doi: 10.3934/dcdss.2020387

Traveling wave solution for a diffusive simple epidemic model with a free boundary

1. 

Department of Applied Mathematics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

2. 

Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan

* Corresponding author: Takeo Ushijima

Received  January 2019 Revised  March 2020 Published  June 2020

In this paper, we proved existence and nonexistence of traveling wave solution for a diffusive simple epidemic model with a free boundary in the case where the diffusion coefficient $ d $ of susceptible population is zero and the basic reproduction number is greater than 1. We obtained a curve in the parameter plane which is the boundary between the regions of existence and nonexistence of traveling wave. We numerically observed that in the region where the traveling wave exists the disease successfully propagate like traveling wave but in the region of no traveling wave disease stops to invade. We also numerically observed that as $ d $ increases the speed of propagation slows down and the parameter region of propagation narrows down.

Citation: Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020387
References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial Differential Equations and Related Topics, Lecture Notes in Math., Springer, Berlin, 446 (1975), 5-49.   Google Scholar

[3]

W. W. DingY. H. Du and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 1: Continuous initial functions, J. Differential Equations, 262 (2017), 4988-5021.  doi: 10.1016/j.jde.2017.01.016.  Google Scholar

[4]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic mode with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.  Google Scholar

[5]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary. Ⅱ, J. Differential Equations, 250 (2011), 4336-4366.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[6]

Y. H. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.  doi: 10.4171/JEMS/568.  Google Scholar

[7]

Y. H. DuB. D. Lou and M. L. Zhou, Nonlinear diffusion problems with free boundaries: Convergence, transition speed and zero number arguments, SIAM J. Math. Anal., 47 (2015), 3555-3584.  doi: 10.1137/140994848.  Google Scholar

[8]

Y. H. DuH. Matsuzawa and M. L. Zhou, Spreading speed and profile for nonlinear Stefan problems in high space dimensions, J. Math. Pure Appl. (9), 103 (2015), 741-787.  doi: 10.1016/j.matpur.2014.07.008.  Google Scholar

[9]

A. Ducrot and T. Giletti, Convergence to a pulsating travelling wave for an epidemic reaction-diffusion system with non-diffusive susceptible population, J. Math. Biol., 69 (2014), 533-552.  doi: 10.1007/s00285-013-0713-3.  Google Scholar

[10]

A. Ducrot, T. Giletti and H. Matano, Spreading speeds for multidimensional reaction diffusion system of the prey-predator type, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 137, 34 pp. doi: 10.1007/s00526-019-1576-2.  Google Scholar

[11]

J. GeK. I. KimZ. G. Lin and H. P. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509.  doi: 10.1016/j.jde.2015.06.035.  Google Scholar

[12]

Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Mathematical Models and Methods in Applied Sciences, 5 (1995), 935-966.  doi: 10.1142/S0218202595000504.  Google Scholar

[13]

A. Källén, Thresholds and traveling waves in an epidemic model for ravies, Nonlinear Analysis, Theory & Applications, 8 (1984), 851-856.  doi: 10.1016/0362-546X(84)90107-X.  Google Scholar

[14]

Y. Kaneko and H. Matsuzawa, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76.  doi: 10.1016/j.jmaa.2015.02.051.  Google Scholar

[15]

Y. Kawai and Y. Yamada, Multiple spreading phenomena for a free boundary problem of a reaction-diffusion equation with a certain class of bistable nonlinearity, J. Differential Equations, 261 (2016), 538-572.  doi: 10.1016/j.jde.2016.03.017.  Google Scholar

[16]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. Roy. Soc., A115 (1927), 700-721.   Google Scholar

[17]

K. I. KimZ. G. Lin and Q. Y. Zhang, An SIR epidemic model with free boundary, Nonlinear Analysis: Real World Applications, 14 (2013), 1992-2001.  doi: 10.1016/j.nonrwa.2013.02.003.  Google Scholar

[18]

H. Murakawa, Reaction-diffusion system approximation to degenerate parabolic systems, Nonlinearity, 20 (2007), 2319-2332.  doi: 10.1088/0951-7715/20/10/003.  Google Scholar

[19]

S. X. Pan, Invasion speed of a predator-prey system, Appl. Math. Lett., 74 (2017), 46-51.  doi: 10.1016/j.aml.2017.05.014.  Google Scholar

[20]

J. Yang and B. D. Lou, Traveling wave solutions of competitive models with free boundaries, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 817-826.  doi: 10.3934/dcdsb.2014.19.817.  Google Scholar

[21]

M. ZhuX. F. Guo and Z. G. Lin, The risk index for an SIR epidemic model and spatial spreading of the infectious disease, Math Biosci Eng., 14 (2017), 1565-1583.  doi: 10.3934/mbe.2017081.  Google Scholar

show all references

References:
[1]

L. J. S. AllenB. M. BolkerY. Lou and A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model, Discrete Contin. Dyn. Syst. Ser. A, 21 (2008), 1-20.  doi: 10.3934/dcds.2008.21.1.  Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, Partial Differential Equations and Related Topics, Lecture Notes in Math., Springer, Berlin, 446 (1975), 5-49.   Google Scholar

[3]

W. W. DingY. H. Du and X. Liang, Spreading in space-time periodic media governed by a monostable equation with free boundaries, Part 1: Continuous initial functions, J. Differential Equations, 262 (2017), 4988-5021.  doi: 10.1016/j.jde.2017.01.016.  Google Scholar

[4]

Y. H. Du and Z. G. Lin, Spreading-vanishing dichotomy in the diffusive logistic mode with a free boundary, SIAM J. Math. Anal., 42 (2010), 377-405.  doi: 10.1137/090771089.  Google Scholar

[5]

Y. H. Du and Z. M. Guo, Spreading-vanishing dichotomy in a diffusive logistic model with a free boundary. Ⅱ, J. Differential Equations, 250 (2011), 4336-4366.  doi: 10.1016/j.jde.2011.02.011.  Google Scholar

[6]

Y. H. Du and B. D. Lou, Spreading and vanishing in nonlinear diffusion problems with free boundaries, J. Eur. Math. Soc., 17 (2015), 2673-2724.  doi: 10.4171/JEMS/568.  Google Scholar

[7]

Y. H. DuB. D. Lou and M. L. Zhou, Nonlinear diffusion problems with free boundaries: Convergence, transition speed and zero number arguments, SIAM J. Math. Anal., 47 (2015), 3555-3584.  doi: 10.1137/140994848.  Google Scholar

[8]

Y. H. DuH. Matsuzawa and M. L. Zhou, Spreading speed and profile for nonlinear Stefan problems in high space dimensions, J. Math. Pure Appl. (9), 103 (2015), 741-787.  doi: 10.1016/j.matpur.2014.07.008.  Google Scholar

[9]

A. Ducrot and T. Giletti, Convergence to a pulsating travelling wave for an epidemic reaction-diffusion system with non-diffusive susceptible population, J. Math. Biol., 69 (2014), 533-552.  doi: 10.1007/s00285-013-0713-3.  Google Scholar

[10]

A. Ducrot, T. Giletti and H. Matano, Spreading speeds for multidimensional reaction diffusion system of the prey-predator type, Calc. Var. Partial Differential Equations, 58 (2019), Paper No. 137, 34 pp. doi: 10.1007/s00526-019-1576-2.  Google Scholar

[11]

J. GeK. I. KimZ. G. Lin and H. P. Zhu, A SIS reaction-diffusion-advection model in a low-risk and high-risk domain, J. Differential Equations, 259 (2015), 5486-5509.  doi: 10.1016/j.jde.2015.06.035.  Google Scholar

[12]

Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Mathematical Models and Methods in Applied Sciences, 5 (1995), 935-966.  doi: 10.1142/S0218202595000504.  Google Scholar

[13]

A. Källén, Thresholds and traveling waves in an epidemic model for ravies, Nonlinear Analysis, Theory & Applications, 8 (1984), 851-856.  doi: 10.1016/0362-546X(84)90107-X.  Google Scholar

[14]

Y. Kaneko and H. Matsuzawa, Spreading speed and sharp asymptotic profiles of solutions in free boundary problems for nonlinear advection-diffusion equations, J. Math. Anal. Appl., 428 (2015), 43-76.  doi: 10.1016/j.jmaa.2015.02.051.  Google Scholar

[15]

Y. Kawai and Y. Yamada, Multiple spreading phenomena for a free boundary problem of a reaction-diffusion equation with a certain class of bistable nonlinearity, J. Differential Equations, 261 (2016), 538-572.  doi: 10.1016/j.jde.2016.03.017.  Google Scholar

[16]

W. O. Kermack and A. G. McKendrick, Contributions to the mathematical theory of epidemics, Proc. Roy. Soc., A115 (1927), 700-721.   Google Scholar

[17]

K. I. KimZ. G. Lin and Q. Y. Zhang, An SIR epidemic model with free boundary, Nonlinear Analysis: Real World Applications, 14 (2013), 1992-2001.  doi: 10.1016/j.nonrwa.2013.02.003.  Google Scholar

[18]

H. Murakawa, Reaction-diffusion system approximation to degenerate parabolic systems, Nonlinearity, 20 (2007), 2319-2332.  doi: 10.1088/0951-7715/20/10/003.  Google Scholar

[19]

S. X. Pan, Invasion speed of a predator-prey system, Appl. Math. Lett., 74 (2017), 46-51.  doi: 10.1016/j.aml.2017.05.014.  Google Scholar

[20]

J. Yang and B. D. Lou, Traveling wave solutions of competitive models with free boundaries, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 817-826.  doi: 10.3934/dcdsb.2014.19.817.  Google Scholar

[21]

M. ZhuX. F. Guo and Z. G. Lin, The risk index for an SIR epidemic model and spatial spreading of the infectious disease, Math Biosci Eng., 14 (2017), 1565-1583.  doi: 10.3934/mbe.2017081.  Google Scholar

Figure 1.1.  Parameter regions for existence and non existence of traveling wave ($ d = 0 $): (left) $ \gamma \lambda $ plane, (right) $ \gamma a $ plane
Figure 2.1.  $ uv $ phase plane for (2.5), $ a>a^* $ (left), $ a < a^* $ (right)
Figure 3.1.  Numerical shooting in $ uv $ phase plane (left), Profile of the traveling wave (right) $ d = 0, \gamma = 0.3, a = 0.05 (\lambda \sim 0.05128) $
Figure 3.2.  Evolution of the solutions in spreading case ($ \gamma = 0.3 $): Left column; $ \lambda = 0.054159 $, $ T = 100 $, ① $ t = T $, ② $ t = 2T $, ③ $ t = 3T $, ④ $ t = 4T $, ⑤ $ t = 5T $, (top left) $ d = 0 $, (middle left) $ d = 0.1 $, (bottom left) $ d = 1 $. Right column; (top right) Profile of traveling wave $ \lambda = 0.054159 $, $ d = 0 $, (middle right) $ \lambda = 0.254297 $, $ d = 0 $, support of $ I_0 $ is the origin
Figure 3.3.  Evolution of the solutions in vanishing case ($ \gamma = 0.3 $, $ d = 0 $): (left) $ \lambda = 0.027 $, (right) $ \lambda = 0.281066 $, support of $ I_0 $ is fairly large
Figure 3.4.  Estimated speed of propagation: $ \Box\ d = 0, \bigcirc\ 0.1, \ast\ 1 $, (left) speed of propagation versus $ \lambda $, $ \gamma = 0.5 $, (right) speed of propagation versus $ \gamma $, $ \lambda = 0.4 $
Figure 3.5.  Vanishing versus spreading diagram: $ \times $ vanishing, $ + $ spreading, horizontal axis $ \gamma = 1/R_0 $, vertical axis $ \lambda = 1/\mu $, (top left) $ d = 0 $, (top right) $ d = 0.1 $, (bottom) $ d = 1 $
[1]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[2]

Siyu Liu, Haomin Huang, Mingxin Wang. A free boundary problem for a prey-predator model with degenerate diffusion and predator-stage structure. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1649-1670. doi: 10.3934/dcdsb.2019245

[3]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[4]

Meng Zhao, Wan-Tong Li, Jia-Feng Cao. A prey-predator model with a free boundary and sign-changing coefficient in time-periodic environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3295-3316. doi: 10.3934/dcdsb.2017138

[5]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[6]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[7]

Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597

[8]

Safia Slimani, Paul Raynaud de Fitte, Islam Boussaada. Dynamics of a prey-predator system with modified Leslie-Gower and Holling type Ⅱ schemes incorporating a prey refuge. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5003-5039. doi: 10.3934/dcdsb.2019042

[9]

Isam Al-Darabsah, Xianhua Tang, Yuan Yuan. A prey-predator model with migrations and delays. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 737-761. doi: 10.3934/dcdsb.2016.21.737

[10]

Shanbing Li, Jianhua Wu. Effect of cross-diffusion in the diffusion prey-predator model with a protection zone. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1539-1558. doi: 10.3934/dcds.2017063

[11]

Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129

[12]

Shuping Li, Weinian Zhang. Bifurcations of a discrete prey-predator model with Holling type II functional response. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 159-176. doi: 10.3934/dcdsb.2010.14.159

[13]

Yunfeng Liu, Zhiming Guo, Mohammad El Smaily, Lin Wang. A Leslie-Gower predator-prey model with a free boundary. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2063-2084. doi: 10.3934/dcdss.2019133

[14]

R. P. Gupta, Peeyush Chandra, Malay Banerjee. Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 423-443. doi: 10.3934/dcdsb.2015.20.423

[15]

Malay Banerjee, Nayana Mukherjee, Vitaly Volpert. Prey-predator model with nonlocal and global consumption in the prey dynamics. Discrete & Continuous Dynamical Systems - S, 2020, 13 (8) : 2109-2120. doi: 10.3934/dcdss.2020180

[16]

Sampurna Sengupta, Pritha Das, Debasis Mukherjee. Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3275-3296. doi: 10.3934/dcdsb.2018244

[17]

Meng Zhao, Wantong Li, Yihong Du. The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4599-4620. doi: 10.3934/cpaa.2020208

[18]

Yuzo Hosono. Traveling waves for the Lotka-Volterra predator-prey system without diffusion of the predator. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 161-171. doi: 10.3934/dcdsb.2015.20.161

[19]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[20]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]