March  2021, 14(3): 953-970. doi: 10.3934/dcdss.2020384

Two notes on the O'Hara energies

Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, Japan

Received  January 2019 Revised  February 2020 Published  June 2020

The O'Hara energies, introduced by Jun O'Hara in 1991, were proposed to answer the question of what is a "good" figure in a given knot class. A property of the O'Hara energies is that the "better" the figure of a knot is, the less the energy value is. In this article, we discuss two topics on the O'Hara energies. First, we slightly generalize the O'Hara energies and consider a characterization of its finiteness. The finiteness of the O'Hara energies was considered by Blatt in 2012 who used the Sobolev-Slobodeckij space, and naturally we consider a generalization of this space. Another fundamental problem is to understand the minimizers of the O'Hara energies. This problem has been addressed in several papers, some of them based on numerical computations. In this direction, we discuss a discretization of the O'Hara energies and give some examples of numerical computations. Particular one of the O'Hara energies, called the Möbius energy thanks to its Möbius invariance, was considered by Kim-Kusner in 1993, and Scholtes in 2014 established convergence properties. We apply their argument in general since the argument does not rely on Möbius invariance.

Citation: Shoya Kawakami. Two notes on the O'Hara energies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 953-970. doi: 10.3934/dcdss.2020384
References:
[1]

A. AbramsJ. CantarellaJ. H. G. FuM. Ghomi and R. Howard, Circles minimize most knot energies, Topology, 42 (2003), 381-394.  doi: 10.1016/S0040-9383(02)00016-2.  Google Scholar

[2]

S. Blatt, Boundedness and regularizing effects of O'Hara's knot energies, J. Knot Theory Ramifications, 21 (2012), 1250010, 9 pp. doi: 10.1142/S0218216511009704.  Google Scholar

[3]

G. Dal Maso, An Introduction to $\Gamma$-convergence, Progress in Nonlinear Diffrential Equations and their Applications, 8. Birkhäuser Boston, Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[4]

M. H. FreedmanZ.-X. He and Z. H. Wang, Möbius energy of knots and unknots, Ann. of Math. (2), 139 (1994), 1-50.  doi: 10.2307/2946626.  Google Scholar

[5]

A. Ishizeki and T. Nagasawa, Decomposition of generalized O'Hara's energies, (2019), arXiv: 1904.06812. Google Scholar

[6]

S. Kawakami, A discretization of O'Hara's knot energy and its convergence, (2019), arXiv: 1908.11172. Google Scholar

[7]

D. Kim and R. Kusner, Torus knots extremizing the Möbius energy, Experiment. Math., 2 (1993), 1-9.  doi: 10.1080/10586458.1993.10504264.  Google Scholar

[8]

R. Kusner and J. M. Sullivan, Möbius-invariant knot energies, Ideal Knots, Ser. Knots Everything, World Sci. Publ., River Edge, NJ, 19 (1998), 315-352.  doi: 10.1142/9789812796073_0017.  Google Scholar

[9]

S. Miyajima, Introduction to Sobolev Space and its Application, Kyoritsu Shuppan, Tokyo, 2006. Google Scholar

[10]

J. O'Hara, Energy of a knot, Topology, 30 (1991), 241-247.  doi: 10.1016/0040-9383(91)90010-2.  Google Scholar

[11]

J. O'Hara, Family of energy functionals of knots, Topology Appl., 48 (1992), 147-161.  doi: 10.1016/0166-8641(92)90023-S.  Google Scholar

[12]

J. O'Hara, Energy functionals of knots. Ⅱ, Topology Appl., 56 (1994), 45-61.  doi: 10.1016/0166-8641(94)90108-2.  Google Scholar

[13]

E. J. Rawdon and J. K. Simon, Polygonal approximation and energy of smooth knots, J. Knot Theory Ramifications, 15 (2006), 429-451.  doi: 10.1142/S0218216506004543.  Google Scholar

[14]

S. Scholtes, Discrete Möbius energy, J. Knot Theory Ramifications, 23 (2014), 1450045, 16 pp. doi: 10.1142/S021821651450045X.  Google Scholar

[15]

J. K. Simon, Energy functions for polygonal knots, J. Knot Theory Ramifications, 3 (1994), 299-320.  doi: 10.1142/S021821659400023X.  Google Scholar

show all references

References:
[1]

A. AbramsJ. CantarellaJ. H. G. FuM. Ghomi and R. Howard, Circles minimize most knot energies, Topology, 42 (2003), 381-394.  doi: 10.1016/S0040-9383(02)00016-2.  Google Scholar

[2]

S. Blatt, Boundedness and regularizing effects of O'Hara's knot energies, J. Knot Theory Ramifications, 21 (2012), 1250010, 9 pp. doi: 10.1142/S0218216511009704.  Google Scholar

[3]

G. Dal Maso, An Introduction to $\Gamma$-convergence, Progress in Nonlinear Diffrential Equations and their Applications, 8. Birkhäuser Boston, Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[4]

M. H. FreedmanZ.-X. He and Z. H. Wang, Möbius energy of knots and unknots, Ann. of Math. (2), 139 (1994), 1-50.  doi: 10.2307/2946626.  Google Scholar

[5]

A. Ishizeki and T. Nagasawa, Decomposition of generalized O'Hara's energies, (2019), arXiv: 1904.06812. Google Scholar

[6]

S. Kawakami, A discretization of O'Hara's knot energy and its convergence, (2019), arXiv: 1908.11172. Google Scholar

[7]

D. Kim and R. Kusner, Torus knots extremizing the Möbius energy, Experiment. Math., 2 (1993), 1-9.  doi: 10.1080/10586458.1993.10504264.  Google Scholar

[8]

R. Kusner and J. M. Sullivan, Möbius-invariant knot energies, Ideal Knots, Ser. Knots Everything, World Sci. Publ., River Edge, NJ, 19 (1998), 315-352.  doi: 10.1142/9789812796073_0017.  Google Scholar

[9]

S. Miyajima, Introduction to Sobolev Space and its Application, Kyoritsu Shuppan, Tokyo, 2006. Google Scholar

[10]

J. O'Hara, Energy of a knot, Topology, 30 (1991), 241-247.  doi: 10.1016/0040-9383(91)90010-2.  Google Scholar

[11]

J. O'Hara, Family of energy functionals of knots, Topology Appl., 48 (1992), 147-161.  doi: 10.1016/0166-8641(92)90023-S.  Google Scholar

[12]

J. O'Hara, Energy functionals of knots. Ⅱ, Topology Appl., 56 (1994), 45-61.  doi: 10.1016/0166-8641(94)90108-2.  Google Scholar

[13]

E. J. Rawdon and J. K. Simon, Polygonal approximation and energy of smooth knots, J. Knot Theory Ramifications, 15 (2006), 429-451.  doi: 10.1142/S0218216506004543.  Google Scholar

[14]

S. Scholtes, Discrete Möbius energy, J. Knot Theory Ramifications, 23 (2014), 1450045, 16 pp. doi: 10.1142/S021821651450045X.  Google Scholar

[15]

J. K. Simon, Energy functions for polygonal knots, J. Knot Theory Ramifications, 3 (1994), 299-320.  doi: 10.1142/S021821659400023X.  Google Scholar

Figure 1.  Graphs of $ e_\alpha (n) $ (The vertical and horizontal axes show values of $ e_\alpha(n) $ and numbers of vertices $ n = 2^k $ ($ k = 2,3, \cdots , 20 $), respectively)
Figure 2.  Values of $ \mathcal{E}^{2,30}_{2^k}( {\boldsymbol{g}}_{2^k}) $
Figure 3.  Values of $ \mathcal{E}^{2,30}_n( {\boldsymbol{g}}_n) $ when $ n \leq 100 $ (Round points and diamond points show values when $ n $ is even and odd, respectively)
Table 1.  Examples of $ \Phi $ (Ranges of $ \alpha $)
$ \Phi(x) = x^\alpha $ $ \Phi(x) = x^\alpha\log (x+1) $ $ \Phi(x) = 1-e^{-x^\alpha}+x^{2\alpha} /2 $ ($ x \in [0,C_{\text b} \mathcal{L}] $)
Theorem 2.2 $ [2/p , \infty) $ $ [2/p-1 , \infty) $ $ [1/p, \infty) $
Theorem 2.3 $ (1/p , 2+1/p) $ $ (1/p , 1/p+1) $ $ (1/p , 2+1/p) $
Remark 2 $ [2/p , 2+1/p) $ $ [2/p,1/p+1) $ $ [2/p , 2+1/p) $ $ (p >1) $
$ \Phi(x) = x^\alpha $ $ \Phi(x) = x^\alpha\log (x+1) $ $ \Phi(x) = 1-e^{-x^\alpha}+x^{2\alpha} /2 $ ($ x \in [0,C_{\text b} \mathcal{L}] $)
Theorem 2.2 $ [2/p , \infty) $ $ [2/p-1 , \infty) $ $ [1/p, \infty) $
Theorem 2.3 $ (1/p , 2+1/p) $ $ (1/p , 1/p+1) $ $ (1/p , 2+1/p) $
Remark 2 $ [2/p , 2+1/p) $ $ [2/p,1/p+1) $ $ [2/p , 2+1/p) $ $ (p >1) $
Table 2.  Numerical calculation of $ \mathcal{L}( {\boldsymbol{f}}_0)^{\alpha -2}\mathcal{E}^{\alpha , 1}( {\boldsymbol{f}}_0) $ when $ 2 \leq \alpha < 3 $ (D: Values of discretization, D$ / $A: Divisions of value of discretization when $ n = 4194304 $ by analytic value)
Number of vertices $ n $ $ \alpha $
$ 2 $ $ 2.1 $ $ 2.3 $ $ 2.5 $ $ 2.7 $ $ 2.9 $
D $ 4 $ $ 1 $ $ 1.147365 $ $ 1.500936 $ $ 1.949372 $ $ 2.516555 $ $ 3.232177 $
$ 8 $ $ 2.325253 $ $ 2.739102 $ $ 3.780728 $ $ 5.187945 $ $ 7.085586 $ $ 9.640817 $
$ 16 $ $ 3.134412 $ $ 3.754475 $ $ 5.372714 $ $ 7.672833 $ $ 10.95137 $ $ 15.64031 $
$ 32 $ $ 3.562332 $ $ 4.320470 $ $ 6.363289 $ $ 9.408493 $ $ 13.99728 $ $ 20.99456 $
$ 64 $ $ 3.780229 $ $ 4.626457 $ $ 6.969742 $ $ 10.61781 $ $ 16.42130 $ $ 25.87401 $
$ 128 $ $ 3.889916 $ $ 4.790718 $ $ 7.341313 $ $ 11.46626 $ $ 18.37252 $ $ 30.38526 $
$ 256 $ $ 3.944913 $ $ 4.878765 $ $ 7.569466 $ $ 12.06415 $ $ 19.95194 $ $ 34.58121 $
$ 512 $ $ 3.972446 $ $ 4.925946 $ $ 7.709746 $ $ 12.48634 $ $ 21.23325 $ $ 38.49223 $
$ 1024 $ $ 3.986220 $ $ 4.951228 $ $ 7.796054 $ $ 12.78472 $ $ 22.27356 $ $ 42.14019 $
$ 2048 $ $ 3.993109 $ $ 4.964776 $ $ 7.849171 $ $ 12.99567 $ $ 23.11844 $ $ 45.54354 $
$ 4096 $ $ 3.996555 $ $ 4.972036 $ $ 7.881865 $ $ 13.14482 $ $ 23.80467 $ $ 48.71889 $
$ 8192 $ $ 3.998277 $ $ 4.975926 $ $ 7.901990 $ $ 13.25028 $ $ 24.36205 $ $ 51.68157 $
$ 16384 $ $ 3.999139 $ $ 4.978011 $ $ 7.914378 $ $ 13.32485 $ $ 24.81478 $ $ 54.44584 $
$ 32768 $ $ 3.999569 $ $ 4.979129 $ $ 7.922004 $ $ 13.37758 $ $ 25.18251 $ $ 57.02499 $
$ 65536 $ $ 3.999785 $ $ 4.979727 $ $ 7.926698 $ $ 13.41487 $ $ 25.48120 $ $ 59.43143 $
$ 131072 $ $ 3.999892 $ $ 4.980048 $ $ 7.929588 $ $ 13.44124 $ $ 25.72381 $ $ 61.67671 $
$ 262144 $ $ 3.999946 $ $ 4.980220 $ $ 7.931366 $ $ 13.45988 $ $ 25.92087 $ $ 63.77161 $
$ 524288 $ $ 3.999973 $ $ 4.980312 $ $ 7.932461 $ $ 13.47306 $ $ 26.08094 $ $ 65.72639 $
$ 1048576 $ $ 3.999987 $ $ 4.980362 $ $ 7.933135 $ $ 13.48238 $ $ 26.21093 $ $ 67.55013 $
$ 2097152 $ $ 4.000004 $ $ 4.980401 $ $ 7.933568 $ $ 13.48900 $ $ 26.31651 $ $ 69.25143 $
$ 4194304 $ $ 3.999997 $ $ 4.980402 $ $ 7.933807 $ $ 13.49362 $ $ 26.40257 $ $ 70.84417 $
Analytic values $ 4 $ $ 4.980419 $ $ 7.934215 $ $ 13.50489 $ $ 26.77342 $ $ 92.95965 $
D$ / $A $ 0.999999 $ $ 0.999997 $ $ 0.999949 $ $ 0.999166 $ $ 0.986148 $ $ 0.762096 $
Number of vertices $ n $ $ \alpha $
$ 2 $ $ 2.1 $ $ 2.3 $ $ 2.5 $ $ 2.7 $ $ 2.9 $
D $ 4 $ $ 1 $ $ 1.147365 $ $ 1.500936 $ $ 1.949372 $ $ 2.516555 $ $ 3.232177 $
$ 8 $ $ 2.325253 $ $ 2.739102 $ $ 3.780728 $ $ 5.187945 $ $ 7.085586 $ $ 9.640817 $
$ 16 $ $ 3.134412 $ $ 3.754475 $ $ 5.372714 $ $ 7.672833 $ $ 10.95137 $ $ 15.64031 $
$ 32 $ $ 3.562332 $ $ 4.320470 $ $ 6.363289 $ $ 9.408493 $ $ 13.99728 $ $ 20.99456 $
$ 64 $ $ 3.780229 $ $ 4.626457 $ $ 6.969742 $ $ 10.61781 $ $ 16.42130 $ $ 25.87401 $
$ 128 $ $ 3.889916 $ $ 4.790718 $ $ 7.341313 $ $ 11.46626 $ $ 18.37252 $ $ 30.38526 $
$ 256 $ $ 3.944913 $ $ 4.878765 $ $ 7.569466 $ $ 12.06415 $ $ 19.95194 $ $ 34.58121 $
$ 512 $ $ 3.972446 $ $ 4.925946 $ $ 7.709746 $ $ 12.48634 $ $ 21.23325 $ $ 38.49223 $
$ 1024 $ $ 3.986220 $ $ 4.951228 $ $ 7.796054 $ $ 12.78472 $ $ 22.27356 $ $ 42.14019 $
$ 2048 $ $ 3.993109 $ $ 4.964776 $ $ 7.849171 $ $ 12.99567 $ $ 23.11844 $ $ 45.54354 $
$ 4096 $ $ 3.996555 $ $ 4.972036 $ $ 7.881865 $ $ 13.14482 $ $ 23.80467 $ $ 48.71889 $
$ 8192 $ $ 3.998277 $ $ 4.975926 $ $ 7.901990 $ $ 13.25028 $ $ 24.36205 $ $ 51.68157 $
$ 16384 $ $ 3.999139 $ $ 4.978011 $ $ 7.914378 $ $ 13.32485 $ $ 24.81478 $ $ 54.44584 $
$ 32768 $ $ 3.999569 $ $ 4.979129 $ $ 7.922004 $ $ 13.37758 $ $ 25.18251 $ $ 57.02499 $
$ 65536 $ $ 3.999785 $ $ 4.979727 $ $ 7.926698 $ $ 13.41487 $ $ 25.48120 $ $ 59.43143 $
$ 131072 $ $ 3.999892 $ $ 4.980048 $ $ 7.929588 $ $ 13.44124 $ $ 25.72381 $ $ 61.67671 $
$ 262144 $ $ 3.999946 $ $ 4.980220 $ $ 7.931366 $ $ 13.45988 $ $ 25.92087 $ $ 63.77161 $
$ 524288 $ $ 3.999973 $ $ 4.980312 $ $ 7.932461 $ $ 13.47306 $ $ 26.08094 $ $ 65.72639 $
$ 1048576 $ $ 3.999987 $ $ 4.980362 $ $ 7.933135 $ $ 13.48238 $ $ 26.21093 $ $ 67.55013 $
$ 2097152 $ $ 4.000004 $ $ 4.980401 $ $ 7.933568 $ $ 13.48900 $ $ 26.31651 $ $ 69.25143 $
$ 4194304 $ $ 3.999997 $ $ 4.980402 $ $ 7.933807 $ $ 13.49362 $ $ 26.40257 $ $ 70.84417 $
Analytic values $ 4 $ $ 4.980419 $ $ 7.934215 $ $ 13.50489 $ $ 26.77342 $ $ 92.95965 $
D$ / $A $ 0.999999 $ $ 0.999997 $ $ 0.999949 $ $ 0.999166 $ $ 0.986148 $ $ 0.762096 $
[1]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[2]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[3]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[4]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389

[5]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[6]

Monica Conti, Lorenzo Liverani, Vittorino Pata. A note on the energy transfer in coupled differential systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021042

[7]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[8]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[9]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[10]

Filippo Giuliani. Transfers of energy through fast diffusion channels in some resonant PDEs on the circle. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021068

[11]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[12]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[13]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[14]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[15]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[16]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[17]

Raphaël Côte, Frédéric Valet. Polynomial growth of high sobolev norms of solutions to the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1039-1058. doi: 10.3934/cpaa.2021005

[18]

Andrés Contreras, Juan Peypouquet. Forward-backward approximation of nonlinear semigroups in finite and infinite horizon. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021051

[19]

Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021022

[20]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021059

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (74)
  • HTML views (261)
  • Cited by (1)

Other articles
by authors

[Back to Top]