March  2021, 14(3): 953-970. doi: 10.3934/dcdss.2020384

Two notes on the O'Hara energies

Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama, Japan

Received  January 2019 Revised  February 2020 Published  June 2020

The O'Hara energies, introduced by Jun O'Hara in 1991, were proposed to answer the question of what is a "good" figure in a given knot class. A property of the O'Hara energies is that the "better" the figure of a knot is, the less the energy value is. In this article, we discuss two topics on the O'Hara energies. First, we slightly generalize the O'Hara energies and consider a characterization of its finiteness. The finiteness of the O'Hara energies was considered by Blatt in 2012 who used the Sobolev-Slobodeckij space, and naturally we consider a generalization of this space. Another fundamental problem is to understand the minimizers of the O'Hara energies. This problem has been addressed in several papers, some of them based on numerical computations. In this direction, we discuss a discretization of the O'Hara energies and give some examples of numerical computations. Particular one of the O'Hara energies, called the Möbius energy thanks to its Möbius invariance, was considered by Kim-Kusner in 1993, and Scholtes in 2014 established convergence properties. We apply their argument in general since the argument does not rely on Möbius invariance.

Citation: Shoya Kawakami. Two notes on the O'Hara energies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 953-970. doi: 10.3934/dcdss.2020384
References:
[1]

A. AbramsJ. CantarellaJ. H. G. FuM. Ghomi and R. Howard, Circles minimize most knot energies, Topology, 42 (2003), 381-394.  doi: 10.1016/S0040-9383(02)00016-2.  Google Scholar

[2]

S. Blatt, Boundedness and regularizing effects of O'Hara's knot energies, J. Knot Theory Ramifications, 21 (2012), 1250010, 9 pp. doi: 10.1142/S0218216511009704.  Google Scholar

[3]

G. Dal Maso, An Introduction to $\Gamma$-convergence, Progress in Nonlinear Diffrential Equations and their Applications, 8. Birkhäuser Boston, Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[4]

M. H. FreedmanZ.-X. He and Z. H. Wang, Möbius energy of knots and unknots, Ann. of Math. (2), 139 (1994), 1-50.  doi: 10.2307/2946626.  Google Scholar

[5]

A. Ishizeki and T. Nagasawa, Decomposition of generalized O'Hara's energies, (2019), arXiv: 1904.06812. Google Scholar

[6]

S. Kawakami, A discretization of O'Hara's knot energy and its convergence, (2019), arXiv: 1908.11172. Google Scholar

[7]

D. Kim and R. Kusner, Torus knots extremizing the Möbius energy, Experiment. Math., 2 (1993), 1-9.  doi: 10.1080/10586458.1993.10504264.  Google Scholar

[8]

R. Kusner and J. M. Sullivan, Möbius-invariant knot energies, Ideal Knots, Ser. Knots Everything, World Sci. Publ., River Edge, NJ, 19 (1998), 315-352.  doi: 10.1142/9789812796073_0017.  Google Scholar

[9]

S. Miyajima, Introduction to Sobolev Space and its Application, Kyoritsu Shuppan, Tokyo, 2006. Google Scholar

[10]

J. O'Hara, Energy of a knot, Topology, 30 (1991), 241-247.  doi: 10.1016/0040-9383(91)90010-2.  Google Scholar

[11]

J. O'Hara, Family of energy functionals of knots, Topology Appl., 48 (1992), 147-161.  doi: 10.1016/0166-8641(92)90023-S.  Google Scholar

[12]

J. O'Hara, Energy functionals of knots. Ⅱ, Topology Appl., 56 (1994), 45-61.  doi: 10.1016/0166-8641(94)90108-2.  Google Scholar

[13]

E. J. Rawdon and J. K. Simon, Polygonal approximation and energy of smooth knots, J. Knot Theory Ramifications, 15 (2006), 429-451.  doi: 10.1142/S0218216506004543.  Google Scholar

[14]

S. Scholtes, Discrete Möbius energy, J. Knot Theory Ramifications, 23 (2014), 1450045, 16 pp. doi: 10.1142/S021821651450045X.  Google Scholar

[15]

J. K. Simon, Energy functions for polygonal knots, J. Knot Theory Ramifications, 3 (1994), 299-320.  doi: 10.1142/S021821659400023X.  Google Scholar

show all references

References:
[1]

A. AbramsJ. CantarellaJ. H. G. FuM. Ghomi and R. Howard, Circles minimize most knot energies, Topology, 42 (2003), 381-394.  doi: 10.1016/S0040-9383(02)00016-2.  Google Scholar

[2]

S. Blatt, Boundedness and regularizing effects of O'Hara's knot energies, J. Knot Theory Ramifications, 21 (2012), 1250010, 9 pp. doi: 10.1142/S0218216511009704.  Google Scholar

[3]

G. Dal Maso, An Introduction to $\Gamma$-convergence, Progress in Nonlinear Diffrential Equations and their Applications, 8. Birkhäuser Boston, Boston, MA, 1993. doi: 10.1007/978-1-4612-0327-8.  Google Scholar

[4]

M. H. FreedmanZ.-X. He and Z. H. Wang, Möbius energy of knots and unknots, Ann. of Math. (2), 139 (1994), 1-50.  doi: 10.2307/2946626.  Google Scholar

[5]

A. Ishizeki and T. Nagasawa, Decomposition of generalized O'Hara's energies, (2019), arXiv: 1904.06812. Google Scholar

[6]

S. Kawakami, A discretization of O'Hara's knot energy and its convergence, (2019), arXiv: 1908.11172. Google Scholar

[7]

D. Kim and R. Kusner, Torus knots extremizing the Möbius energy, Experiment. Math., 2 (1993), 1-9.  doi: 10.1080/10586458.1993.10504264.  Google Scholar

[8]

R. Kusner and J. M. Sullivan, Möbius-invariant knot energies, Ideal Knots, Ser. Knots Everything, World Sci. Publ., River Edge, NJ, 19 (1998), 315-352.  doi: 10.1142/9789812796073_0017.  Google Scholar

[9]

S. Miyajima, Introduction to Sobolev Space and its Application, Kyoritsu Shuppan, Tokyo, 2006. Google Scholar

[10]

J. O'Hara, Energy of a knot, Topology, 30 (1991), 241-247.  doi: 10.1016/0040-9383(91)90010-2.  Google Scholar

[11]

J. O'Hara, Family of energy functionals of knots, Topology Appl., 48 (1992), 147-161.  doi: 10.1016/0166-8641(92)90023-S.  Google Scholar

[12]

J. O'Hara, Energy functionals of knots. Ⅱ, Topology Appl., 56 (1994), 45-61.  doi: 10.1016/0166-8641(94)90108-2.  Google Scholar

[13]

E. J. Rawdon and J. K. Simon, Polygonal approximation and energy of smooth knots, J. Knot Theory Ramifications, 15 (2006), 429-451.  doi: 10.1142/S0218216506004543.  Google Scholar

[14]

S. Scholtes, Discrete Möbius energy, J. Knot Theory Ramifications, 23 (2014), 1450045, 16 pp. doi: 10.1142/S021821651450045X.  Google Scholar

[15]

J. K. Simon, Energy functions for polygonal knots, J. Knot Theory Ramifications, 3 (1994), 299-320.  doi: 10.1142/S021821659400023X.  Google Scholar

Figure 1.  Graphs of $ e_\alpha (n) $ (The vertical and horizontal axes show values of $ e_\alpha(n) $ and numbers of vertices $ n = 2^k $ ($ k = 2,3, \cdots , 20 $), respectively)
Figure 2.  Values of $ \mathcal{E}^{2,30}_{2^k}( {\boldsymbol{g}}_{2^k}) $
Figure 3.  Values of $ \mathcal{E}^{2,30}_n( {\boldsymbol{g}}_n) $ when $ n \leq 100 $ (Round points and diamond points show values when $ n $ is even and odd, respectively)
Table 1.  Examples of $ \Phi $ (Ranges of $ \alpha $)
$ \Phi(x) = x^\alpha $ $ \Phi(x) = x^\alpha\log (x+1) $ $ \Phi(x) = 1-e^{-x^\alpha}+x^{2\alpha} /2 $ ($ x \in [0,C_{\text b} \mathcal{L}] $)
Theorem 2.2 $ [2/p , \infty) $ $ [2/p-1 , \infty) $ $ [1/p, \infty) $
Theorem 2.3 $ (1/p , 2+1/p) $ $ (1/p , 1/p+1) $ $ (1/p , 2+1/p) $
Remark 2 $ [2/p , 2+1/p) $ $ [2/p,1/p+1) $ $ [2/p , 2+1/p) $ $ (p >1) $
$ \Phi(x) = x^\alpha $ $ \Phi(x) = x^\alpha\log (x+1) $ $ \Phi(x) = 1-e^{-x^\alpha}+x^{2\alpha} /2 $ ($ x \in [0,C_{\text b} \mathcal{L}] $)
Theorem 2.2 $ [2/p , \infty) $ $ [2/p-1 , \infty) $ $ [1/p, \infty) $
Theorem 2.3 $ (1/p , 2+1/p) $ $ (1/p , 1/p+1) $ $ (1/p , 2+1/p) $
Remark 2 $ [2/p , 2+1/p) $ $ [2/p,1/p+1) $ $ [2/p , 2+1/p) $ $ (p >1) $
Table 2.  Numerical calculation of $ \mathcal{L}( {\boldsymbol{f}}_0)^{\alpha -2}\mathcal{E}^{\alpha , 1}( {\boldsymbol{f}}_0) $ when $ 2 \leq \alpha < 3 $ (D: Values of discretization, D$ / $A: Divisions of value of discretization when $ n = 4194304 $ by analytic value)
Number of vertices $ n $ $ \alpha $
$ 2 $ $ 2.1 $ $ 2.3 $ $ 2.5 $ $ 2.7 $ $ 2.9 $
D $ 4 $ $ 1 $ $ 1.147365 $ $ 1.500936 $ $ 1.949372 $ $ 2.516555 $ $ 3.232177 $
$ 8 $ $ 2.325253 $ $ 2.739102 $ $ 3.780728 $ $ 5.187945 $ $ 7.085586 $ $ 9.640817 $
$ 16 $ $ 3.134412 $ $ 3.754475 $ $ 5.372714 $ $ 7.672833 $ $ 10.95137 $ $ 15.64031 $
$ 32 $ $ 3.562332 $ $ 4.320470 $ $ 6.363289 $ $ 9.408493 $ $ 13.99728 $ $ 20.99456 $
$ 64 $ $ 3.780229 $ $ 4.626457 $ $ 6.969742 $ $ 10.61781 $ $ 16.42130 $ $ 25.87401 $
$ 128 $ $ 3.889916 $ $ 4.790718 $ $ 7.341313 $ $ 11.46626 $ $ 18.37252 $ $ 30.38526 $
$ 256 $ $ 3.944913 $ $ 4.878765 $ $ 7.569466 $ $ 12.06415 $ $ 19.95194 $ $ 34.58121 $
$ 512 $ $ 3.972446 $ $ 4.925946 $ $ 7.709746 $ $ 12.48634 $ $ 21.23325 $ $ 38.49223 $
$ 1024 $ $ 3.986220 $ $ 4.951228 $ $ 7.796054 $ $ 12.78472 $ $ 22.27356 $ $ 42.14019 $
$ 2048 $ $ 3.993109 $ $ 4.964776 $ $ 7.849171 $ $ 12.99567 $ $ 23.11844 $ $ 45.54354 $
$ 4096 $ $ 3.996555 $ $ 4.972036 $ $ 7.881865 $ $ 13.14482 $ $ 23.80467 $ $ 48.71889 $
$ 8192 $ $ 3.998277 $ $ 4.975926 $ $ 7.901990 $ $ 13.25028 $ $ 24.36205 $ $ 51.68157 $
$ 16384 $ $ 3.999139 $ $ 4.978011 $ $ 7.914378 $ $ 13.32485 $ $ 24.81478 $ $ 54.44584 $
$ 32768 $ $ 3.999569 $ $ 4.979129 $ $ 7.922004 $ $ 13.37758 $ $ 25.18251 $ $ 57.02499 $
$ 65536 $ $ 3.999785 $ $ 4.979727 $ $ 7.926698 $ $ 13.41487 $ $ 25.48120 $ $ 59.43143 $
$ 131072 $ $ 3.999892 $ $ 4.980048 $ $ 7.929588 $ $ 13.44124 $ $ 25.72381 $ $ 61.67671 $
$ 262144 $ $ 3.999946 $ $ 4.980220 $ $ 7.931366 $ $ 13.45988 $ $ 25.92087 $ $ 63.77161 $
$ 524288 $ $ 3.999973 $ $ 4.980312 $ $ 7.932461 $ $ 13.47306 $ $ 26.08094 $ $ 65.72639 $
$ 1048576 $ $ 3.999987 $ $ 4.980362 $ $ 7.933135 $ $ 13.48238 $ $ 26.21093 $ $ 67.55013 $
$ 2097152 $ $ 4.000004 $ $ 4.980401 $ $ 7.933568 $ $ 13.48900 $ $ 26.31651 $ $ 69.25143 $
$ 4194304 $ $ 3.999997 $ $ 4.980402 $ $ 7.933807 $ $ 13.49362 $ $ 26.40257 $ $ 70.84417 $
Analytic values $ 4 $ $ 4.980419 $ $ 7.934215 $ $ 13.50489 $ $ 26.77342 $ $ 92.95965 $
D$ / $A $ 0.999999 $ $ 0.999997 $ $ 0.999949 $ $ 0.999166 $ $ 0.986148 $ $ 0.762096 $
Number of vertices $ n $ $ \alpha $
$ 2 $ $ 2.1 $ $ 2.3 $ $ 2.5 $ $ 2.7 $ $ 2.9 $
D $ 4 $ $ 1 $ $ 1.147365 $ $ 1.500936 $ $ 1.949372 $ $ 2.516555 $ $ 3.232177 $
$ 8 $ $ 2.325253 $ $ 2.739102 $ $ 3.780728 $ $ 5.187945 $ $ 7.085586 $ $ 9.640817 $
$ 16 $ $ 3.134412 $ $ 3.754475 $ $ 5.372714 $ $ 7.672833 $ $ 10.95137 $ $ 15.64031 $
$ 32 $ $ 3.562332 $ $ 4.320470 $ $ 6.363289 $ $ 9.408493 $ $ 13.99728 $ $ 20.99456 $
$ 64 $ $ 3.780229 $ $ 4.626457 $ $ 6.969742 $ $ 10.61781 $ $ 16.42130 $ $ 25.87401 $
$ 128 $ $ 3.889916 $ $ 4.790718 $ $ 7.341313 $ $ 11.46626 $ $ 18.37252 $ $ 30.38526 $
$ 256 $ $ 3.944913 $ $ 4.878765 $ $ 7.569466 $ $ 12.06415 $ $ 19.95194 $ $ 34.58121 $
$ 512 $ $ 3.972446 $ $ 4.925946 $ $ 7.709746 $ $ 12.48634 $ $ 21.23325 $ $ 38.49223 $
$ 1024 $ $ 3.986220 $ $ 4.951228 $ $ 7.796054 $ $ 12.78472 $ $ 22.27356 $ $ 42.14019 $
$ 2048 $ $ 3.993109 $ $ 4.964776 $ $ 7.849171 $ $ 12.99567 $ $ 23.11844 $ $ 45.54354 $
$ 4096 $ $ 3.996555 $ $ 4.972036 $ $ 7.881865 $ $ 13.14482 $ $ 23.80467 $ $ 48.71889 $
$ 8192 $ $ 3.998277 $ $ 4.975926 $ $ 7.901990 $ $ 13.25028 $ $ 24.36205 $ $ 51.68157 $
$ 16384 $ $ 3.999139 $ $ 4.978011 $ $ 7.914378 $ $ 13.32485 $ $ 24.81478 $ $ 54.44584 $
$ 32768 $ $ 3.999569 $ $ 4.979129 $ $ 7.922004 $ $ 13.37758 $ $ 25.18251 $ $ 57.02499 $
$ 65536 $ $ 3.999785 $ $ 4.979727 $ $ 7.926698 $ $ 13.41487 $ $ 25.48120 $ $ 59.43143 $
$ 131072 $ $ 3.999892 $ $ 4.980048 $ $ 7.929588 $ $ 13.44124 $ $ 25.72381 $ $ 61.67671 $
$ 262144 $ $ 3.999946 $ $ 4.980220 $ $ 7.931366 $ $ 13.45988 $ $ 25.92087 $ $ 63.77161 $
$ 524288 $ $ 3.999973 $ $ 4.980312 $ $ 7.932461 $ $ 13.47306 $ $ 26.08094 $ $ 65.72639 $
$ 1048576 $ $ 3.999987 $ $ 4.980362 $ $ 7.933135 $ $ 13.48238 $ $ 26.21093 $ $ 67.55013 $
$ 2097152 $ $ 4.000004 $ $ 4.980401 $ $ 7.933568 $ $ 13.48900 $ $ 26.31651 $ $ 69.25143 $
$ 4194304 $ $ 3.999997 $ $ 4.980402 $ $ 7.933807 $ $ 13.49362 $ $ 26.40257 $ $ 70.84417 $
Analytic values $ 4 $ $ 4.980419 $ $ 7.934215 $ $ 13.50489 $ $ 26.77342 $ $ 92.95965 $
D$ / $A $ 0.999999 $ $ 0.999997 $ $ 0.999949 $ $ 0.999166 $ $ 0.986148 $ $ 0.762096 $
[1]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[2]

Madhurima Mukhopadhyay, Palash Sarkar, Shashank Singh, Emmanuel Thomé. New discrete logarithm computation for the medium prime case using the function field sieve. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020119

[3]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[4]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[5]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[6]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[7]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[8]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[9]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[10]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020389

[11]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[12]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[13]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[14]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[15]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[16]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[17]

Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048

[18]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[19]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[20]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]