
-
Previous Article
Comparison of modern heuristics on solving the phase stability testing problem
- DCDS-S Home
- This Issue
-
Next Article
Convergence of a blow-up curve for a semilinear wave equation
Signed-distance function based non-rigid registration of image series with varying image intensity
a. | Department of Mathematics, FNSPE, Czech Technical University in Prague, Trojanova 13,120 00 Prague, Czech Republic |
b. | Department of Radiology, Institute for clinical and experimental medicine, Vídeňská 1958/9, Praha 4,140 21, Czech Republic |
c. | Inria, France |
d. | LMS, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, France |
e. | School of Biomedical Engineering & Imaging Sciences, St Thomas' Hospital, King's College London, UK |
In this paper we propose a method for locally adjusted optical flow-based registration of multimodal images, which uses the segmentation of object of interest and its representation by the signed-distance function (OF$ ^{dist} $ method). We deal with non-rigid registration of the image series acquired by the Modiffied Look-Locker Inversion Recovery (MOLLI) magnetic resonance imaging sequence, which is used for a pixel-wise estimation of $ T_1 $ relaxation time. The spatial registration of the images within the series is necessary to compensate the patient's imperfect breath-holding. The evolution of intensities and a large variation of image contrast within the MOLLI image series, together with the myocardium of left ventricle (the object of interest) typically not being the most distinct object in the scene, makes the registration challenging. The paper describes all components of the proposed OF$ ^{dist} $ method and their implementation. The method is then compared to the performance of a standard mutual information maximization-based registration method, applied either to the original image (MIM) or to the signed-distance function (MIM$ ^{dist} $). Several experiments with synthetic and real MOLLI images are carried out. On synthetic image with a single object, MIM performed the best, while OF$ ^{dist} $ and MIM$ ^{dist} $ provided better results on synthetic images with more than one object and on real images. When applied to signed-distance function of two objects of interest, MIM$ ^{dist} $ provided a larger registration error, but more homogeneously distributed, compared to OF$ ^{dist} $. For the real MOLLI image series with left ventricle pre-segmented using a level-set method, the proposed OF$ ^{dist} $ registration performed the best, as is demonstrated visually and by measuring the increase of mutual information in the object of interest and its neighborhood.
References:
[1] |
J. F. Aujol and G. Aubert,
Signed distance functions and viscosity solutions of discontinuous Hamilton-Jacobi Equations, INRIA Res. Rep, 4507 (2002).
|
[2] |
V. Caselles, R. Kimmel and G. Sapiro,
Geodesic active contours, Proceedings of Fifth International Conference on Computer Vision, (1995), 694-699.
|
[3] |
S. Chen and A. Rahman,
Contrast enhancement using recursive mean-separate histogram equalisation for scalable brightness preservation, IEEE Transactions on Consumer Electronics, 49 (2003), 1301-1309.
|
[4] |
L. C. Evans and J. Spruck,
Motion of level sets by mean curvature. Ⅰ, Journal of Differential Geometry, 33 (1991), 635-681.
doi: 10.4310/jdg/1214446559. |
[5] |
M. A. Fischler and R. A. Elschlager,
The representation and matching of pictorial structures, IEEE Transactions on computers, C-22 (1973), 67-92.
doi: 10.1109/T-C.1973.223602. |
[6] |
I. M. Gelfand, R. A. Silverman and et al., Calculus of Variations, Courier Corporation, 2000. |
[7] |
A. Handlovičová, K. Mikula and F. Sgallari,
Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution, Numerische Mathematik, 93 (2003), 675-695.
doi: 10.1007/s002110100374. |
[8] |
B. K. P. Horn and B. G. Schunck,
Determining optical flow, Artificial Intelligence, 17 (1981), 185-203.
doi: 10.1016/0004-3702(81)90024-2. |
[9] |
J. Jost, Postmodern Analysis, Third edition, Universitext, Springer-Verlag, Berlin, 2005. |
[10] |
V. Klement, T. Oberhuber and D. Ševčovič,
Application of the level-set model with constraints in image segmentation, Numerical Mathematics: Theory, Methods and Applications, 9 (2016), 147-168.
doi: 10.4208/nmtma.2015.m1418. |
[11] |
F. Maes, A. Collignon, D. Vandermeulen, G. Marchal and P. Suetens,
Multimodality image registration by maximisation of mutual information, IEEE Transactions on Medical Imaging, 16 (1997), 187-198.
|
[12] |
J. A. Maintz and M. A. Viergever,
A survey of medical image registration, Medical Image Analysis, 2 (1998), 1-36.
doi: 10.1016/S1361-8415(01)80026-8. |
[13] |
T. Makela, P. Clarysse, O. Sipila, N. Pauna, Q. C. Pham, T. Katila and I. E. Magnin,
A review of cardiac image registration methods, IEEE Transactions on Medical Imaging, 21 (2002), 1011-1021.
doi: 10.1109/TMI.2002.804441. |
[14] |
S. Osher and J. A. Sethian,
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[15] |
D. P. Peng, B. Merriman, S. Osher, H. K. Zhao and M. Kang,
A PDE-based fast local level set method, Journal of Computational Physics, 155 (1999), 410-438.
doi: 10.1006/jcph.1999.6345. |
[16] |
P. Perona and J. Malik,
Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 629-639.
doi: 10.1109/34.56205. |
[17] |
G. Peyré, M. Péchaud, R. Keriven, L. D. Cohen and et al., Geodesic methods in computer vision and graphics, Foundations and Trends® in Computer Graphics and Vision, 5 (2010), 197–397. |
[18] |
R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publishers, Dordrecht, 2002.
doi: 10.1007/978-94-015-9986-3. |
[19] |
D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach and D. J. Hawkes,
Nonrigid registration using free-form deformations: Application to breast MR images, IEEE Transactions on Medical Imaging, 18 (1999), 712-721.
doi: 10.1109/42.796284. |
[20] |
J. A. Sethian,
Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws, Journal of Differential Geometry, 31 (1990), 131-161.
doi: 10.4310/jdg/1214444092. |
[21] |
J. A. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monographs on Applied and Computational Mathematics, 3. Cambridge University Press, Cambridge, 1996. |
[22] |
T. W. Tang and A. C. Chung,
Non-rigid image registration using graph-cuts, International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, (2007), 916-924.
|
show all references
References:
[1] |
J. F. Aujol and G. Aubert,
Signed distance functions and viscosity solutions of discontinuous Hamilton-Jacobi Equations, INRIA Res. Rep, 4507 (2002).
|
[2] |
V. Caselles, R. Kimmel and G. Sapiro,
Geodesic active contours, Proceedings of Fifth International Conference on Computer Vision, (1995), 694-699.
|
[3] |
S. Chen and A. Rahman,
Contrast enhancement using recursive mean-separate histogram equalisation for scalable brightness preservation, IEEE Transactions on Consumer Electronics, 49 (2003), 1301-1309.
|
[4] |
L. C. Evans and J. Spruck,
Motion of level sets by mean curvature. Ⅰ, Journal of Differential Geometry, 33 (1991), 635-681.
doi: 10.4310/jdg/1214446559. |
[5] |
M. A. Fischler and R. A. Elschlager,
The representation and matching of pictorial structures, IEEE Transactions on computers, C-22 (1973), 67-92.
doi: 10.1109/T-C.1973.223602. |
[6] |
I. M. Gelfand, R. A. Silverman and et al., Calculus of Variations, Courier Corporation, 2000. |
[7] |
A. Handlovičová, K. Mikula and F. Sgallari,
Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution, Numerische Mathematik, 93 (2003), 675-695.
doi: 10.1007/s002110100374. |
[8] |
B. K. P. Horn and B. G. Schunck,
Determining optical flow, Artificial Intelligence, 17 (1981), 185-203.
doi: 10.1016/0004-3702(81)90024-2. |
[9] |
J. Jost, Postmodern Analysis, Third edition, Universitext, Springer-Verlag, Berlin, 2005. |
[10] |
V. Klement, T. Oberhuber and D. Ševčovič,
Application of the level-set model with constraints in image segmentation, Numerical Mathematics: Theory, Methods and Applications, 9 (2016), 147-168.
doi: 10.4208/nmtma.2015.m1418. |
[11] |
F. Maes, A. Collignon, D. Vandermeulen, G. Marchal and P. Suetens,
Multimodality image registration by maximisation of mutual information, IEEE Transactions on Medical Imaging, 16 (1997), 187-198.
|
[12] |
J. A. Maintz and M. A. Viergever,
A survey of medical image registration, Medical Image Analysis, 2 (1998), 1-36.
doi: 10.1016/S1361-8415(01)80026-8. |
[13] |
T. Makela, P. Clarysse, O. Sipila, N. Pauna, Q. C. Pham, T. Katila and I. E. Magnin,
A review of cardiac image registration methods, IEEE Transactions on Medical Imaging, 21 (2002), 1011-1021.
doi: 10.1109/TMI.2002.804441. |
[14] |
S. Osher and J. A. Sethian,
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, 79 (1988), 12-49.
doi: 10.1016/0021-9991(88)90002-2. |
[15] |
D. P. Peng, B. Merriman, S. Osher, H. K. Zhao and M. Kang,
A PDE-based fast local level set method, Journal of Computational Physics, 155 (1999), 410-438.
doi: 10.1006/jcph.1999.6345. |
[16] |
P. Perona and J. Malik,
Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 629-639.
doi: 10.1109/34.56205. |
[17] |
G. Peyré, M. Péchaud, R. Keriven, L. D. Cohen and et al., Geodesic methods in computer vision and graphics, Foundations and Trends® in Computer Graphics and Vision, 5 (2010), 197–397. |
[18] |
R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publishers, Dordrecht, 2002.
doi: 10.1007/978-94-015-9986-3. |
[19] |
D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach and D. J. Hawkes,
Nonrigid registration using free-form deformations: Application to breast MR images, IEEE Transactions on Medical Imaging, 18 (1999), 712-721.
doi: 10.1109/42.796284. |
[20] |
J. A. Sethian,
Numerical algorithms for propagating interfaces: Hamilton-Jacobi equations and conservation laws, Journal of Differential Geometry, 31 (1990), 131-161.
doi: 10.4310/jdg/1214444092. |
[21] |
J. A. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Materials Science, Cambridge Monographs on Applied and Computational Mathematics, 3. Cambridge University Press, Cambridge, 1996. |
[22] |
T. W. Tang and A. C. Chung,
Non-rigid image registration using graph-cuts, International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, (2007), 916-924.
|








9462.47 | 3130.83 | 2173.93 | 2607.66 |
9462.47 | 3130.83 | 2173.93 | 2607.66 |
6654.44 | 2199.07 | 4121.95 | 3602.27 |
6654.44 | 2199.07 | 4121.95 | 3602.27 |
0.849915 | 0.239367 | 0.2950385 |
0.849915 | 0.239367 | 0.2950385 |
6654.44 | 5062.1 | 4121.95 |
6654.44 | 5062.1 | 4121.95 |
1 | 1.1556 | 1.2184 | 1.2273 | 1.2170 |
2 | 1.1012 | 1.2034 | 1.2052 | 1.1964 |
1 | 1.1556 | 1.2184 | 1.2273 | 1.2170 |
2 | 1.1012 | 1.2034 | 1.2052 | 1.1964 |
[1] |
Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing. Multiscale Image Registration. Mathematical Biosciences & Engineering, 2006, 3 (2) : 389-418. doi: 10.3934/mbe.2006.3.389 |
[2] |
Zhao Yi, Justin W. L. Wan. An inviscid model for nonrigid image registration. Inverse Problems and Imaging, 2011, 5 (1) : 263-284. doi: 10.3934/ipi.2011.5.263 |
[3] |
Fan Jia, Xue-Cheng Tai, Jun Liu. Nonlocal regularized CNN for image segmentation. Inverse Problems and Imaging, 2020, 14 (5) : 891-911. doi: 10.3934/ipi.2020041 |
[4] |
Dana Paquin, Doron Levy, Lei Xing. Hybrid multiscale landmark and deformable image registration. Mathematical Biosciences & Engineering, 2007, 4 (4) : 711-737. doi: 10.3934/mbe.2007.4.711 |
[5] |
Christiane Pöschl, Jan Modersitzki, Otmar Scherzer. A variational setting for volume constrained image registration. Inverse Problems and Imaging, 2010, 4 (3) : 505-522. doi: 10.3934/ipi.2010.4.505 |
[6] |
Ye Yuan, Yan Ren, Xiaodong Liu, Jing Wang. Approach to image segmentation based on interval neutrosophic set. Numerical Algebra, Control and Optimization, 2020, 10 (1) : 1-11. doi: 10.3934/naco.2019028 |
[7] |
Dominique Zosso, Jing An, James Stevick, Nicholas Takaki, Morgan Weiss, Liane S. Slaughter, Huan H. Cao, Paul S. Weiss, Andrea L. Bertozzi. Image segmentation with dynamic artifacts detection and bias correction. Inverse Problems and Imaging, 2017, 11 (3) : 577-600. doi: 10.3934/ipi.2017027 |
[8] |
Matthew S. Keegan, Berta Sandberg, Tony F. Chan. A multiphase logic framework for multichannel image segmentation. Inverse Problems and Imaging, 2012, 6 (1) : 95-110. doi: 10.3934/ipi.2012.6.95 |
[9] |
Marcus Wagner. A direct method for the solution of an optimal control problem arising from image registration. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 487-510. doi: 10.3934/naco.2012.2.487 |
[10] |
Angel Angelov, Marcus Wagner. Multimodal image registration by elastic matching of edge sketches via optimal control. Journal of Industrial and Management Optimization, 2014, 10 (2) : 567-590. doi: 10.3934/jimo.2014.10.567 |
[11] |
Yangang Chen, Justin W. L. Wan. Numerical method for image registration model based on optimal mass transport. Inverse Problems and Imaging, 2018, 12 (2) : 401-432. doi: 10.3934/ipi.2018018 |
[12] |
Ho Law, Gary P. T. Choi, Ka Chun Lam, Lok Ming Lui. Quasiconformal model with CNN features for large deformation image registration. Inverse Problems and Imaging, 2022, 16 (4) : 1019-1046. doi: 10.3934/ipi.2022010 |
[13] |
Shi Yan, Jun Liu, Haiyang Huang, Xue-Cheng Tai. A dual EM algorithm for TV regularized Gaussian mixture model in image segmentation. Inverse Problems and Imaging, 2019, 13 (3) : 653-677. doi: 10.3934/ipi.2019030 |
[14] |
Jianping Zhang, Ke Chen, Bo Yu, Derek A. Gould. A local information based variational model for selective image segmentation. Inverse Problems and Imaging, 2014, 8 (1) : 293-320. doi: 10.3934/ipi.2014.8.293 |
[15] |
Lu Tan, Ling Li, Senjian An, Zhenkuan Pan. Nonlinear diffusion based image segmentation using two fast algorithms. Mathematical Foundations of Computing, 2019, 2 (2) : 149-168. doi: 10.3934/mfc.2019011 |
[16] |
Ruiliang Zhang, Xavier Bresson, Tony F. Chan, Xue-Cheng Tai. Four color theorem and convex relaxation for image segmentation with any number of regions. Inverse Problems and Imaging, 2013, 7 (3) : 1099-1113. doi: 10.3934/ipi.2013.7.1099 |
[17] |
Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351 |
[18] |
Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems and Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645 |
[19] |
Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems and Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048 |
[20] |
Huan Han. A variational model with fractional-order regularization term arising in registration of diffusion tensor image. Inverse Problems and Imaging, 2018, 12 (6) : 1263-1291. doi: 10.3934/ipi.2018053 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]