-
Previous Article
Signed-distance function based non-rigid registration of image series with varying image intensity
- DCDS-S Home
- This Issue
-
Next Article
Segmentation of color images using mean curvature flow and parametric curves
Convergence of a blow-up curve for a semilinear wave equation
National Institute of Technology, Ibaraki College, 866 Nakane, Hitachinaka-shi, Ibaraki-ken 312-8508, Japan |
We consider a blow-up phenomenon for $ { \partial_t^2 u_ \varepsilon} $ $ {- \varepsilon^2 \partial_x^2u_ \varepsilon } $ $ { = F(\partial_t u_ \varepsilon)}. $ The derivative of the solution $ \partial_t u_ \varepsilon $ blows-up on a curve $ t = T_ \varepsilon(x) $ if we impose some conditions on the initial values and the nonlinear term $ F $. We call $ T_ \varepsilon $ blow-up curve for $ { \partial_t^2 u_ \varepsilon} $ $ {- \varepsilon^2 \partial_x^2u_ \varepsilon } $ $ { = F(\partial_t u_ \varepsilon)}. $ In the same way, we consider the blow-up curve $ t = \tilde{T}(x) $ for $ {\partial_t^2 u} $ $ = $ $ {F(\partial_t u)}. $ The purpose of this paper is to show that, for each $ x $, $ T_ \varepsilon(x) $ converges to $ \tilde{T}(x) $ as $ \varepsilon\rightarrow 0. $
References:
[1] |
H. Bellout and A. Friedman,
Blow-up estimates for a nonlinear hyperbolic heat equation, SIAM J. Math. Anal., 20 (1989), 354-366.
doi: 10.1137/0520022. |
[2] |
L. A. Caffarelli and A. Friedman,
The blow-up boundary for nonlinear wave equations, Trans. Amer. Math. Soc., 297 (1986), 223-241.
doi: 10.1090/S0002-9947-1986-0849476-3. |
[3] |
A. Friedman and L. Oswald,
The blow-up surface for nonlinear wave equations with small spatial velocity, Trans. Amer. Math. Soc., 308 (1988), 349-367.
doi: 10.1090/S0002-9947-1988-0946448-7. |
[4] |
P. Godin,
The blow-up curve of solutions of mixed problems for semilinear wave equations with exponential nonlinearities in one space dimension. I, Calc. Var. Partial Differential Equations, 13 (2001), 69-95.
doi: 10.1007/PL00009924. |
[5] |
M. A. Hamza and H. Zaag,
Blow-up behavior for the Klein-Gordon and other perturbed semilinear wave equations, Bull. Sci. Math., 137 (2013), 1087-1109.
doi: 10.1016/j.bulsci.2013.05.004. |
[6] |
F. Merle and H. Zaag,
Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension, J. Funct. Anal., 253 (2007), 43-121.
doi: 10.1016/j.jfa.2007.03.007. |
[7] |
F. Merle and H. Zaag,
Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1D semilinear wave equation, Comm. Math. Phys., 282 (2008), 55-86.
doi: 10.1007/s00220-008-0532-3. |
[8] |
F. Merle and H. Zaag,
Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension, Amer. J. Math., 134 (2012), 581-648.
doi: 10.1353/ajm.2012.0021. |
[9] |
T. Nakagawa,
Blowing up of a finite difference solution to $u_t = u_xx + u^2$, Appl. Math. Optim., 2 (1975/76), 337-350.
doi: 10.1007/BF01448176. |
[10] |
M. Ohta and H. Takamura,
Remarks on the blow-up boundaries and rates for nonlinear wave equations, Nonlinear Anal., 33 (1998), 693-698.
doi: 10.1016/S0362-546X(97)00670-6. |
[11] |
N. Saito and T. Sasaki,
Blow-up of finite-difference solutions to nonlinear wave equations, J.Math.Sci. Univ. Tokyo, 23 (2016), 349-380.
|
[12] |
T. Sasaki,
Regularity and singularity of the blow-up curve for a wave equation with a derivative nonlinearity, Advances in Differential Equations, 23 (2018), 373-408.
|
[13] |
H. Uesaka, The blow-up boundary for a system of semilinear wave equations, Further Progress in Analysis, World Sci. Publ., Hackensack, NJ, (2009), 845–853.
doi: 10.1142/9789812837332_0081. |
show all references
References:
[1] |
H. Bellout and A. Friedman,
Blow-up estimates for a nonlinear hyperbolic heat equation, SIAM J. Math. Anal., 20 (1989), 354-366.
doi: 10.1137/0520022. |
[2] |
L. A. Caffarelli and A. Friedman,
The blow-up boundary for nonlinear wave equations, Trans. Amer. Math. Soc., 297 (1986), 223-241.
doi: 10.1090/S0002-9947-1986-0849476-3. |
[3] |
A. Friedman and L. Oswald,
The blow-up surface for nonlinear wave equations with small spatial velocity, Trans. Amer. Math. Soc., 308 (1988), 349-367.
doi: 10.1090/S0002-9947-1988-0946448-7. |
[4] |
P. Godin,
The blow-up curve of solutions of mixed problems for semilinear wave equations with exponential nonlinearities in one space dimension. I, Calc. Var. Partial Differential Equations, 13 (2001), 69-95.
doi: 10.1007/PL00009924. |
[5] |
M. A. Hamza and H. Zaag,
Blow-up behavior for the Klein-Gordon and other perturbed semilinear wave equations, Bull. Sci. Math., 137 (2013), 1087-1109.
doi: 10.1016/j.bulsci.2013.05.004. |
[6] |
F. Merle and H. Zaag,
Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension, J. Funct. Anal., 253 (2007), 43-121.
doi: 10.1016/j.jfa.2007.03.007. |
[7] |
F. Merle and H. Zaag,
Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1D semilinear wave equation, Comm. Math. Phys., 282 (2008), 55-86.
doi: 10.1007/s00220-008-0532-3. |
[8] |
F. Merle and H. Zaag,
Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension, Amer. J. Math., 134 (2012), 581-648.
doi: 10.1353/ajm.2012.0021. |
[9] |
T. Nakagawa,
Blowing up of a finite difference solution to $u_t = u_xx + u^2$, Appl. Math. Optim., 2 (1975/76), 337-350.
doi: 10.1007/BF01448176. |
[10] |
M. Ohta and H. Takamura,
Remarks on the blow-up boundaries and rates for nonlinear wave equations, Nonlinear Anal., 33 (1998), 693-698.
doi: 10.1016/S0362-546X(97)00670-6. |
[11] |
N. Saito and T. Sasaki,
Blow-up of finite-difference solutions to nonlinear wave equations, J.Math.Sci. Univ. Tokyo, 23 (2016), 349-380.
|
[12] |
T. Sasaki,
Regularity and singularity of the blow-up curve for a wave equation with a derivative nonlinearity, Advances in Differential Equations, 23 (2018), 373-408.
|
[13] |
H. Uesaka, The blow-up boundary for a system of semilinear wave equations, Further Progress in Analysis, World Sci. Publ., Hackensack, NJ, (2009), 845–853.
doi: 10.1142/9789812837332_0081. |
[1] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[2] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[3] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[4] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[5] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[6] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[7] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[8] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[9] |
Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354 |
[10] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[11] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[12] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[13] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[14] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[15] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[16] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[17] |
Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020355 |
[18] |
Ludovick Gagnon, José M. Urquiza. Uniform boundary observability with Legendre-Galerkin formulations of the 1-D wave equation. Evolution Equations & Control Theory, 2021, 10 (1) : 129-153. doi: 10.3934/eect.2020054 |
[19] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[20] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]