 2020

Starting from the matrix elements of a nucleon-nucleon potential operator provided in a basis of spherical harmonic oscillator functions, we present an algorithm for expressing a given potential operator in terms of irreducible tensors of the SU(3) and SU(2) groups. Further, we introduce a GPU-based implementation of the latter and investigate its performance compared with a CPU-based version of the same. We find that the CUDA implementation delivers speedups of 2.27x – 5.93x.

Citation: Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020383
References:
[1]

Y. Akiyama and J. P. Draayer, A user's guide to Fortran programs for Wigner and Racah coefficients of SU$_3$, Comp. Phys. Comm, 5 (1973), 405-406.   Google Scholar

[2]

T. Dytrych, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary, E. Saule, U. Catalyurek, M. Sosonkina, D. Langr and M. A. Caprio, Collective modes in light nuclei from first principles, Phys. Rev. Lett., 111 (2013), 252501. doi: 10.1103/PhysRevLett.111.252501.  Google Scholar

[3]

T. DytrychP. MarisK. D. LauneyJ. P. DraayerJ. VaryD. LangrE. SauleM. A. CaprioU. Catalyurek and M. Sosonkina, Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei, Comp. Phys. Comm., 207 (2016), 202-210.  doi: 10.2172/1326837.  Google Scholar

[4]

H. T. Johansson and C. Forssén, Fast and accurate evaluation of Wigner $3j$, $6j$, and $9j$ symbols using prime factorization and multiword integer arithmetic, SIAM J. Sci. Comput., 38 (2016), A376–A384. doi: 10.1137/15M1021908.  Google Scholar

[5]

K. D. LauneyT. Dytrych and J. P. Draayer, Symmetry-guided large-scale shell-model theory, Prog. Part. Nucl. Phys., 89 (2016), 101-136.  doi: 10.1016/j.ppnp.2016.02.001.  Google Scholar

[6]

M. F. O'Reilly, A closed formula for the product of irreducible representations of SU(3), J. Math. Phys., 23 (1982), 2022-2028.  doi: 10.1063/1.525258.  Google Scholar

show all references

References:
[1]

Y. Akiyama and J. P. Draayer, A user's guide to Fortran programs for Wigner and Racah coefficients of SU$_3$, Comp. Phys. Comm, 5 (1973), 405-406.   Google Scholar

[2]

T. Dytrych, K. D. Launey, J. P. Draayer, P. Maris, J. P. Vary, E. Saule, U. Catalyurek, M. Sosonkina, D. Langr and M. A. Caprio, Collective modes in light nuclei from first principles, Phys. Rev. Lett., 111 (2013), 252501. doi: 10.1103/PhysRevLett.111.252501.  Google Scholar

[3]

T. DytrychP. MarisK. D. LauneyJ. P. DraayerJ. VaryD. LangrE. SauleM. A. CaprioU. Catalyurek and M. Sosonkina, Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei, Comp. Phys. Comm., 207 (2016), 202-210.  doi: 10.2172/1326837.  Google Scholar

[4]

H. T. Johansson and C. Forssén, Fast and accurate evaluation of Wigner $3j$, $6j$, and $9j$ symbols using prime factorization and multiword integer arithmetic, SIAM J. Sci. Comput., 38 (2016), A376–A384. doi: 10.1137/15M1021908.  Google Scholar

[5]

K. D. LauneyT. Dytrych and J. P. Draayer, Symmetry-guided large-scale shell-model theory, Prog. Part. Nucl. Phys., 89 (2016), 101-136.  doi: 10.1016/j.ppnp.2016.02.001.  Google Scholar

[6]

M. F. O'Reilly, A closed formula for the product of irreducible representations of SU(3), J. Math. Phys., 23 (1982), 2022-2028.  doi: 10.1063/1.525258.  Google Scholar

Figure 1.  Data layout of buffer used for transfer of the Wigner coupling coefficients and quantum numbers of irreducible tensors computed on CPU to GPU
Figure 2.  Data layout of buffer holding records with triplets of references to records in buffer $ B_W $. Each such triplet thus represents one irreducible tensor
Table3 
Table 1.  Performance results obtained on the Blue Waters system. Notation $ +1 $ in the column with MPI processes denotes one master process which just assigns HO shells to other MPI processes. The master process is not taken into account for efficiency evaluation
$ N_{\max} $ MPI procs. CPU only CPU+GPU
Time [s] Efficiency Time [s] Speed-up
$ 8 $ 7+1 295.3 75.3 3.92
15+1 137.6 1 36.8 3.73
31+1 66.5 1 17.5 3.79
63+1 39.4 0.83 9.23 4.26
127+1 32.8 0.56 6.35 5.17
255+1 31.0 0.52 5.22 5.94
$ 10 $ 7+1 2219 648 3.42
15+1 1034 1 318 3.24
31+1 499 1 151 3.28
63+1 248 0.99 74 3.32
127+1 165 0.74 43 3.75
255+1 138 0.59 32 4.25
$ 12 $ 7+1 13083 4493 2.91
15+1 6097 1 2116 2.88
31+1 2943 1 1054 2.79
63+1 1447 1 515 2.80
127+1 776 0.92 269 2.88
255+1 565 0.68 169 3.33
$ 14 $ 5+1 64865 26104 2.48
15+1 30227 1 12204 2.47
31+1 14596 1 5944 2.45
63+1 7179 1 2932 2.44
127+1 3581 0.99 1461 2.45
255+1 2142 0.83 838 2.55
$ N_{\max} $ MPI procs. CPU only CPU+GPU
Time [s] Efficiency Time [s] Speed-up
$ 8 $ 7+1 295.3 75.3 3.92
15+1 137.6 1 36.8 3.73
31+1 66.5 1 17.5 3.79
63+1 39.4 0.83 9.23 4.26
127+1 32.8 0.56 6.35 5.17
255+1 31.0 0.52 5.22 5.94
$ 10 $ 7+1 2219 648 3.42
15+1 1034 1 318 3.24
31+1 499 1 151 3.28
63+1 248 0.99 74 3.32
127+1 165 0.74 43 3.75
255+1 138 0.59 32 4.25
$ 12 $ 7+1 13083 4493 2.91
15+1 6097 1 2116 2.88
31+1 2943 1 1054 2.79
63+1 1447 1 515 2.80
127+1 776 0.92 269 2.88
255+1 565 0.68 169 3.33
$ 14 $ 5+1 64865 26104 2.48
15+1 30227 1 12204 2.47
31+1 14596 1 5944 2.45
63+1 7179 1 2932 2.44
127+1 3581 0.99 1461 2.45
255+1 2142 0.83 838 2.55
Table 2.  Performance results obtained for 32 MPI processes running on two 16-core IBM Power9 CPUs and a single NVIDIA V100 GPU
$ N_{\max} $ CPU only CPU+GPU
Time [s] Time [s] Speed-up
8 41.65 15.78 2.63
10 274.14 97.99 2.79
12 1649.7 611.1 2.69
14 7761.9 3407.6 2.27
$ N_{\max} $ CPU only CPU+GPU
Time [s] Time [s] Speed-up
8 41.65 15.78 2.63
10 274.14 97.99 2.79
12 1649.7 611.1 2.69
14 7761.9 3407.6 2.27
[1]

Jelena Rupčić. Convergence of lacunary SU(1, 1)-valued trigonometric products. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1275-1289. doi: 10.3934/cpaa.2020062

[2]

Jan J. Sławianowski, Vasyl Kovalchuk, Agnieszka Martens, Barbara Gołubowska, Ewa E. Rożko. Essential nonlinearity implied by symmetry group. Problems of affine invariance in mechanics and physics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 699-733. doi: 10.3934/dcdsb.2012.17.699

[3]

Elie Assémat, Marc Lapert, Dominique Sugny, Steffen J. Glaser. On the application of geometric optimal control theory to Nuclear Magnetic Resonance. Mathematical Control & Related Fields, 2013, 3 (4) : 375-396. doi: 10.3934/mcrf.2013.3.375

[4]

Bertrand Lods. Variational characterizations of the effective multiplication factor of a nuclear reactor core. Kinetic & Related Models, 2009, 2 (2) : 307-331. doi: 10.3934/krm.2009.2.307

[5]

Florian Caro, Bilal Saad, Mazen Saad. Study of degenerate parabolic system modeling the hydrogen displacement in a nuclear waste repository. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 191-205. doi: 10.3934/dcdss.2014.7.191

[6]

Erlend Grong, Alexander Vasil’ev. Sub-Riemannian and sub-Lorentzian geometry on $SU(1,1)$ and on its universal cover. Journal of Geometric Mechanics, 2011, 3 (2) : 225-260. doi: 10.3934/jgm.2011.3.225

[7]

James Benn. Fredholm properties of the $L^{2}$ exponential map on the symplectomorphism group. Journal of Geometric Mechanics, 2016, 8 (1) : 1-12. doi: 10.3934/jgm.2016.8.1

[8]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2019  doi: 10.3934/jimo.2019097

[9]

E. N. Dancer. On domain perturbation for super-linear Neumann problems and a question of Y. Lou, W-M Ni and L. Su. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3861-3869. doi: 10.3934/dcds.2012.32.3861

[10]

Bernard Bonnard, Monique Chyba, Alain Jacquemard, John Marriott. Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance. Mathematical Control & Related Fields, 2013, 3 (4) : 397-432. doi: 10.3934/mcrf.2013.3.397

[11]

Inmaculada Antón, Julián López-Gómez. Global bifurcation diagrams of steady-states for a parabolic model related to a nuclear engineering problem. Conference Publications, 2013, 2013 (special) : 21-30. doi: 10.3934/proc.2013.2013.21

[12]

J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176

[13]

Duo Wang, Zheng-Fen Jin, Youlin Shang. A penalty decomposition method for nuclear norm minimization with l1 norm fidelity term. Evolution Equations & Control Theory, 2019, 8 (4) : 695-708. doi: 10.3934/eect.2019034

[14]

Rasmus Backholm, Tatiana A. Bubba, Camille Bélanger-Champagne, Tapio Helin, Peter Dendooven, Samuli Siltanen. Simultaneous reconstruction of emission and attenuation in passive gamma emission tomography of spent nuclear fuel. Inverse Problems & Imaging, 2020, 14 (2) : 317-337. doi: 10.3934/ipi.2020014

[15]

Sergio Estrada, J. R. García-Rozas, Justo Peralta, E. Sánchez-García. Group convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 83-94. doi: 10.3934/amc.2008.2.83

[16]

Heping Liu, Yu Liu. Refinable functions on the Heisenberg group. Communications on Pure & Applied Analysis, 2007, 6 (3) : 775-787. doi: 10.3934/cpaa.2007.6.775

[17]

Stefan Haller, Tomasz Rybicki, Josef Teichmann. Smooth perfectness for the group of diffeomorphisms. Journal of Geometric Mechanics, 2013, 5 (3) : 281-294. doi: 10.3934/jgm.2013.5.281

[18]

Daniele D'angeli, Alfredo Donno, Michel Matter, Tatiana Nagnibeda. Schreier graphs of the Basilica group. Journal of Modern Dynamics, 2010, 4 (1) : 167-205. doi: 10.3934/jmd.2010.4.167

[19]

Van Cyr, John Franks, Bryna Kra, Samuel Petite. Distortion and the automorphism group of a shift. Journal of Modern Dynamics, 2018, 13: 147-161. doi: 10.3934/jmd.2018015

[20]

Woochul Jung, Keonhee Lee, Carlos Morales, Jumi Oh. Rigidity of random group actions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020130

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]