doi: 10.3934/dcdss.2020387

Traveling wave solution for a diffusive simple epidemic model with a free boundary

1. 

Department of Applied Mathematics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

2. 

Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan

* Corresponding author: Takeo Ushijima

Received  January 2019 Revised  March 2020 Published  June 2020

In this paper, we proved existence and nonexistence of traveling wave solution for a diffusive simple epidemic model with a free boundary in the case where the diffusion coefficient $ d $ of susceptible population is zero and the basic reproduction number is greater than 1. We obtained a curve in the parameter plane which is the boundary between the regions of existence and nonexistence of traveling wave. We numerically observed that in the region where the traveling wave exists the disease successfully propagate like traveling wave but in the region of no traveling wave disease stops to invade. We also numerically observed that as $ d $ increases the speed of propagation slows down and the parameter region of propagation narrows down.

Citation: Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020387
References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial Differential Equations and Related Topics, Lecture Notes in Math., Springer, Berlin, 446 (1975), 5-49.   Google Scholar

[3]

W. W. DingY. H. Du and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 1: Continuous initial functions, J. Differential Equations, 262 (2017), 4988-5021.  doi: 10.1016/j.jde.2017.01.016.  Google Scholar

[4]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic mode with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.  Google Scholar

[5]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary. Ⅱ, J. Differential Equations, 250 (2011), 4336-4366.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[6]

Y. H. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.  doi: 10.4171/JEMS/568.  Google Scholar

[7]

Y. H. DuB. D. Lou and M. L. Zhou, Nonlinear diffusion problems with free boundaries: Convergence, transition speed and zero number arguments, SIAM J. Math. Anal., 47 (2015), 3555-3584.  doi: 10.1137/140994848.  Google Scholar

[8]

Y. H. DuH. Matsuzawa and M. L. Zhou, Spreading speed and profile for nonlinear Stefan problems in high space dimensions, J. Math. Pure Appl. (9), 103 (2015), 741-787.  doi: 10.1016/j.matpur.2014.07.008.  Google Scholar

[9]

A. Ducrot and T. Giletti, Convergence to a pulsating travelling wave for an epidemic reaction-diffusion system with non-diffusive susceptible population, J. Math. Biol., 69 (2014), 533-552.  doi: 10.1007/s00285-013-0713-3.  Google Scholar

[10]

A. Ducrot, T. Giletti and H. Matano, Spreading speeds for multidimensional reaction diffusion system of the prey-predator type, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 137, 34 pp. doi: 10.1007/s00526-019-1576-2.  Google Scholar

[11]

J. GeK. I. KimZ. G. Lin and H. P. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509.  doi: 10.1016/j.jde.2015.06.035.  Google Scholar

[12]

Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Mathematical Models and Methods in Applied Sciences, 5 (1995), 935-966.  doi: 10.1142/S0218202595000504.  Google Scholar

[13]

A. Källén, Thresholds and traveling waves in an epidemic model for ravies, Nonlinear Analysis, Theory & Applications, 8 (1984), 851-856.  doi: 10.1016/0362-546X(84)90107-X.  Google Scholar

[14]

Y. Kaneko and H. Matsuzawa, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76.  doi: 10.1016/j.jmaa.2015.02.051.  Google Scholar

[15]

Y. Kawai and Y. Yamada, Multiple spreading phenomena for a free boundary problem of a reaction-diffusion equation with a certain class of bistable nonlinearity, J. Differential Equations, 261 (2016), 538-572.  doi: 10.1016/j.jde.2016.03.017.  Google Scholar

[16]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. Roy. Soc., A115 (1927), 700-721.   Google Scholar

[17]

K. I. KimZ. G. Lin and Q. Y. Zhang, An SIR epidemic model with free boundary, Nonlinear Analysis: Real World Applications, 14 (2013), 1992-2001.  doi: 10.1016/j.nonrwa.2013.02.003.  Google Scholar

[18]

H. Murakawa, Reaction-diffusion system approximation to degenerate parabolic systems, Nonlinearity, 20 (2007), 2319-2332.  doi: 10.1088/0951-7715/20/10/003.  Google Scholar

[19]

S. X. Pan, Invasion speed of a predator-prey system, Appl. Math. Lett., 74 (2017), 46-51.  doi: 10.1016/j.aml.2017.05.014.  Google Scholar

[20]

J. Yang and B. D. Lou, Traveling wave solutions of competitive models with free boundaries, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 817-826.  doi: 10.3934/dcdsb.2014.19.817.  Google Scholar

[21]

M. ZhuX. F. Guo and Z. G. Lin, The risk index for an SIR epidemic model and spatial spreading of the infectious disease, Math Biosci Eng., 14 (2017), 1565-1583.  doi: 10.3934/mbe.2017081.  Google Scholar

show all references

References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial Differential Equations and Related Topics, Lecture Notes in Math., Springer, Berlin, 446 (1975), 5-49.   Google Scholar

[3]

W. W. DingY. H. Du and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 1: Continuous initial functions, J. Differential Equations, 262 (2017), 4988-5021.  doi: 10.1016/j.jde.2017.01.016.  Google Scholar

[4]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic mode with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.  Google Scholar

[5]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary. Ⅱ, J. Differential Equations, 250 (2011), 4336-4366.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[6]

Y. H. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.  doi: 10.4171/JEMS/568.  Google Scholar

[7]

Y. H. DuB. D. Lou and M. L. Zhou, Nonlinear diffusion problems with free boundaries: Convergence, transition speed and zero number arguments, SIAM J. Math. Anal., 47 (2015), 3555-3584.  doi: 10.1137/140994848.  Google Scholar

[8]

Y. H. DuH. Matsuzawa and M. L. Zhou, Spreading speed and profile for nonlinear Stefan problems in high space dimensions, J. Math. Pure Appl. (9), 103 (2015), 741-787.  doi: 10.1016/j.matpur.2014.07.008.  Google Scholar

[9]

A. Ducrot and T. Giletti, Convergence to a pulsating travelling wave for an epidemic reaction-diffusion system with non-diffusive susceptible population, J. Math. Biol., 69 (2014), 533-552.  doi: 10.1007/s00285-013-0713-3.  Google Scholar

[10]

A. Ducrot, T. Giletti and H. Matano, Spreading speeds for multidimensional reaction diffusion system of the prey-predator type, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 137, 34 pp. doi: 10.1007/s00526-019-1576-2.  Google Scholar

[11]

J. GeK. I. KimZ. G. Lin and H. P. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509.  doi: 10.1016/j.jde.2015.06.035.  Google Scholar

[12]

Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Mathematical Models and Methods in Applied Sciences, 5 (1995), 935-966.  doi: 10.1142/S0218202595000504.  Google Scholar

[13]

A. Källén, Thresholds and traveling waves in an epidemic model for ravies, Nonlinear Analysis, Theory & Applications, 8 (1984), 851-856.  doi: 10.1016/0362-546X(84)90107-X.  Google Scholar

[14]

Y. Kaneko and H. Matsuzawa, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76.  doi: 10.1016/j.jmaa.2015.02.051.  Google Scholar

[15]

Y. Kawai and Y. Yamada, Multiple spreading phenomena for a free boundary problem of a reaction-diffusion equation with a certain class of bistable nonlinearity, J. Differential Equations, 261 (2016), 538-572.  doi: 10.1016/j.jde.2016.03.017.  Google Scholar

[16]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. Roy. Soc., A115 (1927), 700-721.   Google Scholar

[17]

K. I. KimZ. G. Lin and Q. Y. Zhang, An SIR epidemic model with free boundary, Nonlinear Analysis: Real World Applications, 14 (2013), 1992-2001.  doi: 10.1016/j.nonrwa.2013.02.003.  Google Scholar

[18]

H. Murakawa, Reaction-diffusion system approximation to degenerate parabolic systems, Nonlinearity, 20 (2007), 2319-2332.  doi: 10.1088/0951-7715/20/10/003.  Google Scholar

[19]

S. X. Pan, Invasion speed of a predator-prey system, Appl. Math. Lett., 74 (2017), 46-51.  doi: 10.1016/j.aml.2017.05.014.  Google Scholar

[20]

J. Yang and B. D. Lou, Traveling wave solutions of competitive models with free boundaries, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 817-826.  doi: 10.3934/dcdsb.2014.19.817.  Google Scholar

[21]

M. ZhuX. F. Guo and Z. G. Lin, The risk index for an SIR epidemic model and spatial spreading of the infectious disease, Math Biosci Eng., 14 (2017), 1565-1583.  doi: 10.3934/mbe.2017081.  Google Scholar

Figure 1.1.  Parameter regions for existence and non existence of traveling wave ($ d = 0 $): (left) $ \gamma \lambda $ plane, (right) $ \gamma a $ plane
Figure 2.1.  $ uv $ phase plane for (2.5), $ a>a^* $ (left), $ a < a^* $ (right)
Figure 3.1.  Numerical shooting in $ uv $ phase plane (left), Profile of the traveling wave (right) $ d = 0, \gamma = 0.3, a = 0.05 (\lambda \sim 0.05128) $
Figure 3.2.  Evolution of the solutions in spreading case ($ \gamma = 0.3 $): Left column; $ \lambda = 0.054159 $, $ T = 100 $, ① $ t = T $, ② $ t = 2T $, ③ $ t = 3T $, ④ $ t = 4T $, ⑤ $ t = 5T $, (top left) $ d = 0 $, (middle left) $ d = 0.1 $, (bottom left) $ d = 1 $. Right column; (top right) Profile of traveling wave $ \lambda = 0.054159 $, $ d = 0 $, (middle right) $ \lambda = 0.254297 $, $ d = 0 $, support of $ I_0 $ is the origin
Figure 3.3.  Evolution of the solutions in vanishing case ($ \gamma = 0.3 $, $ d = 0 $): (left) $ \lambda = 0.027 $, (right) $ \lambda = 0.281066 $, support of $ I_0 $ is fairly large
Figure 3.4.  Estimated speed of propagation: $ \Box\ d = 0, \bigcirc\ 0.1, \ast\ 1 $, (left) speed of propagation versus $ \lambda $, $ \gamma = 0.5 $, (right) speed of propagation versus $ \gamma $, $ \lambda = 0.4 $
Figure 3.5.  Vanishing versus spreading diagram: $ \times $ vanishing, $ + $ spreading, horizontal axis $ \gamma = 1/R_0 $, vertical axis $ \lambda = 1/\mu $, (top left) $ d = 0 $, (top right) $ d = 0.1 $, (bottom) $ d = 1 $
[1]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[2]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[5]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[6]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[9]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[10]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[11]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[14]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[15]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[16]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[17]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[18]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[19]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[20]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (47)
  • HTML views (178)
  • Cited by (0)

Other articles
by authors

[Back to Top]