\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Convergence of a blow-up curve for a semilinear wave equation

This work was supported by JSPS Grant-in-Aid for Early-Career Scientists, 18K13447

Abstract Full Text(HTML) Related Papers Cited by
  • We consider a blow-up phenomenon for $ { \partial_t^2 u_ \varepsilon} $ $ {- \varepsilon^2 \partial_x^2u_ \varepsilon } $ $ { = F(\partial_t u_ \varepsilon)}. $ The derivative of the solution $ \partial_t u_ \varepsilon $ blows-up on a curve $ t = T_ \varepsilon(x) $ if we impose some conditions on the initial values and the nonlinear term $ F $. We call $ T_ \varepsilon $ blow-up curve for $ { \partial_t^2 u_ \varepsilon} $ $ {- \varepsilon^2 \partial_x^2u_ \varepsilon } $ $ { = F(\partial_t u_ \varepsilon)}. $ In the same way, we consider the blow-up curve $ t = \tilde{T}(x) $ for $ {\partial_t^2 u} $ $ = $ $ {F(\partial_t u)}. $ The purpose of this paper is to show that, for each $ x $, $ T_ \varepsilon(x) $ converges to $ \tilde{T}(x) $ as $ \varepsilon\rightarrow 0. $

    Mathematics Subject Classification: Primary: 35B44; Secondary: 35L05, 65M06.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Bellout and A. Friedman, Blow-up estimates for a nonlinear hyperbolic heat equation, SIAM J. Math. Anal., 20 (1989), 354-366.  doi: 10.1137/0520022.
    [2] L. A. Caffarelli and A. Friedman, The blow-up boundary for nonlinear wave equations, Trans. Amer. Math. Soc., 297 (1986), 223-241.  doi: 10.1090/S0002-9947-1986-0849476-3.
    [3] A. Friedman and L. Oswald, The blow-up surface for nonlinear wave equations with small spatial velocity, Trans. Amer. Math. Soc., 308 (1988), 349-367.  doi: 10.1090/S0002-9947-1988-0946448-7.
    [4] P. Godin, The blow-up curve of solutions of mixed problems for semilinear wave equations with exponential nonlinearities in one space dimension. I, Calc. Var. Partial Differential Equations, 13 (2001), 69-95.  doi: 10.1007/PL00009924.
    [5] M. A. Hamza and H. Zaag, Blow-up behavior for the Klein-Gordon and other perturbed semilinear wave equations, Bull. Sci. Math., 137 (2013), 1087-1109.  doi: 10.1016/j.bulsci.2013.05.004.
    [6] F. Merle and H. Zaag, Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension, J. Funct. Anal., 253 (2007), 43-121.  doi: 10.1016/j.jfa.2007.03.007.
    [7] F. Merle and H. Zaag, Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1D semilinear wave equation, Comm. Math. Phys., 282 (2008), 55-86.  doi: 10.1007/s00220-008-0532-3.
    [8] F. Merle and H. Zaag, Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension, Amer. J. Math., 134 (2012), 581-648.  doi: 10.1353/ajm.2012.0021.
    [9] T. Nakagawa, Blowing up of a finite difference solution to $u_t = u_xx + u^2$, Appl. Math. Optim., 2 (1975/76), 337-350.  doi: 10.1007/BF01448176.
    [10] M. Ohta and H. Takamura, Remarks on the blow-up boundaries and rates for nonlinear wave equations, Nonlinear Anal., 33 (1998), 693-698.  doi: 10.1016/S0362-546X(97)00670-6.
    [11] N. Saito and T. Sasaki, Blow-up of finite-difference solutions to nonlinear wave equations, J.Math.Sci. Univ. Tokyo, 23 (2016), 349-380. 
    [12] T. Sasaki, Regularity and singularity of the blow-up curve for a wave equation with a derivative nonlinearity, Advances in Differential Equations, 23 (2018), 373-408. 
    [13] H. Uesaka, The blow-up boundary for a system of semilinear wave equations, Further Progress in Analysis, World Sci. Publ., Hackensack, NJ, (2009), 845–853. doi: 10.1142/9789812837332_0081.
  • 加载中
SHARE

Article Metrics

HTML views(391) PDF downloads(290) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return