doi: 10.3934/dcdss.2020385

An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow

Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan

Received  January 2019 Revised  February 2020 Published  June 2020

In recent work of Nagasawa and the author, new interpolation inequalities between the deviation of curvature and the isoperimetric ratio were proved. In this paper, we apply such estimates to investigate the large-time behavior of the length-preserving flow of closed plane curves without a convexity assumption.

Citation: Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020385
References:
[1]

G. DziukE. Kuwert and R. Schätzle, Evolution of elastic curves in $\Bbb R^n$: Existence and computation, SIAM J. Math. Anal., 33 (2002), 1228-1245.  doi: 10.1137/S0036141001383709.  Google Scholar

[2]

J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres, Proc. Amer. Math. Soc., 126 (1998), 2789-2796.  doi: 10.1090/S0002-9939-98-04727-3.  Google Scholar

[3]

M. Gage, On an area-preserving evolution equation for plane curves, Nonlinear Problems in Geometry, Contemp. Math., Amer. Math. Soc., Providence, RI, 51, (1986), 51–62. doi: 10.1090/conm/051/848933.  Google Scholar

[4]

L. S. Jiang and S. L. Pan, On a non-local curve evolution problem in the plane, Comm. Anal. Geom., 16 (2008), 1-26.  doi: 10.4310/CAG.2008.v16.n1.a1.  Google Scholar

[5]

L. Ma and A. Q. Zhu, On a length preserving curve flow, Monatsh. Math., 165 (2012), 57-78.  doi: 10.1007/s00605-011-0302-8.  Google Scholar

[6]

U. F. Mayer, A singular example for the averaged mean curvature flow, Experiment. Math., 10 (2001), 103-107.  doi: 10.1080/10586458.2001.10504432.  Google Scholar

[7]

T. Nagasawa and K. Nakamura, Interpolation inequalities between the deviation of curvature and the isoperimetric ratio with applications to geometric flows, Adv. Differential Equations, 24 (2019), 581-608.   Google Scholar

[8]

D. Ševčovič and S. Yazaki, Computational and qualitative aspects of motion of plane curves with a curvature adjusted tangential velocity, Math. Methods Appl. Sci., 35 (2012), 1784-1798.  doi: 10.1002/mma.2554.  Google Scholar

show all references

References:
[1]

G. DziukE. Kuwert and R. Schätzle, Evolution of elastic curves in $\Bbb R^n$: Existence and computation, SIAM J. Math. Anal., 33 (2002), 1228-1245.  doi: 10.1137/S0036141001383709.  Google Scholar

[2]

J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres, Proc. Amer. Math. Soc., 126 (1998), 2789-2796.  doi: 10.1090/S0002-9939-98-04727-3.  Google Scholar

[3]

M. Gage, On an area-preserving evolution equation for plane curves, Nonlinear Problems in Geometry, Contemp. Math., Amer. Math. Soc., Providence, RI, 51, (1986), 51–62. doi: 10.1090/conm/051/848933.  Google Scholar

[4]

L. S. Jiang and S. L. Pan, On a non-local curve evolution problem in the plane, Comm. Anal. Geom., 16 (2008), 1-26.  doi: 10.4310/CAG.2008.v16.n1.a1.  Google Scholar

[5]

L. Ma and A. Q. Zhu, On a length preserving curve flow, Monatsh. Math., 165 (2012), 57-78.  doi: 10.1007/s00605-011-0302-8.  Google Scholar

[6]

U. F. Mayer, A singular example for the averaged mean curvature flow, Experiment. Math., 10 (2001), 103-107.  doi: 10.1080/10586458.2001.10504432.  Google Scholar

[7]

T. Nagasawa and K. Nakamura, Interpolation inequalities between the deviation of curvature and the isoperimetric ratio with applications to geometric flows, Adv. Differential Equations, 24 (2019), 581-608.   Google Scholar

[8]

D. Ševčovič and S. Yazaki, Computational and qualitative aspects of motion of plane curves with a curvature adjusted tangential velocity, Math. Methods Appl. Sci., 35 (2012), 1784-1798.  doi: 10.1002/mma.2554.  Google Scholar

[1]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[2]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[3]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[4]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[5]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[6]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[7]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (32)
  • HTML views (178)
  • Cited by (0)

Other articles
by authors

[Back to Top]